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Abstract: This study describes a framework that provides qualitative weather information on winter
precipitation types using a data-driven approach. The framework incorporates the data retrieved
from weather radars and the numerical weather prediction (NWP) model to account for relevant
precipitation microphysics. To enable multimodel-based ensemble classification, we selected six
supervised machine learning models: k-nearest neighbors, logistic regression, support vector machine,
decision tree, random forest, and multi-layer perceptron. Our model training and cross-validation
results based on Monte Carlo Simulation (MCS) showed that all the models performed better than our
baseline method, which applies two thresholds (surface temperature and atmospheric layer thickness)
for binary classification (i.e., rain/snow). Among all six models, random forest presented the best
classification results for the basic classes (rain, freezing rain, and snow) and the further refinement of
the snow classes (light, moderate, and heavy). Our model evaluation, which uses an independent
dataset not associated with model development and learning, led to classification performance
consistent with that from the MCS analysis. Based on the visual inspection of the classification maps
generated for an individual radar domain, we confirmed the improved classification capability of the
developed models (e.g., random forest) compared to the baseline one in representing both spatial
variability and continuity.
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1. Introduction

Precipitation is one of the most important variables in atmospheric and environmental sciences,
including weather- and hydrology-related research. The estimation of rainfall (i.e., liquid phase
precipitation) is becoming easier and more accurate thanks to advanced remote-sensing technology and
the presence of reliable ground reference networks (e.g., [1,2]). On the other hand, quantifying amounts
of solid and mixed precipitation remains challenging, as does identifying the many different types of
precipitation (e.g., [3,4]) because of the difficulty of their reliable measurement. The information on this
cold type of precipitation is important for infrastructure and facility management (e.g., air/ground traffic
control and road closure) during the winter season in many regions (e.g., [5]). The conventional way of
monitoring winter weather types (e.g., snow and freezing rain) has often relied on the dual-polarization
capability of weather radars, which allows us to define hydrometeor types (e.g., [6]). These precipitation
types obtained at the radar sampling locations aloft occasionally do not coincide with what is observed
at the surface because of the possible phase transition along its falling path.

The Iowa Flood Center (IFC) has provided a real-time quantitative rainfall map for statewide
streamflow prediction over the State of Iowa in the United States [7]. This radar-derived rainfall map
is a composite of multiple radar datasets with a 5-min update cycle and an approximately 0.5 km
resolution [8]. During the winter season, this map includes snow coverage information estimated using
the numerical weather prediction (NWP) model data. This snow classification procedure does not
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incorporate radar observations to avoid the abovementioned disagreement between the ground and
the radar sampling altitude; the rain/snow delineation applies two thresholds for surface temperature
and critical thickness (e.g., [9,10]) retrieved from the High-Resolution Rapid Refresh (HRRR) model
analysis (e.g., [11]). The real-time visualization of this map often reveals discontinuous snow regions
split by a tile-shape border because the model’s resolution is coarser than the resolution of the rainfall
map (i.e., 3 vs. 0.5 km). This discontinuous pattern continues until the model analysis is updated
every hour.

In this study, we explore a data-driven approach to improve the discussed weakness of our
current classification. We combine the data retrieved from radars and the NWP model to overcome the
limitations of each radar- and NWP-only method and develop multiple classification models based on
the supervised machine learning approach. Given the difficulty or uncertainty in classifying winter
precipitation (e.g., [12,13]), our objective is to develop a framework that can deliver a multimodel-based
classification ensemble or probabilistic classification product.

2. Data

In this study, we developed a data-driven model to classify winter precipitation for the entire State
of Iowa in the United States. To ensure the model’s robustness and reliability, the modeling framework
must include a variety of meteorological and environmental data resources retrieved from weather
radars and an NWP model for multiple years. This dataset accounts for atmospheric conditions
associated with precipitation microphysics (e.g., [14,15]). We used observed weather classes (e.g., rain,
freezing rain, and snow) as reference information as recorded in the automated surface observing
system (ASOS [16]) network. These records enable the supervised learning of our classification model
and provide an opportunity to capture the dynamic features of winter precipitation processes because
of the ASOS’s high observational frequency (e.g., 1 min).

2.1. ASOS Data

The ASOS is a joint effort initiated by the U.S. National Oceanic and Atmospheric Administration
(NOAA), the Federal Aviation Administration (FAA), and the Department of Defense (DOD) to support
weather forecasting research/activities and aviation operations. The ASOS network comprises over 900
stations across the United States, which provide a wide range of automated surface weather observations,
such as temperature, precipitation, wind, pressure, visibility, and sky conditions [17]. In the study
domain (i.e., Iowa) shown in Figure 1, there are 15 ASOS stations; we collected precipitation-type
observations with a 1 min resolution from all 15 stations for selected events during a four-year period
(2012–2015). As one of the ASOS stations is positioned within a range where no radar observation
is available (i.e., “the cone of silence”), we excluded the data from the station (the one beside the
KDVN radar in Figure 1) in our model development and validation. ASOS stations equipped with two
sensors (one is for rain/snow identification, and the other is for freezing rain detection) for detecting
weather types check the observed data and execute the precipitation identification (PI) algorithm every
minute [17]. The PI result is categorized into three precipitation classes: (1) rain (−RA, RA, +RA),
(2) freezing rain (−FZRA, FZRA), and (3) snow (−SN, SN, +SN). The negative (−) and positive (+)
signs denote whether the strengths of the reported classes are “light” or “heavy”, respectively; no sign
indicates a “moderate” state of precipitation.
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Figure 1. The locations of radars and automated surface observing system (ASOS) stations in the 
study domain. The circular areas centered on each radar indicate the 230 km coverage of individual 
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We acquired the radar volume data (e.g., [18]) for four radars (see Figure 1) in the U.S. Weather 
Surveillance Radar-1988 Doppler (WSR-88D) network from Amazon’s big data archive (e.g., [19,20]). 
As illustrated in Figure 1, the four radars (KFSD in Sioux Falls, South Dakota; KDMX in Des Moines, 
Iowa; KDVN in Davenport, Iowa; and KOAX in Omaha, Nebraska) illuminate the Iowa domain with 
some overlaps and fully cover the ASOS locations. All four radars have provided polarimetric 
observations since their upgrade to dual-polarization (DP) in 2012 (KFSD, KDMX, and KDVN) and 
2013 (KOAX). Their volume data contain three DP observables (differential reflectivity ZDR, copolar 
correlation coefficient ρHV, and differential phase φDP), including the conventional ones (horizontal 
reflectivity ZH, radial velocity, and spectrum width). To prepare the radar data for model 
development and evaluation, we assigned each individual radar to its closest ASOS station. The 
radar–ASOS pairs and the distances between them are listed in Table 1. We then retrieved the ZH, 
ZDR, and ρHV data observed at the base elevation angle (approximately 0.5°) for the corresponding 
spherical coordinates (e.g., 0.5° by 250 m in azimuth and range) of the ASOS stations from each 
assigned individual radar. The scanning intervals of WSR-88D are 4–5 min in a precipitation mode 
and 9–10 min for a clear air mode. The time of the radar observations for data retrieval was limited 
to a 1 min window from ASOS records. We did not include φDP observations in this procedure 
because φDP is a cumulative quantity along a radial direction and quite noisy except for in heavy rain 
cases. The relevance (or signature) of ZH, ZDR, and ρHV with different types of precipitation is well 
described in [1,3]. We note that there is no significant radar data quality control (except for a simple 
procedure using a ρHV threshold) included in the data retrieval to remove non-meteorological radar 
echoes because we selected obvious weather cases from the ASOS reports. 

Table 1. Radar–ASOS pairs for matching precipitation classes and model input features retrieved 
from the radar data. The closest ASOS station was assigned to each individual radar, and the numeric 
values in parenthesis indicate the distance (km) between them. 

Radar The Number of ASOS Stations ASOS Stations 
KFSD 2 EST (161.1), SPW (131.9) 

KDMX 7 ALO (142.2), AMW (30.2), DSM (22.5), LWD (122.9), MCW 
(161.8), MIW (78.9), OTM (126.9) 

KDVN 5 BRL (102.7), CID (98.3), DBQ (87.9), DVN (0.6), IOW (78.0) 
KOAX 1 SUX (119.0) 
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To define the weather conditions, we retrieved several atmospheric variables, which likely 
describe winter precipitation formation and development, from the Rapid Refresh (RAP) model 

Figure 1. The locations of radars and automated surface observing system (ASOS) stations in the study
domain. The circular areas centered on each radar indicate the 230 km coverage of individual radars.

2.2. Radar Data

We acquired the radar volume data (e.g., [18]) for four radars (see Figure 1) in the U.S. Weather
Surveillance Radar-1988 Doppler (WSR-88D) network from Amazon’s big data archive (e.g., [19,20]).
As illustrated in Figure 1, the four radars (KFSD in Sioux Falls, South Dakota; KDMX in Des Moines,
Iowa; KDVN in Davenport, Iowa; and KOAX in Omaha, Nebraska) illuminate the Iowa domain
with some overlaps and fully cover the ASOS locations. All four radars have provided polarimetric
observations since their upgrade to dual-polarization (DP) in 2012 (KFSD, KDMX, and KDVN) and
2013 (KOAX). Their volume data contain three DP observables (differential reflectivity ZDR, copolar
correlation coefficient ρHV, and differential phase ϕDP), including the conventional ones (horizontal
reflectivity ZH, radial velocity, and spectrum width). To prepare the radar data for model development
and evaluation, we assigned each individual radar to its closest ASOS station. The radar–ASOS pairs
and the distances between them are listed in Table 1. We then retrieved the ZH, ZDR, and ρHV data
observed at the base elevation angle (approximately 0.5◦) for the corresponding spherical coordinates
(e.g., 0.5◦ by 250 m in azimuth and range) of the ASOS stations from each assigned individual radar.
The scanning intervals of WSR-88D are 4–5 min in a precipitation mode and 9–10 min for a clear air
mode. The time of the radar observations for data retrieval was limited to a 1 min window from ASOS
records. We did not include ϕDP observations in this procedure because ϕDP is a cumulative quantity
along a radial direction and quite noisy except for in heavy rain cases. The relevance (or signature) of
ZH, ZDR, and ρHV with different types of precipitation is well described in [1,3]. We note that there is
no significant radar data quality control (except for a simple procedure using a ρHV threshold) included
in the data retrieval to remove non-meteorological radar echoes because we selected obvious weather
cases from the ASOS reports.

Table 1. Radar–ASOS pairs for matching precipitation classes and model input features retrieved from
the radar data. The closest ASOS station was assigned to each individual radar, and the numeric values
in parenthesis indicate the distance (km) between them.

Radar The Number of ASOS Stations ASOS Stations

KFSD 2 EST (161.1), SPW (131.9)

KDMX 7
ALO (142.2), AMW (30.2), DSM
(22.5), LWD (122.9), MCW (161.8),
MIW (78.9), OTM (126.9)

KDVN 5 BRL (102.7), CID (98.3), DBQ
(87.9), DVN (0.6), IOW (78.0)

KOAX 1 SUX (119.0)
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2.3. NWP Data

To define the weather conditions, we retrieved several atmospheric variables, which likely
describe winter precipitation formation and development, from the Rapid Refresh (RAP) model
analysis. The RAP is a continental-scale assimilation and model forecast system updated hourly and
based on 13 and 20 km resolution horizontal grids [21]. For this study, we selected the 20 km horizontal
grid data, assuming that the weather conditions do not sharply change within the 20 km grids collocated
with the ASOS stations shown in Figure 1. The retrieved RAP variables for the corresponding ASOS
record hours are the geopotential height at 1000, 850, and 700 mb; air temperature at the surface and
850 mb; and relative humidity at the surface. Because the critical thickness (e.g., [9,10]) is a typical
indicator of snow-likely conditions, we derived two thickness layers between 1000–850 and 850–700
mb from the geopotential height at these pressure levels. The relative humidity combined with air
temperature (e.g., wet bulb temperature) is another indicator that can account for the phase transition
of precipitation and snow formation.

3. Methodology

In this section, we briefly introduce multiple models based on the supervised machine learning
method for winter precipitation classification. Because of its efficiency and simplicity in model
implementation, we used the Python “Scikit-Learn” library [22] to build multiple classification models.
The six models selected for this study are k-nearest neighbors (kNN), logistic regression (LR), support
vector machine (SVM), decision tree (DT), random forest (RF), and multi-layer perceptron (MLP).
This section also outlines the model training and testing strategies for the objective evaluation of
the models’ classification performance, depending on the refinement of precipitation classes and the
different combinations of input features retrieved from the radar and NWP data.

3.1. Classification Models

One of the simplest classification algorithms is kNN, which does not require prior knowledge of
the data (e.g., distribution). For a new data point, kNN attempts to define the point in the training
dataset closest to the new point. The parameter k in the algorithm denotes how many of the closest
neighbors to consider, and the algorithm makes a decision/prediction based on the majority class
among the k nearest neighbors. While the kNN algorithm is often used as a baseline classification
method, its performance (e.g., training time and prediction accuracy) tends to decrease as the training
dataset becomes larger with an increasing number of features. In this study, we use a simple kNN
model (i.e., k = 1) for training efficiency to test several different combinations of training features.

LR was named after the algorithm’s primary function, called a “logistic function”. This is also
known as the “sigmoid function”, which allows predictive analysis based on the concept of probability
(e.g., [23]). LR makes binary predictions by estimating the linear function parameters (i.e., slope
and intercept) and transferring the linear estimates to the sigmoid function. For multiple class (e.g.,
n classes) identification, the algorithm analyzes n binary models, and for each of these, the classes are
split into two groups, a specific class and all other classes. The algorithm then runs n binary classifiers
for a new data point and makes its prediction by selecting a single class that yields the highest score.

SVM basically seeks a multi-dimensional hyperplane (e.g., decision boundary), which maximizes
the margin/separation between two different classes. The hyperplane dimension is determined by the
number of training data features. For instance, if there are two data features, the hyperplane is a line.
As SVM is inherently a binary classifier [24], it is necessary to execute a procedure similar to the one in
LR for multi-class identification. Support vectors defined as training points located near the border
between classes determine the orientation and position of the hyperplane. To make a prediction, the
algorithm measures the distances between a new data point and each support vector using a selected
kernel function. The algorithm then makes its decision based on the measured distances and the
weights of the support vectors. Because the kernel function is a key parameter in SVM, we tested
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several kernels (e.g., linear, sigmoid, polynomial, and radial basis functions) and selected the linear
one for this study’s classification.

DT is a white-box type method, as opposed to a black-box model (e.g., neural network), which
does not expose the model’s decision logic and rules. The DT algorithm begins by partitioning the
tree in a recursive manner from the topmost decision node, known as the “root node”. The algorithm
selects the best feature/attribute for splitting the data records at decision nodes and divides the records
into smaller datasets (“branches”). It continues to the decision (“leaf”) at the end of the branch, where
there is no more record to split. The algorithm applies a heuristic rule to decide the data-splitting
criteria and assigns ranks to attributes (the best one is selected) based on attribute selection measures
(ASM), such as the information gain, gain ratio, or Gini index (see, for example, [25]).

RF consists of a large collection of individual DTs, which result in an ensemble for a class decision.
In other words, the individual DTs reach their own decisions, and the class with the highest occurrence
becomes the model’s prediction. Given this basic concept, the most crucial factor in the determination of
a model’s prediction performance is whether the model has a large number of (relatively) uncorrelated
DTs. To avoid highly correlated trees in the forest, RF uses a random subset of all the provided features
when building individual DTs, which makes the model stronger and more robust than a single DT
by limiting model’s overfitting and increasing error caused by bias (e.g., [26,27]). In the RF model
implementation, we set 100 trees for winter precipitation classification.

A perceptron is a simple binary classifier, which makes a prediction based on a linear transformation
of an input feature vector using weights and a bias. On the other hand, MLP is a feedforward artificial
neural network model that comprises at least three fully connected layers (i.e., input, hidden, and
output layers) (e.g., [28]). MLP has two basic motions associated with model learning: (1) forward
signals propagate from the input layer through the hidden layers and then reach a decision when the
signals arrive at the output layers, and (2) the multitude of weights and biases are backpropagated
and repeated until the decision error is minimized using a gradient-based optimization algorithm.
While MLP provides a basis for deep learning, which facilitates a complex model structure to capture
characteristics contained in large numbers of data, its training often takes longer than that of other
models presented in this section. For the MLP model in this study, we set 100 hidden layers for
training efficiency.

3.2. Model Training and Evaluation

Supervised model learning requires model input features (e.g., predictors) and target classes.
The target classes used in this modeling procedure are rain, freezing rain, and snow (light, moderate,
and heavy) as observed at the ASOS stations. While the ASOS records offer three rain classes (light,
moderate, and heavy), we consolidate these into one simple class (i.e., rain) in this study. Quantitative
rainfall information is widely available from radar-derived products (e.g., [8,29]), and there are fewer
concerns about the qualitative discretization of rain classes. Light and moderate freezing rain are also
combined into one class because there are fewer cases of freezing rain than other types during the
data period. The input features used for model development are ZH, ZDR, ρHV, two critical thicknesses
between 1000–850 and 850–700 mb (Thick1000–850 and Thick850–700), two air temperatures at the surface
(Ts) and 850 mb (T850), and relative humidity (RHs) at the ASOS locations. To explore the classification
capability of the selected models, we applied various model configurations using the different sets of
classes and input features listed in Table 2. Our focus on selecting input features was to explore snow-
and freezing rain-likely conditions using different combinations of the NWP variables (e.g., F1–F4).
Since radar observations are requirements for generating a classification map with high space and time
resolutions, we included them in the final feature set (F5).
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Table 2. Model target classes and input features for various model configurations.

Class (C)
C1 RA (rain), FR (freezing rain), and SN (snow)

C2 RA, FR, LS (light snow), MS (moderate snow), and HS
(heavy snow)

Feature (F)

F1 Thick1000–850 and Ts
F2 Thick1000–850, Ts, and RHs
F3 Thick1000–850, Thick850–700, Ts, and T850
F4 Thick1000–850, Thick850–700, Ts, T850, and RHs
F5 Thick1000–850, Thick850–700, Ts, T850, RHs, ZH, ZDR, and ρHV

We split the entire data period into a separate training period (2012–2013) and validation period
(2014–2015), as shown in Figure 2. The sample sizes of each class for the training and validation
periods are presented in Table 3. To assess the consistency and robustness of models’ performance, we
conducted simultaneous model training and cross-validation using Monte Carlo simulations (MCS)
as follows: (1) randomly select 75% of the entire training dataset and use the samples for model
training, (2) evaluate model performance using the rest (25%) of the dataset, and (3) repeat the prior two
steps 1000 times and calculate a success rate (represented as “score” in the resulting figures) for each
repetition. This MCS approach allowed us to examine the distribution/variability of model predictions
and compare the classification performance of all six models. We based our decision regarding the
model input features on the MCS results achieved by testing the different sets of features (see Table 2)
retrieved from the radar and NWP data. We then trained all the models again using the selected
feature dataset for the entire training period and captured the models’ structure and parameters. We
note that the input feature data listed in Table 2 required a scale transformation (e.g., standardization)
before they could be used for model learning. This is because some learning algorithms (e.g., SVM and
MLP) are often sensitive to inconsistency in the data scales among different input features, which
causes a divergence of the algorithm cost function and leads to inaccurate predictions. We applied
the final (trained) models and data transformation scheme saved from the model training step to the
independent model evaluation using a new dataset for the validation period presented in Figure 2. For
the purposes of visual comparison and assessment, we generated classification maps for two example
weather cases using the developed models and the IFC’s threshold approach (hereafter referred to as
the baseline method).
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Table 3. The sample size of precipitation classes for the training (2012–2013) and validation
(2014–2015) periods.

Classes RA FR LS MS HS Total

Training 408 68 956 107 14 1553
Validation 134 51 803 63 15 1066

4. Results

4.1. Relationships between Classes and Features

The analysis begins with an inspection of the relationships between precipitation classes and the
model input features retrieved from the radar and NWP data. This analysis examines how well the
features (e.g., as explanatory variables) describe snow- or rain-likely conditions in the atmosphere
and on the surface. The results from this analysis can provide useful guidance when selecting model
input features and help us understand the classification performance derived from a specific set of
input features. In Figure 3, we present the relationships between two explanatory variables arbitrarily
selected from the NWP data and precipitation classes observed in the training period shown in Figure 2.
Regarding radar variables (e.g., ZH–ZDR), [1,3] provide similar representation to Figure 3. Although
there are many more possible combinations using all the input features, Figure 3 demonstrates a few
representative combinations. We also note that this two-dimensional illustration has limited usefulness
in scrutinizing multi-dimensional characteristics (dependence) between the explanatory and response
variables. We hope that the machine learning models will address such characteristics. The critical
thicknesses (Thick1000–850 and Thick850–700) and surface temperature (Ts) shown in Figure 3 are typical
indicators commonly used to identify snow/rain (e.g., [9,10]). For example, the IFC applies two
threshold values (i.e., 3 ◦C for Ts and 1310 m for Thick1000–850) to distinguish snow-likely regions and
provides a real-time radar-derived rainfall map with snow area identification [8]. These two thresholds
are presented in Figure 3 as red solid lines, and we use this baseline method as a benchmark when
evaluating the machine learning models proposed in this study. As demonstrated in Figure 3, there is
much overlap among the winter precipitation classes (cold rain, freezing rain, and snow), and warm
rain is easier to discriminate. This implies that winter precipitation classification is quite challenging
with such a threshold approach. However, the thresholds for Ts and Thick1000–850 presented in Figure 3
seem to be reasonable discriminators with an acceptable occurrence of classification errors (e.g., about
7% for the presented samples), given the simplicity of the method. Figure 3 also reveals that relative
humidity (RHs) is another important factor in deciding rain/snow under certain conditions because
cold and mixed (i.e., freezing) rain is not likely to form below 60% of RHs at lower surface temperatures.
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Figure 3. Precipitation classes characterized by the environmental variables retrieved from the
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were observed at the ground using the ASOS stations in Iowa. The red solid lines indicate the thresholds
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4.2. Model Training and MCS

To decide the model input features, we tested several different sets of feature combinations (F1–F5)
for a simpler precipitation class set (C1). The input feature and class sets are listed in Table 2. Figure 4
shows the MCS results for all the different feature sets and classification models described in Section 3.1.
Each boxplot represents the distribution of classification scores (i.e., success rate) obtained from 1000
rounds of random resampling, and the scores were calculated with cross-validation using 25% of
the entire training dataset. As shown in Figure 4, all the models perform better than the baseline
method (indicated by a red solid line) except for some realizations with the F1 and F2 feature sets.
We discovered that the classification score tends to increase as the models include more explanatory
variables. This implies that the upper atmospheric layer information (i.e., Thick850–700 and T850) is a
critical factor that leads to improved classification based on the sharp changes observed between the
F2 and F3 distributions for all six models. The inclusion of radar observations yielded results that
differ depending on the model learning schemes; most models result in similar or worse performance
(e.g., F4 vs. F5), while RF shows slight improvement in terms of the median and interquartile range.
Because RF seems to be the best model given the median (or the mean) and the variance of distribution
(e.g., the width of the interquartile range) in Figure 4, we decided to select F5 for model input features.
We also expect that the inclusion of radar variables supports frequent map updates (e.g., 4 to 5 min),
which is not feasible with the NWP data only.
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Figure 4. MCS results for the different combinations (F1–F5) of model input features with respect to
the classification models. The MCS analysis was performed for the basic precipitation classes (C1).
The boxplot describes the distribution of the classification success rate achieved from 1000 realizations.
The baseline method indicated by the red solid line was estimated using the two thresholds for critical
thickness and surface temperature shown in Figure 3.

Using the final feature set (F5), we performed the MCS analysis once more for the class set C2
(see Table 2), which further refines snow classes from C1. As shown in Figure 5, the performance of all
models for C2 significantly dropped when compared to that for C1. However, RF remains the best
model, with a classification success rate of about 90%. Therefore, we examined the reason for the
performance drop observed in Figure 5 and analyzed the misclassification rates of all five classes during
the resampling procedure. For example, Figure 6a shows the distribution of RF’s misclassification rates
with respect to each individual class. The sum of misclassification rates from all five classes reaches
unity at each realization, and the distribution presented as a boxplot in Figure 6a indicates a collection
of 1000-time simulation results. As presented in Figure 6a, MS was the most challenging one as defined
by RF. We also confirmed that LS and MS contained most of the errors in MLP. We further tracked
RF’s cases of misclassification for MS and present the results in Figure 6b, regarding the content of
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the errors derived from RF. In Figure 6b, we show that most MS cases were classified as LS, and the
discrimination between LS and MS is the most challenging task in the refinement of snow classes.
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While RF outperforms other models, it would be valuable to maintain all six models (because
all models with the final feature set F5 performed better than the baseline method), which enables
a multimodel-based ensemble or probabilistic approach. We finally trained all six models with the
feature set F5 for the target precipitation classes C1 and C2 using the entire training dataset and saved
the structure and parameters of the models. We added one more element to the model training stream
to learn if sequential modeling, which performs the first classification for C1 and then refines the snow
classes using C1’s result, can reduce errors compared to the direct classification for C2. Therefore,
separate snow models were also trained for the classification of its three classes.

4.3. Model Evaluation

In this section, we evaluate the performance of all six models trained in the previous section
using an independent dataset (see Figure 2) that was not used for model development and training.
The evaluation results are illustrated in Figure 7 with respect to the target precipitation classes listed in
Table 2. The results for C1 and C2 presented in Figure 7 show similar tendencies to those in Figure 5:
(1) the performance drops from C1 to C2, and (2) RF performs the best for both C1 and C2. The label
“C1-snow” in Figure 7 denotes the results of sequential modeling, which identifies the C1 classes first
and then details the snow classes (light, moderate, and heavy) from SN in C1. As expected, the use
of successive models (C1-snow) seems to improve the result slightly compared to the results from
direct refinement (C2). The C1-snow approach tends to reduce the number of rain classes (e.g., FA
and RA) that are erroneously classified into the refined snow classes. However, the performance
difference between C2 and C1-snow does not seem significant, and most of the misclassification for
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both approaches appears between light and moderate snow, as shown in Figure 6. We also present
the result of the baseline threshold method (a red solid line in Figure 7) for the validation dataset,
which can be compared with that of C1 because the baseline method provides binary classification
(rain/snow) only.
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In Figures 8 and 9, we applied the developed models to two well-known weather cases and
generated classification maps for the KDVN radar domain. Figure 8 shows maps of radar reflectivity
and precipitation classification (baseline and RF) for an event that occurred in May 2013 during the
NASA’s field campaign, known as Iowa Flood Studies (IFloodS). The observed precipitation pattern,
the presence of melting layer, and the precipitation types (e.g., phase) within the KDVN domain are
described well in [30]. The baseline classification using two NWP parameters (Thick1000–850 and Ts)
indicates that the coarse grid resolution of the NWP model generates an undesirable border between
the precipitation classes. These discontinuous border and classification pattern persist until the model
is updated, depending on the modeling cycle (e.g., hourly). On the other hand, the RF map using
both the radar and NWP data better represents the spatial variability and provides an additional class
(i.e., FR). In Figure 9, we present another case of widespread snow across the entire radar domain
that occurred in March 2015. We confirmed the occurrence of both snow and freezing rain during
this period based on the ASOS records and our personal experience (see Figure 2). While the RF map
in Figure 8 shows three classes to be compared with the baseline method, Figure 9 illustrates the
similarities and differences in the results produced by the different machine learning models (e.g., kNN,
RF, and MLP) with five classes, as an example. As illustrated in Figure 9, RF seems to underestimate the
coverage of freezing rain, whereas MLP defines a fairly extended area for the same class. Unfortunately,
there is no reference information on this spatial coverage of freezing rain, and we speculate that the
actual coverage pattern might be close to the one shown in the kNN map. Hopefully, we will be able
to expand our training dataset and improve the models’ classification capabilities for freezing rain;
we lacked sufficient cases of freezing rain in the development of our model.
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5. Conclusions

This study proposes a framework for providing qualitative weather information on winter
precipitation based on a data-driven approach using weather radar observations and NWP analysis.
This framework enables the easy implementation of multiple classification models, which could lead to
a multimodel-based ensemble or probability of occurrence for a precipitation class of interest. Using the
widespread Python “Scikit-Learn” module [22], which supports a variety of machine learning studies,
we constructed six supervised classification models: kNN, LR, SVM, DT, RF, and MLP. Although
reference information on winter precipitation classes is uncommon, weather class observations [17]
from two ASOS sensors allowed us to apply these supervised learning methods.

To determine which model input features properly describe winter precipitation processes, we
tested several different feature combinations (Table 2) of the WSR-88D observations (ZH, ZDR, and
ρHV) and the RAP analysis (Thick1000–850, Thick850–700, Ts, T850, and RHs) over Iowa in the United
States. We performed random resampling, known as MCS, for each feature set by assigning 75% of
the training samples for model learning and the rest for model cross-validation, and repeating these
steps 1000 times. The MCS results for basic classification (rain, freezing rain, and snow) demonstrated
that the model performance tends to improve with more feature information, particularly for the RF
model, which showed the best classification performance of all six models. We also confirmed that
based on the classification results from all the models for the selected feature set (F5), they outperform
our current baseline method using two thresholds for Thick1000–850, and Ts. Although class refinement
tends to decrease the accuracy of model classification (Figure 5), we found that the most frequent
misclassification occurs between light and moderate snow, implying that the models’ basic classification
is still valuable with high success rates.

The model evaluation using an independent dataset, which was not used for model learning,
verified that the performance of the models remained within a range similar to that for the MCS
results. We also made an effort to improve the performance decrease observed in class refinement
by splitting the modeling procedure into two steps: basic classification and snow class refinement.
This sequential modeling resulted in better classification than the direct refinement method, but the
improvement did not seem significant. We also visually inspected the model-generated classification
maps for well-known weather cases and found that the maps looked much more realistic than the one



Atmosphere 2020, 11, 701 12 of 14

generated by the baseline method in representing spatial variability and eliminating discontinuous
patterns arising from the coarse spatial resolution of the NWP data.

Based on this development, our goal is to implement the proposed models in our real-time
operation [7] to improve the current binary classification (i.e., the baseline method). The inclusion
of radar observations in the model input stream facilitates frequent map updates (e.g., every 5 min)
with more precipitation classes and better representation of both spatial variability and continuity.
The generation of a composite field map for a large area requires a data processing scheme to synchronize
radar data (e.g., ZH, ZDR, and ρHV) or final classification maps generated at all different observation
times from multiple radars. This can be readily resolved by calculating storm velocity vectors for
each individual radar domain and projecting individual fields in a linear fashion with the vectors into
synchronized space and time domains [31]. We note that the weather class information generated by
this study is far from ready for use in quantitative applications (e.g., hydrologic prediction) because
the estimation of snow density and snow-water equivalent is still challenging.

The reliability of data-driven models, particularly the supervised ones, depends on the accuracy
of reference information. The sensors deployed in ASOS stations, which provide the class observations
for supervised learning in this study, assign a certain portion of ice pellets into one of the rain categories
(if they are accompanied by freezing rain, the sensor regards them as freezing rain) [17]. Ice crystals
are regarded as no precipitation. Unfortunately, the degree and frequency of these uncertainties are
unknown, and we hope to further investigate the effect of these factors on our classification using
future cases. With the advantage of our data-driven framework, we will expand the model training
dataset as the capacity of radar and NWP data grows and routinely train our models to make them
more robust. While RF seems to perform better than other models with the current dataset, we hope
that future data expansion and extensive model training will equalize the classification performance of
all the models somewhat, leading to reliable ensemble production.
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