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Abstract: Situated in the main tracks of typhoons in the Northwestern Pacific Ocean, Taiwan frequently
encounters disasters from heavy rainfall during typhoons. Accurate and timely typhoon rainfall
prediction is an imperative topic that must be addressed. The purpose of this study was to develop a
Hadoop Spark distribute framework based on big-data technology, to accelerate the computation of
typhoon rainfall prediction models. This study used deep neural networks (DNNs) and multiple
linear regressions (MLRs) in machine learning, to establish rainfall prediction models and evaluate
rainfall prediction accuracy. The Hadoop Spark distributed cluster-computing framework was the
big-data technology used. The Hadoop Spark framework consisted of the Hadoop Distributed
File System, MapReduce framework, and Spark, which was used as a new-generation technology
to improve the efficiency of the distributed computing. The research area was Northern Taiwan,
which contains four surface observation stations as the experimental sites. This study collected 271
typhoon events (from 1961 to 2017). The following results were obtained: (1) in machine-learning
computation, prediction errors increased with prediction duration in the DNN and MLR models;
and (2) the system of Hadoop Spark framework was faster than the standalone systems (single I7
central processing unit (CPU) and single E3 CPU). When complex computation is required in a model
(e.g., DNN model parameter calibration), the big-data-based Hadoop Spark framework can be used
to establish highly efficient computation environments. In summary, this study successfully used the
big-data Hadoop Spark framework with machine learning, to develop rainfall prediction models
with effectively improved computing efficiency. Therefore, the proposed system can solve problems
regarding real-time typhoon rainfall prediction with high timeliness and accuracy.
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1. Introduction

Taiwan is an island in East Asia. The latitude and longitude of Taiwan are 21◦ N–25◦ N and
120◦ E–122◦ E, respectively. As shown in Figure 1, situated in the main tracks of typhoons in the
Northwestern Pacific Ocean, Taiwan is frequently stricken by typhoons and heavy rainfall [1]. Tropical
cyclones form in tropical oceans, and nearly 90% of tropical cyclones form on sea surface of 27 ◦C in
regions that are approximately 20◦ in latitude. Approximately 80 typhoons are generated annually
in the world, and typhoons from the Northwestern Pacific Ocean are the strongest [2]. The typhoon
brings abundant rainwater that fills the reservoir, and it also causes losses of life, including in flooding
in some areas and landslides.
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Figure 1. Historical typhoon events (2008–2017) that affected East Asia (The map was produced by the
Central Weather Bureau, Taiwan. http://www.cwb.gov.tw).

This study established a typhoon rainfall prediction model to predict rainfall quantity when
typhoons strike. The prediction model can help people of all industries prepare for heavy rainfall and
prevent disasters in advance, to reduce economic loss and casualties. This study used Northern Taiwan
as the research area. Records of past typhoon events indicated that when the typhoon center passes
through the land of Northern Taiwan, it often brings heavy rainfall and causes major disasters [3].
For example, Typhoon Herb in 1996 caused 51 deaths, and 22 people went missing. In 2008, Typhoon
Jangmi caused two deaths, and two people went missing. Thus, establishing a real-time and accurate
typhoon rainfall prediction model is imperative.

Following the emergence of artificial intelligence in recent years, machine learning enables
machines learn to the rules from the input data in various algorithms that are similar to the rules
of thumb that are generated from computer autolearning. Machine learning can be applied for
big-data analysis. Therefore, machine learning has been extensively applied in various fields in recent
years [4–6]. In terms of the development of rainfall prediction models, the conventional linear regression
model has been constantly applied because of its comprehensive statistical theory foundation [7–9].
Machine-learning models include artificial neural networks, decision trees, support vector regressions,
random forests, and Bayesian networks [10–20]. In addition, hybrid machine-learning models have
been developed, such as the adaptive network-based fuzzy inference system [21]. Moreover, Maier
and Dandy [22], Antolik [23], Maier et al. [24], Madsen et al. [25], Maçaira et al. [26], and Paulo
Vitor de Campos Souza [27] have conducted in-depth reviews of rainfall prediction models and
water-resources-related models, using machine-learning algorithms. Newly developed models in
recent years, such as deep neural networks (DNNs), convolutional neural networks, and deep belief
networks, can be applied to image processing for atmospheric science-related research (e.g., rainfall
retrieval, typhoon track prediction, and wind speed prediction [28–31]).

To facilitate the efficient computation of machine-learning algorithms, this study used a popular
big-data technology—the Hadoop Spark distributed computing framework, which is a cost-efficient
and feasible parallel computing system—as a feasible option [32,33]. Hadoop is a computing platform
for storing and managing large sets of data and originates from the open-source code of the Apache
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Software Foundation (ASF) [34]. The ASF is an American nonprofit corporation that supports Apache
software projects [35]. Hadoop was originally designed to handle massive amounts of data efficiently
and inexpensively. It has the intelligence necessary to run the distributed file system and parallel
processing work [36]. Hadoop system consists of the Hadoop Distributed File System (HDFS) [37]
and MapReduce framework [38,39] (see Section 3.2 for the concepts behind HDFS and MapReduce).
Furthermore, Apache Spark is a flexible cluster-computing framework that was originally developed by
AMPLab at the University of California, Berkeley [40]. Spark is a new-generation big-data computing
framework that can improve the computational efficiency of MapReduce. The difference between
Spark and MapReduce is that MapReduce accesses data in hard disks, whereas the computation
using Spark involves memories. According to Xin et al. [41], the computational speed of Spark is
approximately 10 times faster than that of MapReduce.

The literature on efforts to reduce computational time in water resources and engineering
applications can be found; for example, Hu et al. [42] presented a web-based application of the coupled
multi-agent system model and environmental model for watershed management analysis, using
Hadoop. The total running time of the coupled models is reduced by 80%. Hu et al. [43] presented a
framework for the global sensitivity analysis to socio-hydrological models. This framework can find a
balance between the heavy computational burden associated with the model execution and the number
of model evaluations. The balance was achieved through the combination of Hadoop-based cloud
computing and polynomial chaos expansion. Qureshi and Koubaa [33] investigated the single-board
computer-based clusters in energy efficient data centers in the context of big-data applications. Hadoop
was deployed on two low-cost single-board computer-based clusters, using Raspberry Pi and Odroid
Xu-4 platforms. In terms of power efficiency, for smaller workloads, the Xu-4 cluster outperforms the
Raspberry Pi and HDM clusters; and for low-intensity workloads, the Xu-4 cluster fares 37% better
than the HDM Cluster.

To the best of our knowledge, applications in rainfall estimation and prediction using Hadoop
Spark big-data technology are scarce. This suggested that, given the thriving development of big-data
technology, the novel Hadoop Spark system could provide a potential to increase the performance
of data storage and reduce the computing time required for data analysis and models’ building.
The Hadoop Spark system was proposed to improve computing efficiency, as required by rainfall
prediction models, thereby enabling real-time typhoon rainfall prediction that requires high timeliness.
Accordingly, this study had two objectives: (1) use machine-learning models to establish typhoon
prediction models and improve rainfall prediction accuracy, and (2) use the newly Hadoop Spark
big-data computing framework to accelerate machine-learning computation and improve the timeliness
of real-time rainfall prediction.

2. Data Sources and Preprocessing

The research area was the Taipei Metropolitan Area in Northern Taiwan (red circle in Figure 2).
The Taipei Metropolitan Area is the most populated area in Taiwan (approximately 6.95 million people).
The four surface observation stations (i.e., Tamsui, Anbu, Taipei, and Keelung) in this area were used as
the experimental sites. The Anbu and Taipei stations were located in the Taipei Basin, and the Tamsui
and Keelung stations were in coastal areas.

The data source was the Central Weather Bureau (CWB) of Taiwan. This study collected ground
meteorological data from seven surface observation stations (the four target stations in the research
area and three adjacent stations, i.e., Pengjiayu, Su-ao, and Yilan, near research area) and typhoon
climatological data from typhoon warning sheets.

Table 1 presents the latitude, longitude, and altitude of all surface observation stations. Data
from 1961 to 2017 were collected (a total of 271 typhoon incidents in 57 years are listed in Appendix A
Table A1). According to the CWB typhoon classification, 79 severe typhoons (defined as typhoons
with a maximum wind speed at the center reaching 51.0 m/s or higher), 119 moderate typhoons
(32.7–51.0 m/s), and 73 mild typhoons (32.7 m/s or lower) were observed.
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Figure 2. Research area location and observation station distribution.

Table 1. Geographic location and altitude of surface observation stations.

Station Latitude (◦N) Longitude (◦E) Altitude (m)

Tamsui 25.1649 121.4489 19
Anbu 25.1826 121.5297 826
Taipei 25.0377 121.5149 7

Keelung 25.1333 121.7405 27
Pengjiayu 25.6280 122.0797 102

Su-ao 24.5967 121.8574 25
Yilan 24.7640 121.7565 8

Typhoon attributes on typhoon warning sheets include pressure in the typhoon center (code:
W1), distance between the typhoon center and the target station (W2), radius of winds over 15.5 m/s
(W3), moving speed of the typhoon (W4), and maximum wind speed of the typhoon center (W5).
The W2 can be obtained by calculating the latitudes and longitudes of the typhoon center and target
stations. The attribute data statistics of typhoon warning sheets are provided in Appendix A Table A2.
The meteorological attributes of surface observation stations include the air pressure on the ground
(Y1), temperature on the ground (Y2), dew point on the ground (Y3), relative humidity (Y4), vapor
pressure on the ground (Y5), surface wind velocity (Y6), surface wind direction (Y7), distance from the
typhoon center (Y8), and precipitation (Y9). The attribute data statistics of typhoon warning sheets are
provided in Appendix A Tables A3 and A4.

This study used correlation analysis to select input variables that were suitable for the target
stations. According to Reference [44], a correlation coefficient of |r| ≥ 0.3 represents moderate to
high correlation, and |r| < 0.3 represents low correlation. Therefore, this study adopted whether the
correlation coefficient between the attribute data and rainfall of each target station was greater or equal
to 0.3 as the selection criteria. As presented in Table 2, the target stations of Tamsui, Anbu, Taipei,
and Keelung, respectively, selected 15, 20, 15, and 12 attributes. The results revealed that Y4 and Y8 in
each station were crucial attributes that manifested in the high correlation between the distance from
the typhoon center and relative humidity to rainfall.
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Table 2. Selected attributes of each target station.

Target Station Selected Attributes

Tamsui
W2, Y4, and Y8 of Tamsui; Y8 of Anbu; Y4 and Y8 of Taipei; Y4,
Y6, and Y8 of Keelung; Y4, Y6, and Y8 of Pengjiayu; Y1 of Su-ao;
Y1 and Y8 of Yilan

Anbu
Y2, Y4, Y6, and Y8 of Tamsui; W2 and Y8 of Anbu; Y2, Y4, and
Y8 of Taipei; Y2, Y4, Y6, and Y8 of Keelung; Y6 and Y8 of
Pengjiayu; Y1 and Y8 of Su-ao; Y1, Y6, and Y8 of Yilan

Taipei
Y4 and Y8 of Tamsui; Y1 and Y8 of Anbu; W2, Y4, and Y8 of
Taipei; Y4, Y6, and Y8 of Keelung; Y1 and Y6 of Pengjiayu; Y1 of
Su-ao; Y1 and Y8 of Yilan

Keelung
Y8 of Tamsui; Y8 of Anbu; Y4 and Y8 of Taipei; W2, Y4, Y6, and
Y8 of Keelung; Y6 and Y8 of Pengjiayu; Y8 of Su-ao; Y8 of Yilan

3. Methodology

This study designed a big-data computing framework analysis system to estimate rainfall during
typhoons. Figure 3 displays the flowchart of the design. The flowchart consists of three sections of
main tasks: data preprocessing, the computing environment, and modeling and evaluation.
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The first section involved the collection of data associated with historical typhoon events in the
study area. Data collection, data processing, and attribute selection were conducted according to
aforementioned methods (Section 2). This study setup several cases to establish rainfall prediction
models. Case 1 used all data records regarding typhoon events that affected Taiwan. The number
of 16,957 hourly records was collected from 1961 to 2017 (totally 271 typhoons), in this case. Case 2
involved typhoons that passed through the research area. We found that 101 typhoons (6549 hourly
records) can be refined by the collected 271 typhoons of Case 1. In addition, rainfall intensity that
reaches heavy rain (rainfall quantity reaching 40 mm/h) can easily cause disasters, according to
Reference [45]. Therefore, Case 3 was constituted of selected typhoon events that reached the level
of heavy rain. We found that 80 typhoons (4771 hourly records) were refined by the collected 271
typhoons of Case 1. In terms of data segmentation, this study divided the data into training, validation,
and testing sets (as illustrated in Section 3.1).

The second section involved developing a computing platform of the Apache Hadoop Spark 2.0
distributed parallel computing framework. The development process of the framework is illustrated in
Section 3.2. This study assigned a computer as the master (or NameNode) to establish multiple clusters
of the Hadoop Spark computing framework to facilitate the management of multiple slave computers
(or DataNode) and allocate all computational resources, thereby optimizing computing efficiency.

The third section adopted the machine-learning model to establish rainfall prediction models.
This study used DNNs and multiple linear regressions (MLRs) to establish prediction models under
the Hadoop Spark distributed framework. The model-training process is explained in Section 4.
This study used the R programming language-based integrated development environment software
RStudio to establish machine-learning models. RStudio and the Hadoop Spark distributed framework
were connected to facilitate modeling and computation tasks. This study recorded execution times
under a standalone computer and the Hadoop Spark parallel computing framework to evaluate the
efficiency of the Hadoop system. In addition, the quality of the prediction results was evaluated by
using the following indicators, including the root mean squared error (RMSE), relative RMSE (rRMSE),
mean absolute error (MAE), relative MAE (rMAE), and coefficient of determination (R-Squared). The
equations are as follows.

RMSE =

√√ n∑
i=1

(
pPre

i − pObs
i

)2
/n (1)

rRMSE =
RMSE

pObs
(2)

MAE =
1
n
×

n∑
i=1

∣∣∣pPre
i − pObs

i

∣∣∣ (3)

rMAE =
MAE

pObs
(4)

R2 = 1−

∑n
i=1

(
pObs

i − pPre
i

)2

∑n
i=1

(
pObs

i − pObs
)2 (5)

where n is the total sets of data, pObs
i is the ith observation value, pPre

i is the ith prediction value, and
pObs is the mean of the observation values.

3.1. Data Division

The duration of the prediction time in this study was 1–6 h. The predicted rainfall quantity of the
ith hour is (p̂t+ i)i= 1,6. As analyzed previously, the predictor variables at each target station of lead time
= 1–6 h were the same as in Table 2. This study divided the data proportionally into training, validation,
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and testing sets. In Cases 1–3, approximately 90% of typhoon events were randomly selected as
training and validation sets in a ratio of 7:3 during the data segmentation process. The remaining 10%
were used as the testing sets.

During data segmentation, 27 typhoon events were selected as the testing sets from the events
ranked as having “heavy rain” regarding rainfall intensity to maintain consistency among the testing
sets of all model cases. The typhoons in the testing sets were Pamela (1961), Elsie (1969), Fran (1970),
Bess (1971), Amy (1977), Maury (1981), Jeff (1985), Susan (1988), Yancy (1990), Herb (1996), Otto (1998),
Xangsane (2000), Nakri (2002), Nangka (2003), Haitang (2005), Longwang (2005), Pabuk (2007), Jangmi
(2008), Parma (2009), Megi (2010), Nanmadol (2011), Tembin (2012), Kong-Rey (2013), Fung-Wong
(2014), Goni (2015), Aere (2016), and Nesat (2017). The remaining 244 (approximately 90%) typhoons
were divided randomly by a ratio of 7:3 into training and validation sets.

3.2. Computing Environment

This study established a Hadoop Spark distributed framework system. The HDFS can be
extended from a single server to multiple servers. The NameNode is responsible for managing and
maintaining the HDFS directory system and controlling the reading and writing of data. Multiple
DataNodes are responsible for data storage. Figure 4a presents the concept map of the system in which
DataNodes can be multiple clusters. The HDFS was designed to treat hardware malfunctioning as
normal instead of abnormal, access streaming data, process large-scale datasets, simplify consistency
models, prioritize mobile computation to mobile data, and develop cross-hardware and software
platforms [46]. MapReduce is a parallel computing framework (Figure 4b). The computing process
consists of two steps: Map and Reduce. The Map step divides works into subworks to be implemented
by separate multiple DataNodes. The Reduce step integrates all DataNode computation results and
transmits the final computational result back to the NameNode. The MapReduce method enables the
parallel processing of a massive quantity of data on multiple devices, thereby considerably improving
data-processing efficiency [47].
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Figure 4. Schematic diagram of (a) HDFS system and (b) MapReduce framework.

This study tested the operating performance of a standalone computer and cluster systems,
to understand the computing efficiency of the Hadoop distributed framework. Table 3 presents
the hardware equipment (including brands, chip sets, and motherboards) of this study. The server
computers of the cluster system adopted the E-series central processing unit (CPU), and that of the
standalone computers adopted the I-series CPU. The clock rates of the server and standalone computers
could reach 3.5 GHz, and the memory capacity was consistently DDR4-2400 16G.

This study connected four server computers in a series, to construct the Hadoop distributed
framework system. During the system establishment process, we used Yet Another Resource Negotiator
(YARN), which replaced the MapReduce engine in the first version of Hadoop and provided resource
management and job scheduling in the Hadoop distributed processing platform [48]. Although YARN
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is the data refinery layer and is a processing level for scheduling parallel computing jobs, this structure
makes the complexities of distributed computing abstract [47].

Table 3. Hardware equipment of the experimental systems.

Equipment Cluster System Standalone PC

Brand and model ASUS-TS300E9 GIGABYTE-P55
CPU E3-1240v6 (3.5GHz) I7-6700HQ (3.5GHz)

Chipset Intel C236 Chipset Intel C236 Chipset
Memory DDR4-240016G DDR4-240016G

Number of computers 4 1

For the system hardware equipment, a computer was designated as the master and functioned as
the NameNode in the HDFS and ResourceManager in YARN. The remaining three computers (coded
as data1, data2, and data3) functioned as DataNodes in the HDFS and NodeManager in YARN. Table 4
specifies the IP address and functions of master, data1, data2, and data3.

Table 4. Hadoop multi-node cluster.

Name IP Address HDFS YARN

master 192.168.0.100 NameNode ResourceManager
data1 192.168.0.101 DataNode NodeManager
data2 192.168.0.102 DataNode NodeManager
data3 192.168.0.103 DataNode NodeManager

YARN = Yet Another Resource Negotiator.

4. Modeling and Evaluation

This section explains the establishment of the rainfall prediction models of the four target stations
(i.e., Tamsui, Anbu, Taipei, and Keelung). During the DNN modeling process, three hidden layers
were adopted, and the parameters to be calibrated included the learning rate and neuron number
in the hidden layers. This study used the trial-and-error method to calibrate the parameters. First,
the learning rate was fixed at 0.1, to test the neuron number in each hidden layer. In the first hidden
layer, 1–20 neurons were tested. After the optimal neuron number of the first hidden layer was
determined, the optimal neuron numbers of the second and third hidden layers were sequentially
tested. After all neuron numbers of all the hidden layers were determined, the learning rate was
calibrated. The learning rate was calibrated with an interval of 0.1, within a range from 0 to 1,
to determine the optimal solution.

The various model parameters for forecasting horizons ranging from 1 to 6 h were separately
calibrated by using the trial-and-error method (similar to the process in the one-hour-ahead forecast).
Table 5 summarizes calibrated parameters of the lead time from 1 to 6 h in the three model cases.

For building MLR models, the attributes selected were the same as those used in the DNN models.
The regression equation represents a straight line or plane that minimizes the squared differences
between predicted and obtained output values [49]. This study used a stepwise regression method and
specified selection criteria based on the statistical probability associated with each field. The criteria
and stepwise estimation were used to add and remove fields [50,51].

4.1. Results and Comparisons

This section describes how testing sets were used to predict rainfall based on the DNN and
MLR models. Figure 5 displays the performance of the evaluation indicators of the testing sets,
including absolute error indicators (i.e., MAE and RMSE) and the squared correlation coefficient (R2).
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The evaluation results of the models in each station revealed that, 1–6 h in the future, the DNN model
had superior performance to that of the MLR model in the Tamsui, Anbu, Taipei, and Keelung stations.

Table 5. Deep neural network (DNN) parameter calibrations of lead time = 1–6 h at target stations.

Station Case Parameter
Lead Time (h)

1 2 3 4 5 6

Tamsui 1 Layers 1–3 (6,4,6) (2,1,5) (1,2,6) (1,2,1) (1,1,1) (1,1,1)
Learning rate 0.3 0.1 0.2 0.1 0.4 0.2

2 Layers 1–3 (3,2,4) (2,3,2) (2,1,3) (3,2,4) (3,3,1) (3,3,5)
Learning rate 0.6 0.4 0.3 0.1 0.1 0.1

3 Layers 1–3 (1,6,4) (2,5,4) (3,7,3) (1,3,1) (1,3,6) (1,3,4)
Learning rate 0.2 0.2 0.1 0.1 0.1 0.1

Anbu 1 Layers 1–3 (7,4,8) (6,3,4) (6,4,4) (6,3,2) (4,5,6) (5,5,7)
Learning rate 0.4 0.4 0.3 0.4 0.3 0.3

2 Layers 1–3 (3,6,4) (3,5,4) (3,4,5) (3,3,4) (6,4,5) (5,3,6)
Learning rate 0.5 0.3 0.2 0.2 0.5 0.4

3 Layers 1–3 (4,7,7) (3,5,7) (3,6,7) (2,5,1) (3,5,3) (5,4,6)
Learning rate 0.4 0.3 0.4 0.4 0.3 0.2

Taipei 1 Layers 1–3 (4,3,5) (1,3,3) (1,2,2) (1,2,1) (1,3,5) (1,1,1)
Learning rate 0.3 0.3 0.3 0.2 0.1 0.1

2 Layers 1–3 (2,6,2) (2,5,7) (1,5,4) (2,3,5) (2,5,2) (4,4,1)
Learning rate 0.7 0.1 0.1 0.2 0.1 0.1

3 Layers 1–3 (1,8,6) (1,5,3) (2,6,7) (2,5,4) (5,1,1) (2,3,3)
Learning rate 0.6 0.1 0.1 0.1 0.3 0.1

Keelung 1 Layers 1–3 (3,1,1) (3,2,2) (5,1,1) (4,2,2) (4,4,2) (5,4,4)
Learning rate 0.1 0.2 0.1 0.3 0.1 0.1

2 Layers 1–3 (6,4,2) (4,3,5) (3,3,5) (3,2,3) (2,3,7) (1,2,5)
Learning rate 0.1 0.3 0.1 0.1 0.1 0.1

3 Layers 1–3 (5,5,6) (5,3,5) (3,1,2) (4,2,1) (2,3,3) (1,3,2)
Learning rate 0.1 0.1 0.1 0.1 0.1 0.1

To facilitate comparison between the model performance of different stations, we plotted rRMSE
line charts of the future 1–6 h. The results are shown in Figure 6.

• In Case 1, the DNN model prediction result (Figure 6a) exhibited the most favorable performance
in the Anbu station, followed by that in the Taipei, Tamsui, and Keelung stations. The MLR
prediction results (Figure 6d) were most favorable in the Anbu station, followed by those in the
Taipei, Keelung, and Tamsui stations (no significant difference was attained).

• In Case 2, the DNN prediction results (Figure 6b) were the most favorable in the Anbu station,
followed by the Tamsui, Taipei, and Keelung stations. The MLR prediction results of the Anbu
station were the most favorable (Figure 6e), followed by those in the Taipei, Keelung, and Tamsui
stations (similar results).

• In Case 3, the DNN prediction results (Figure 6c) of the Anbu station were the most favorable,
followed by those of the Taipei, Tamsui, and Keelung stations. The MLR prediction results of
the Anbu station were the most favorable (Figure 6f), followed by those of the Taipei, Keelung,
and Tamsui stations (with similar results).

These results revealed that the DNN model had a more favorable performance in the Anbu station
than it did in the other stations. By contrast, the Anbu station also had the most favorable MLR results,
and the other stations had similar results.

Figure 7 plots the overall prediction errors of 1–6 h. The overall average performance of the DNN
model (Figure 7a) presented the lowest mean of the four stations in Case 3 (rRMSE = 1.982), the second
lowest mean in Case 2 (rRMSE = 2.025), and the highest mean in Case 1 (rRMSE = 2.037). Regarding
the overall average performance of the MLR model (Figure 7b), the means of the four stations from the
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lowest to highest were Case 1 (rRMSE = 2.143), Case 2 (rRMSE = 2.166), and Case 3 (rRMSE = 2.160).
These results revealed that the prediction model using Case 3 could yield more accurate prediction
values than could other model cases.Atmosphere 2020, 11, x FOR PEER REVIEW 10 of 21 
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4.2. Simulation of Typhoons

This section details the simulation of two typhoon events: Typhoon Herb (1996) and Typhoon
Jangmi (2008). After Typhoon Herb landed in Taiwan, its track (Figure 8a) went from east to west,
thereby penetrating the research area and bringing a massive rainfall quantity to the area. The rainfall
duration of Typhoon Herb in the research area was approximately 40 h. After Typhoon Jangmi landed
in Taiwan, its track (Figure 8b) went from southeast to northwest, passed through the southwestern
part of the research area (Figure 8a), and brought considerable rainfall to the area. The rainfall duration
of Typhoon Jangmi in the research area was approximately 72 h.
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Figure 8. Track of Typhoons: (a) Herb and (b) Jangmi.

Figures 9 and 10, respectively, depict the prediction and observation values of the hyetographs of
Typhoons Herb and Jangmi. As shown in Figure 9, the maximum hourly rainfall of Typhoon Herb
at the Tamsui, Anbu, Taipei, and Keelung stations were 37.0, 51.8, 34.6, and 41.6 mm/h, respectively.
The highest hourly rainfall was observed in the Anbu station. The cumulative total rainfall quantities
from high to low were at the Anbu (560 mm), Tamsui (246 mm), Keelung (217 mm), and Taipei
stations (35 mm). The maximum hourly rainfall of Typhoon Jangmi at the Tamsui, Anbu, Taipei,
and Keelung stations was 36.0, 42.5, 19.5, and 25.5 mm/h, respectively. The highest hourly rainfall
was observed in the Anbu station. The total rainfall quantities from high to low occurred at the Anbu
(563 mm), Tamsui (392 mm), Keelung (280 mm), and Taipei stations (228 mm). The results revealed that
terrain-affected typhoon circulations terrain could easily cause heavy rainfall and the accumulation of
tremendous rainfall quantity at the Anbu station. Because the Taipei station is situated in the Taipei
Basin, the rainfall quantity from the typhoons was less there than in the other stations.

Figures 9 and 10 present the prediction results when the lead time was 1, 3, and 6 h. The results
revealed that, as prediction duration increased, the prediction accuracy of each model decreased
gradually. The simulation results of Typhoons Herb and Jangmi revealed that, when the lead time was
1 h (Figure 9a,d,g,j and Figure 10a,d,g,j), the prediction values of the DNN and MLR models roughly
matched the observation values. When the lead time reached 3 or 6 h, the prediction values of the MLR
model tended to underestimate high rainfall and overestimate low rainfall. A possible cause is that the
MLR used statistical linear regression and adopted the means as the prediction results. Compared
with the MLR, the DNN model better reflected fluctuations in future rainfall possibly because neuron
weighting was adjusted to facilitate the learning of rainfall estimation during modeling.

Figures 11 and 12 depict the absolute and relative error indicator results of the two typhoons.
The figures indicate that a greater absolute error of RMSE was generated at the Anbu station than
that of the other three stations during both typhoons, whereas a lower RMSE was observed at the
Taipei station. By contrast, the Anbu station exhibited a lower rRMSE than did the other three stations,
thereby generating results that were consistent with those described in a previous section.
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5. Efficiency of Computation Environments

This section presents the evaluation of computer computation performance. First, a single-server
computer (E3 CPU) was used to test the computing time of the DNN, in Cases 1–3, which respectively
contained 16,957, 6549, and 4771 records. Figure 13 shows that, in a single-server environment, in Cases
1–3, the computing time decreased following the decreasing number of records. However, the data
quantity run in the three cases was not enough to present differences in the computing efficiency of
computation environments that require a massive quantity of data.
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Figure 13. Computing efficiency among model cases by using a single server (E3).

This study designed a dataset (coded as Case 0) to understand computing performance when
data increased. The attribute data were obtained from 57 years of hourly station data (the maximum
duration with available records from the stations in the research area). The total number of records
reached approximately 500,000. Figure 13 indicates that, when the data quantity increased substantially,
the computing time of Case 0 increased rapidly and considerably. Because Case 0 can be easily used
to evaluate computing efficiency under various computation environments, it was adopted in the
following evaluation process.

According to the computer equipment described in Section 3.2, we simulated three computation
environments: (1) a standalone system with only one I7 CPU computer (hereinafter referred to as I7),
(2) a single server with only one E3 CPU computer (hereinafter referred to as E3), and (3) a Hadoop
cluster system that serially connected four E3 CPU computers (hereinafter referred to as Hadoop).
Table 6 presents the computing times of the Tamsui, Anbu, Taipei, and Keelung stations under the three
computation environments. In the table, “CPU” represents the computing time of the CPU, and “USER”
represents the total computing time after the CPU computing time was deducted (including time
for data transmission in the system and the transmission of network packets). In addition, Table 6
provides a comparison of the DNN and MLR modeling times. The results revealed that the USER time
was longer than the CPU time in all three models. In DNN modeling, a large quantity of parameters
is required to test the analysis results; therefore, the USER and CPU times were longer than those in
MLR modeling. Moreover, when evaluating the computing performance of the three computation
environments (I7, E3, and Hadoop), we observed the mean computing time of the four stations and
found that the Hadoop USER and CPU times were considerably shorter than those in the I7 and E3
computation environments.

Figure 14 displays the comparison of the total computing times of the DNN and MLR models.
Figure 14a indicates that the MLR model had extremely high computing efficiency, and the total
computing time of I7, E3, and Hadoop was within 2 s. By contrast, Figure 14b revealed the considerable
difference between the total computing times among the computation environments in the DNN
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model, in which Hadoop was 27 and 9 times faster than I7 and E3, respectively. The experimental
results revealed that when complex machine-learning model computation is required, the Hadoop
Spark framework, based on big-data technology, can be applied to develop an efficient computation
environment and system.

Table 6. Computing time of both models with their computation environments.

Station Model
Standalone (I7) Single Server (E3) Cluster System (Hadoop)

USER CPU USER CPU USER CPU

Tamsui MLR 0.58 0.13 0.56 0.05 0.58 0.05
DNN 2134.0 175.6 697.5 59.1 76.4 8.6

Anbu MLR 0.95 0.21 0.70 0.18 0.58 0.06
DNN 2299.6 200.1 751.6 67.3 82.3 9.8

Taipei MLR 0.58 0.08 0.57 0.07 0.56 0.06
DNN 2252.7 216.4 736.3 72.8 80.6 10.6

Keelung MLR 0.47 0.14 0.50 0.05 0.47 0.05
DNN 2043.7 157.7 667.9 53.0 73.2 7.7

Average MLR 0.65 0.14 0.58 0.09 0.55 0.05
DNN 2182.5 187.5 713.3 63.0 78.1 9.2
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6. Conclusions

The study developed a computing environment by using big-data technology to accelerate
machine-learning algorithms when building rainfall prediction models during typhoons. This study
used machine-learning models that comprised DNNs and MLRs to establish rainfall prediction models.
The big-data technology used was the Hadoop Spark distributed cluster-computing framework.
The Hadoop system consisted of the HDFS and MapReduce framework, and next-generation Spark
technology was used to improve the efficiency of the distributed computing.

The research area was Northern Taiwan, where four surface observation stations (i.e., Tamsui,
Anbu, Taipei, and Keelung) were selected as the experimental sites. The sources include meteorological
data from CWB of Taiwan from 1961 to 2017 from typhoon warning and ground stations. This study
screened relevant attribute data based on individual model cases of the stations. The prediction
duration was 1–6 h. To understand the computing performance of the Hadoop distributed framework,
we tested the computing performance of standalone computers and cluster systems, using three
computation environments: a standalone system with one I7 CPU computer, a single server with one
E3 CPU computer, and a Hadoop system with four E3 CPU computers.

Through the experiments, we obtained the following findings: (1) in machine-learning computation,
prediction errors increased with prediction duration in the DNN and MLR models. Regarding station
prediction performance, the DNN model performed more favorably in the Anbu station, followed by
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that in the Taipei, Tamsui, and Keelung stations, whereas the MLR model performed more favorably in
the Anbu station and generated similar results in the other three stations. (2) Of the three computation
environments that were used for testing the Hadoop Spark distributed cluster-computing framework,
the Hadoop system had a faster execution speed than did the standalone systems (single I7 CPU and single
E3 CPU). In models that required complex computation (e.g., DNN model parameter test), the big-data
Hadoop Spark framework could be used to develop a highly efficient computation environment and system.
In practical applications, the framework can be implemented through the Internet to connect more than the
four computers that were used in this study. Therefore, following the development of big-data technology,
highly nonlinear problems (e.g., rainfall simulation) can be solved more rapidly to enable the efficient
development of prediction systems.

In summary, this study successfully used the big-data technology Hadoop Spark and combined
machine learning to develop rainfall prediction models with effectively improved computing efficiency.
Therefore, the proposed system can solve problems concerning real-time typhoon rainfall prediction
with high timeliness and accuracy.

Future studies are likely to focus on enhancing the feature-selection method. Among the numerous
feature-selection methods available, according to Maier et al. [24] and Wu et al. [52], two primary
approaches are typically adopted: the model-free approach (e.g., correlation-based criterion method
and mutual information method) and the model-based approach (e.g., stepwise selection method and
ad hoc method). The most commonly used measure of statistical dependence for input selection is a
correlation measure, which is classified as a model-free approach. This selection has the disadvantage
of measuring only the linear dependence between variables [53,54]. For this research, we used the
selection of variables based on the correlation measure, without considering the multicollinearity
among inputs. Therefore, we suggest applying a model-based approach, such as the stepwise selection
method proposed by Efroymson [55], which is a one-step-at-a-time approach and is based on t-tests of
the individual parameters, known to be severely affected by multicollinearity (i.e., highly correlated
predictors).
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Appendix A. Typhoons and Data Attributes Over 1961–2017

Table A1. Collected typhoons.

Year Typhoon Year Typhoon Year Typhoon

1961 Betty, Elsie, June, Lorna,
Pamela, Sally 1980 Ida, Norris, Percy, Betty 1999 Sam

1962 Kate, Opal, Wanda, Amy,
Dinah 1981 Ike, June, Maury, Agnes,

Clara, Irma 2000 Kai-tak, Bilis, Prapiroon, Bopha,
Yagi, Xangsane, Bebinca

1963 Wendy, Gloria 1982 Andy, Cecil, Dot, Ken 2001 Cimaron, Chebi, Utor, Trami,

1964 Betty, Doris, Ida, Sally,
Tilda 1983 Wayne, Ellen, Forrest 2002 Rammasun, Nakri, Sinlaku

1965 Dinah, Harriet 1984 Wynne, Alex, Freda,
Holly, June 2003

Kujira, Nangka, Soudelor,
Imbudo, Morakot, Vamco,
Krovanh, Dujuan, Melor
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Table A1. Cont.

Year Typhoon Year Typhoon Year Typhoon

1966 Judy, Alice, Cora, Elsie 1985 Hal, Jeff, Nelson, Val,
Brenda 2004 Conson, Mindulle,

1967 Anita, Clara, Nora,
Carla, Glida 1986 Nancy, Peggy, Wayne,

Wayne, Wayne, Abby 2005 Haitang, Matsa, Sanvu, Talim,
Khanun, Damrey, Longwang

1968 Wendy, Elaine 1987
Thelma, Vernon, Alex,
Cary, Dinah, Gerald,

Lynn
2006 Chanchu, Ewiniar, Bilis, Kaemi,

Saomai, Bopha, Shanshan

1969 Viola, Betty, Elsie, Flossie 1988 Susan, Warren, Nelson 2007 Pabuk, Sepat, Wipha, Krosa,
Mitag

1970 Olga, Wilda, Fran 1989 Sarah 2008 Kalmaegi, Fung-wong, Nuri,
Sinlaku, Hagupit, Jangmi

1971 Lucy, Nadine, Agnes,
Bess 1990 Marian, Ofelia, Percy,

Robyn, Yancy, Abe, Dot 2009 Linfa, Molave, Morakot, Parma

1972 Susan, Winnie, Betty 1991 Amy, Brenda, Ellie,
Mireille, Nat, Ruth, Seth 2010 Lionrock, Namtheun, Meranti,

Fanapi, Megi

1973 Joan, Nora 1992 Bobbie, Mark, Omar,
Polly, Ted 2011 Aere, Songda, Meari, Muifa,

Nanmadol

1974 Jean, Lucy, Wendy, Bess 1993 Tasha, Yancy, Abe 2012 Talim, Doksuri, Saola, Haikui,
Kai-tak, Tembin, Tembin, Jelawat

1975 Nina, Betty, Elsie 1994 Tim, Caitlin, Doug, Fred,
Gladys, Seth 2013 Soulik, Cimaron, Trami, Kong-rey,

Usagi, Fitow

1976 Ruby, Billie 1995 Deanna, Gary, Janis,
Kent, Ryan 2014 Hagibis, Matmo, Fung-wong

1977 Ruth, Thelma, Vera,
Amy 1996 Cam, Gloria, Herb, Sally,

Zane 2015 Noul, Chan-hom, Linfa, Soudelor,
Goni, Dujuan

1978 Olive, Rose, Della, Ora 1997 Winnie, Amber, Cass,
Ivan 2016 Nepartak, Meranti, Malakas,

Megi, Aere

1979 Gordon, Hope, Irving,
Judy 1998 Nichole, Otto, Yanni,

Zeb, Babs 2017 Nesat, Haitang, Hato, Guchol,
Talim

Table A2. Statistical data on typhoons.

Attribute Range Mean

Pressure at typhoon center (hPa) 15–1000 957.6
Latitude (◦N) of typhoon center 15–29.5 22.3

Longitude (◦E) of typhoon center 113.2–133.7 122.4
Radius of winds over 15.5 m/s (km) 0–400 206.7
Moving speed of typhoon (km/h) 0–65 17.1

Maximum wind speed of typhoon center
(m/s) 12–216 74.5

Table A3. Statistical data on ground weather at the target stations of Tamsui and Anbu.

Attribute
Tamsui Station Anbu Station

Range Mean Range Mean

Air pressure on the ground (hPa) 957–1022 1000.5 871–929 912.2
Temperature on the ground (◦C) 15.1–38.2 27.2 9.5–30.2 21.4
Dew point on the ground (◦C) 10.8–30 23.1 8.5–25.4 20.2

Relative humidity (%) 2.4–100 79.5 42–100 93.0
Vapor pressure on the ground (hPa) 11.3–42.4 28.5 11.1–34.1 23.8

Surface wind velocity (m/s) 0–29.3 3.7 0–41.8 6.5
Surface wind direction (◦) 0–360 140.4 0–360 228.3

Precipitation (mm) 0–86.8 1.3 0–119.5 2.9
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Table A4. Statistical data on ground weather at the target stations of Taipei and Keelung.

Attribute
Taipei Station Keelung Station

Range Mean Range Mean

Air pressure on the ground (hPa) 954–1023 1001.6 954–1021 1000.5
Temperature on the ground (◦C) 16.1–37.3 27.5 15.6–36.7 27.3
Dew point on the ground (◦C) 11.2–28.5 23.3 9.4–28.6 23.4

Relative humidity (%) 37–100 78.9 46–100 80.1
Vapor pressure on the ground (hPa) 13.3–38.9 28.8 11.8–37.1 29.0

Surface wind velocity (m/s) 0–28.9 3.9 0–28.5 5.0
Surface wind direction (◦) 0–360 134.9 0–360 131.7

Precipitation (mm) 0–76 1.3 0–95.3 1.4
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