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Abstract: Budapest, the capital of Hungary, has been facing serious air pollution episodes in the
heating season similar to other metropolises. In the city a dense urban air quality monitoring
network is available; however, air quality prediction is still challenging. For this purpose, 24-h
PM2.5 forecasts obtained from seven individual models of the Copernicus Atmosphere Monitoring
Service (CAMS) were downscaled by using hourly measurements at six urban monitoring sites in
Budapest for the heating season of 2018–2019. A 10-day long training period was applied to fit
spatially consistent model weights in a linear combination of CAMS models for each day, and the
10-day additive bias was also corrected. Results were compared to the CAMS ensemble median,
the 10-day bias-corrected CAMS ensemble median, and the 24-h persistence. Downscaling reduced
the root mean square error (RMSE) by 1.4 µg/m3 for the heating season and by 4.3 µg/m3 for episodes
compared to the CAMS ensemble, mainly by eliminating the general underestimation of PM2.5 peaks.
As a side-effect, an overestimation was introduced in rapidly clearing conditions. Although the
bias-corrected ensemble and model fusion had similar overall performance, the latter was more
efficient in episodes. Downscaling of the CAMS models was found to be capable and necessary to
capture high wintertime PM2.5 concentrations for the short-range air quality prediction in Budapest.
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1. Introduction

Hungary’s capital, Budapest, the ninth largest city of the European Union, has been facing high
concentrations of particulate matter (PM), and the guidelines defined by the European Environmental
Agency have been exceeded at urban monitoring sites, especially in the winter [1]. The World Health
Organization estimated an approximate 8000 deaths related to outdoor air pollution in Hungary each
year [2] and the APHEKOM (Improving Knowledge and Communication for Decision Making on
Air Pollution and Health in Europe) project found that excess pollution caused by particulate matter
smaller than 2.5 µm diameter (PM2.5) reduced life expectancy by 19 months in Budapest in the period
of 2004–2006, which was the second highest value among the 25 investigated European cities [3].
The dominant local source of PM in the Budapest area is domestic heating [1,4,5], but the contribution
from large-scale transport is also considerable [5,6]. Winter stagnation episodes with persistent
inversions and high PM2.5 concentrations pose a major environmental risk in Budapest [7,8] and are
expected to amplify the seasonal flu epidemic [9]. Urban air quality regulation and decision-making
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policies rely on the monitoring sites operated by the Hungarian Air Quality Network. The dense
urban monitoring network consists of 12 stations, 6 of which provide hourly PM2.5 measurements.
The monitoring of data enables a good assessment of the present situation and long-term statistical
evaluation of urban air pollution. However, the increasing need for flexible real-time decision making,
as well as public awareness and active communication, raised an urgent need for near-real-time air
quality predictions for urban locations. Besides local efforts to implement atmospheric chemistry
transport models [10–12], the need for air quality predictions and policy support in European countries
lead to the development of several continental-scale atmospheric chemistry transport models [13,14]
that provide operational air quality predictions for Budapest.

European operational air quality modeling efforts have been coordinated by the Copernicus
Atmosphere Monitoring Service (CAMS [15,16]). In the winter of 2018–2019, the operational CAMS
model ensemble consisted of seven individual models: CHIMERE [17], EMEP [18], EURAD-IM [19],
LOTOS-EUROS [20], MATCH [21], MOCAGE [22] and SILAM [23]. The European air quality forecast
for a typical operational and public use was the CAMS ensemble, defined as the median of the
available model results at each grid-point [16]. CAMS models shared the ECMWF IFS (European
Centre for Medium-Range Weather Forecast Integrated Forecasting System) meteorological driver and
the TNO-MACC (Netherlands Organization for Applied Scientific Research - Monitoring Atmospheric
Composition and Climate) emission inventory [16,24], and outputs were provided on the same grid
with a horizontal resolution of 0.1◦. However, the models were different regarding their native grid
resolution, meteorology–chemistry coupling, physical and chemical parameterizations, the number of
chemical species, and data assimilation [15,19,25]. Therefore, the ensemble spread was often large,
and the CAMS ensemble median was suggested to provide a robust estimate even in cases of divergent
model results.

Despite the state-of-the-art chemistry modules of CAMS models, capable of simulating primary
particles [26–28], secondary inorganic [29] and organic aerosols [30], the prediction of urban PM2.5

concentration is still a challenging issue. On the other hand, the spatial representativity of urban
monitoring sites is limited, especially in the winter stagnation events when significant domestic
sources and low wind speeds introduce large spatial heterogeneity in the concentration field [31].
This challenges the model validation with urban measurements, but provides space for statistical
downscaling efforts [32–44]. Verification of European CAMS measurements in the winter of 2018–2019
found a large negative bias of PM2.5 predictions with mean relative biases between −0.22 and −0.02 [45].
This provided motivation for downscaling with the notion that reducing systematic underestimation
could improve the relatively large hourly RMSE values of 8–11 µg/m3 [45].

Data fusion methods for downscaling air quality model results are widely used to improve spatial
model accuracy by adjustment with point measurements [37,38,42], to provide locally optimized
predictions at monitoring sites [32,35], and to generate measurement-adjusted boundary conditions
for nested models [43]. Single-model downscaling methods include the correction of systematic
bias [33–35] and the blending of model predictions with interpolated observational fields [37,38,43].
Ensemble downscaling methods create an optimized combination of model outputs using spatially
dependent [32,39–41], or spatially consistent [36] weights. Recently, the methodology of data fusion has
been extended to construct very fine-scale air quality fields by using data from low-cost sensors [39,44].

In this study, we apply a linear multi-model fusion method with time-dependent weights to
downscale CAMS PM2.5 predictions to urban monitoring sites in Budapest in the heating season of
2018–2019. Section 2 presents the fusion method, the applied data, and the evaluation metrics. Section 3
presents the fused predictions and improved validation statistics. Section 4 compares the results to
similar methods and studies.
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2. Methods

A fusion of CAMS air quality models was applied to downscale PM2.5 air quality predictions to
monitoring sites in Budapest. The fused prediction c f usion,x,t for location x and time t was constructed
as a time-dependent linear combination of the 7 independent models based on the idea presented
in [36]:

c f usion,x,t= w0,t +
7∑

i=1

wi,tci,x,t (1)

The prediction ci,x,t was (a) the raw prediction; (b) the bias-corrected PM2.5 prediction from the ith
CAMS model for time t and the nearest grid point to monitoring location x. Model weights w0−7,t were
optimized on each day by minimizing the regularized RMSE cost function Jt for all available locations
over the training period of [t− T − d, t− d].

Jt =

√√√
1

X·T

X∑
x=1

t−d∑
τ=t−T−d

(
c f usion,x,τ − cobs,x,τ

)2
+R (2)

where X is the number of observation sites with available hourly data in the training period and T is
the length of the training period. A delay d was introduced to simulate delays in the availability of
monitoring data. Note that the model weights were time-dependent but spatially consistent, and all
stations were included to optimize the model weights to enhance the consistency of the fused prediction
for the entire urban area. To reduce overfitting, a regularization term R was added to the cost function
containing two terms to regularize deviations from the ensemble mean and large temporal shifts in
consecutive model weighting, respectively [36]:

R = α

7∑
i=1

(
wi,t −

1
7

)2
+β

7∑
i=1

(wi,t −wi,t−1)
2 (3)

Depending on the available urban monitoring sites reporting hourly PM2.5 concentrations in
Budapest, X = 4, X = 5 or X = 6 was used (see data availability in Table 1). The training period was set to
10 days, i.e., T = 240 was applied for hourly data. Thus, a total of 960–1440 observation–prediction pairs
were used to fit 8 independent weights for each day, representing each CAMS model’s relevance for
predicting urban PM2.5 concentrations during the past 10 days, plus a zero-degree term. Regularization
strength parameters α and β were set to 0.1 and 100, respectively. Model experiments with a set of
different regularization strength parameters between 0.1 and 100 were carried out and compared
to the measurements. Very little sensitivity on the alpha parameter was found. Increasing the beta
parameter improved the prediction of concentration peaks but had a little overall impact. The delay d
in monitoring data availability was set to 24 h permitting manual data quality assurance.

Hourly PM2.5 monitoring data were obtained from the Hungarian Air Quality Network for 6 sites
in Budapest, including city and suburban locations (Table 1, Figure 1). Monitoring sites included
suburban residential neighborhoods with low local traffic, but strong local domestic sources and major
highway roads within 2 km distance (Budatétény, Gilice tér); densely habited suburban hubs with
high local traffic and domestic emissions (Gergely utca, Kőrakás park); and city center areas with
very high local traffic and low domestic emissions (Erzsébet tér, Honvéd). All stations lie between
100–150 m elevation above mean sea level over a flat terrain bounded by hills from the west reaching
400–500 m elevation (Figure 1). Hourly samples were collected between 17 October 2018–15 April 2019
in Budatétény, October–December 2018 at Erzsébet tér, October 2018–February 2019 at Gilice tér and
October 2018–April 2019 at the other three sites.
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Table 1. Hourly PM2.5 data availability of monitoring stations and Copernicus Atmospheric Monitoring
Service (CAMS) models in Budapest in the heating season 15 October 2018–15 April 2019.

Station Location Data
Availability

Mean
Concentration

Number of Values
Above 25 µg/m3

Budatétény 47.41 N 19.00 E 4327/4392 1 20 µg/m3 1157
Erzsébet tér 47.50 N 19.05 E 1871/4392 2 21 µg/m3 621
Gergely utca 47.47 N 19.14 E 4367/4392 21 µg/m3 1333

Gilice tér 47.43 N 19.18 E 3120/4392 3 21 µg/m3 1050
Honvéd 47.52 N 19.07 E 4376/4392 19 µg/m3 1253

Kőrakás park 47.54 N 19.15 E 4389/4392 15 µg/m3 749

Model Area Data
Availability

Mean
Concentration

Number of Values
Above 25 µg/m3

CHIMERE

47.45–47.55 N
19.05–19.15 E 4

4392/4392 15 µg/m3 535
EMEP 4368/4392 18 µg/m3 951

EURAD 4392/4392 16 µg/m3 809
LOTOS-EUROS 4392/4392 13 µg/m3 285

MATCH 4392/4392 12 µg/m3 345
MOCAGE 4392/4392 13 µg/m3 461

SILAM 4392/4392 24 µg/m3 1621
ENSEMBLE 4392/4392 14 µg/m3 523

1 Observations at Budatétény are missing until 17 October 2018. Data availability between 18 October 2018 and
15 April 2019 is 4317/4320. 2 PM2.5 observations at Erzsébet tér have ceased as of 2019. Data availability between
15 October and 31 December 2018 is 1871/1872. 3 Observations at Gilice tér are missing for March and April 2019.
Data availability between 15 October 2018 and 26 February 2019 is 3105/3240 (96%). 4 Values from four CAMS
model grid-points (47.45 N 19.05 E, 47.45 N 19.15 E, 47.55 N 19.05 E, 47.55 N 19.15 E) were used. The table shows the
availability at all, the mean of all, and the exceedance at all four grid-points, respectively.
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Figure 1. The administrative boundary of Budapest, the locations of monitoring sites and the CAMS
output grid. Topography contours are drawn based on the GLOBE 1 km digital elevation model [46].
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Near-real-time, daily initialized 24-h regional model predictions were obtained from the Copernicus
Atmosphere Monitoring Service (CAMS) [15,16]. The data fusion method was implemented in two
ways: (a) using the raw CAMS forecasts as input predictions; (b) correcting the previous 10-day
additive bias independently for each model and using the bias-corrected CAMS model forecasts as
input predictions for the fusion.

Comparison statistics obtained with the fusion method were compared with raw and bias-corrected
CAMS models, the CAMS ensemble and the 24-h persistence. Bias correction is an important step
as PM2.5 model predictions typically had a negative bias; while urban PM2.5 measurements are
assumed to be positively biased compared to representative values [45]. Comparison statistics for
each bias-corrected model are also presented. Model-observation differences were measured by the
mean absolute bias (MAB), root mean square error (RMSE) and Pearson correlation (r) (Appendix A).
The European Air Quality Index (EAQI) accuracy measure was introduced from an operational aspect,
as the typical application of air quality predictions is to communicate air quality indices to the public.
Therefore, EAQI accuracy is defined as the percentage of hourly concentrations when the modeled and
the observed value fell in the same EAQI category (Appendix B).

Model performance was evaluated on three subsets of the October 2018–April 2019 period.
The first subset was the official heating season between 15 October and 15 April representing the
overall quality of predictions in the winter half-year. The second subset was restricted to days of
episodes (polluted periods) when air quality predictions have a regulatory interest and are actively
communicated to the public. The third subset was the pattern shift days marking the onset and clear-up
of polluted periods, which are landmark events in the assessment of air pollution and are the primary
interests of air quality prediction users. Model performance on pattern shift days is also an important
indicator of the potential overfitting on past days data and demonstrates the added value of modeling
compared to persistence or measurement time series extrapolation methods.

An episode was defined as a day when daily mean PM2.5 concentration exceeded 25 µg/m3; or a
day when at least three of the previous two and following two days had a daily mean of PM2.5 above
25 µg/m3 at any of the six stations. Pattern shift days were defined as the first days of an episode and
the first days after an episode, given that both the episode and the following clear period lasted at least
3 days. By these definitions, episodes occurred in a total of 70 days and pattern shift days in a total of
15 days. Selected temporal subsets are presented in Table 2.

Table 2. Selected temporal subsets within the heating season 15 October 2018–15 April 2019.

Episode Days Pattern Shift Days

15–20 Oct 2018 21 Oct 2018
27 Oct 2018

1–3 Nov 2018 1 Nov 2018
5–13 Nov 2018 14 Nov 2018
1–4 Dec 2018 1 Dec 2018
6–8 Dec 2018 9 Dec 2018
13 Dec 2018

16–22 Dec 2018 16 Dec 2018; 23 Dec 2018
7–10 Jan 2019 7 Jan 2019; 11 Jan 2019
21–25 Jan 2019 21 Jan 2019

27 Jan–1 Feb 2019 2 Feb 2019
6–10 Feb 2019 6 Feb 2019; 11 Feb 2019

15–19 Feb 2019 15 Feb 2019; 20 Feb 2019
25 Feb 2019
22 Mar 2019
24 Mar 2019



Atmosphere 2020, 11, 669 6 of 15

3. Results

A linear model fusion with time-dependent but spatially consistent weights of CAMS air quality
models was applied to obtain 24-h PM2.5 measurements for Budapest. Figure 2 presents the observed
time series, the fused prediction and the CAMS ensemble median for three urban sites. Time-dependent
bias correction was also applied for each day by removing the additive bias of the previous 10-day
long window for each day. The bias-corrected ensemble and the fusion of bias-corrected individual
models (bias-corrected fusion) are also presented with points in Figure 2.

Atmosphere 2020, 11, x FOR PEER REVIEW 6 of 16 

 

10-day long window for each day. The bias-corrected ensemble and the fusion of bias-corrected 
individual models (bias-corrected fusion) are also presented with points in Figure 2. 

The CAMS ensemble median generally underestimated urban PM2.5 concentrations, especially 
during episodes. Downscaled forecasts, both by time-dependent bias correction of the CAMS 
ensemble and the fusion of individual CAMS models, largely improved the predictions and could 
better capture the episode peaks (Figure 2). Exceptions were the clear-up days following episodes, 
overestimated by the downscaled predictions (e.g., 14–20 November, 23–30 December). If the 10-day 
training period included an episode, a large negative bias was corrected and/or the model predicting 
higher concentrations was overweighted, which subsequently resulted in overestimations after the 
episode. Meanwhile, the clear-up event was clearly captured by all models, and the overestimation 
was less severe in the data fusion model than for the bias-corrected CAMS ensemble. Accordingly, 
the daily root mean square error (RMSE) calculated from hourly model-observation pairs at all 
available observation sites (Figure 3) was lower for the fused model than for any individual model 
during the entire heating season, except for the clear periods following an episode. 

 
Figure 2. Twenty-four-hour moving average PM2.5 measurements (black) at three urban monitoring 
sites compared with the CAMS ensemble median (red) and the fused prediction (blue). Bias-corrected 
CAMS ensemble and fusion of bias-corrected individual models are shown with points. The World 
Health Organization (WHO) guideline 25 µg/m3 is marked with a red line. 

Figure 2. Twenty-four-hour moving average PM2.5 measurements (black) at three urban monitoring
sites compared with the CAMS ensemble median (red) and the fused prediction (blue). Bias-corrected
CAMS ensemble and fusion of bias-corrected individual models are shown with points. The World
Health Organization (WHO) guideline 25 µg/m3 is marked with a red line.

The CAMS ensemble median generally underestimated urban PM2.5 concentrations, especially
during episodes. Downscaled forecasts, both by time-dependent bias correction of the CAMS ensemble
and the fusion of individual CAMS models, largely improved the predictions and could better capture
the episode peaks (Figure 2). Exceptions were the clear-up days following episodes, overestimated
by the downscaled predictions (e.g., 14–20 November, 23–30 December). If the 10-day training
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period included an episode, a large negative bias was corrected and/or the model predicting higher
concentrations was overweighted, which subsequently resulted in overestimations after the episode.
Meanwhile, the clear-up event was clearly captured by all models, and the overestimation was less
severe in the data fusion model than for the bias-corrected CAMS ensemble. Accordingly, the daily root
mean square error (RMSE) calculated from hourly model-observation pairs at all available observation
sites (Figure 3) was lower for the fused model than for any individual model during the entire heating
season, except for the clear periods following an episode.Atmosphere 2020, 11, x FOR PEER REVIEW 7 of 16 
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with a black line. Gray bands indicate the polluted episodes.

The observed intra-urban variability reached a 20 µg/m3 difference between peak 24-h PM2.5

concentrations among urban sites. As expected, this could not be captured by the models, and the fused
model underestimated peaks in more polluted (Gergely utca), and overestimated peaks in less polluted
(Kőrakás park) sites. (Figure 2) Site-specific weighting might solve this issue, but this research aimed
to produce a downscaled model for the entire urban area, and not for specific local environments.

In the 15 October 2018–15 April 2019 heating period, the comparison between hourly urban
PM2.5 measurements yielded a Pearson correlation of 0.71 for the fusion model and 0.7 for the CAMS
ensemble median; the individual models ranging between 0.58 and 0.68, except for SILAM which had a
slightly better correlation than the ensemble (Figure 4). As expected, the 10-day bias correction slightly
affected correlations, although EMEP and EURAD gained larger improvements. Twenty-four-hour
persistence had a correlation of 0.56, worse than any of the CAMS models, underlining the model
added value. CAMS model predictions were negatively biased, according to both the general negative
bias of CAMS PM2.5 forecasts during this winter [45] and the non-representativity of urban sites.
The notable exception was SILAM with positive bias over the entire heating season, as well as the two
subsets of episodes and pattern shifts.

The added value of fusion became more visible during episodes, where the fused model reached a
Pearson correlation of 0.56, while persistence (0.41) was only slightly worse than the CAMS ensemble
(0.43) and better than many individual models. Contrarily, on the pattern shift days, the fused Pearson
correlation of 0.48 was weak compared to 0.65 of the CAMS ensemble. Note that the definition of
pattern shift days meant that the correlation of persistence was negative in this subset.
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Figure 4. Comparison statistics between hourly PM2.5 observations in Budapest; the individual CAMS
model predictions, the CAMS ensemble median, the 24-h persistence and the fusion of the models.
Red bars indicate results obtained after a 10-day time-dependent additive bias-correction. The left
column presents results for the entire 2018–2019 heating season, the center column for polluted episodes,
and the right column for pattern shift days.
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The RMSE of the CAMS ensemble prediction improved from 11.4 µg/m3 to 10 µg/m3 both by bias
correction and data fusion, a value lower than that of any of the individual models and the persistence.
The performance gain was more pronounced during episodes, improving the RMSE from 17.2 µg/m3

of the CAMS ensemble to 13.2 µg/m3 by bias-correction and 12.9 µg/m3 with fusion. Note that only
one of the original individual models (EMEP) had a lower RMSE than persistence during episodes,
but a simple 10-day additive bias-correction largely improved predictions for each model. On the
other hand, pattern shift days caused the RMSE to worsen from 9.3 µg/m3 of the CAMS ensemble to
9.5 µg/m3 by bias-correction and 10.5 µg/m3 with fusion.

The EAQI category was accurately predicted in 51% of the cases by the CAMS ensemble, better than
any of the individual models and the persistence. The same accuracy was observed after bias-correction
and for model fusion. However, during episodes, the negative bias of the original CAMS ensemble
was serious and thus the EAQI accuracy was only 32%, compared to 50% after bias-correction and
51% of model fusion. On pattern shift days, EAQI accuracy was 45% in the CAMS ensemble, slightly
worsened by downscaling methods to 41–45%. Note that the EAQI categories are very sensitive at low
concentrations, thus larger EAQI accuracy can be expected in more polluted periods (Appendix B).

For the entire heating season, the bias-corrected CAMS ensemble, the fusion of individual CAMS
models, and the fusion of bias-corrected individual CAMS models resulted in similar prediction
performance and clearly improved the original CAMS ensemble. However, model selection must
consider a tradeoff between the correct prediction of concentrations during relatively persistent
episodes and for rapidly changing pattern shift days. Most public and policy interest in air quality
forecast occurs during episodes, where the fusion of bias-corrected individual models offer the best
results. Contrarily, on pattern shift days, the lagged training period introduces error, and the original
CAMS ensemble or a fusion of the original CAMS models is preferable (Figure 4).

Among the individual models, there are large differences in performance, and some observations
can be made where one of the models perform better than the ensemble (Figure 4). However, the time
series of model weights in the fusion model (Figure 5) shows that each model gains relatively high
weights in some periods. Notably, the positively biased SILAM was the dominant model in the polluted
mid-winter (Figure 5), but it became almost neglected in the cleaner spring months. The 10-day training
window allows to benefit from the added value of each model in their optimal season and unweight
them in different conditions, although with a delay of 10 days. With more available observations to
reliably fit the model weights, the training period could be shortened, and thus downscaling for rapid
pattern shifts could be improved.
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4. Discussion

Local on-site air quality measurements are often applied to improve and downscale air quality
forecasts. In this study, an increase in correlation coefficients from 0.43 to 0.56 was observed during
air pollution episodes by a time-dependent weighting of the CAMS model ensemble. The RMSE was
reduced by 12% in general and by 25% during episodes, mostly due to the elimination of a large
negative bias. The obtained correlations are similar to the 0.5–0.64 range found by Borrego et al. after
applying bias correction of hourly PM2.5 predictions from three European air quality models [34].
Monteiro et al. found an improvement of 18% in the RMSE of PM10 prediction by the static linear
regression method, similar to the model fusion method applied here with the important difference of
using spatially consistent weights [32]. A similar study reached a decrease of 43% in the RMSE of PM10

predictions by bias correction, [33] however, it found that the CAMS ensemble median was not better
than the best individual model, while we obtained that the bias-corrected ensemble outperformed
all individual models in PM2.5 prediction and was slightly (12–25% in terms of the RMSE) further
improved by model fusion. The selection between spatially consistent or spatially dependent weights
is based on the aimed representativity of results. Spatially dependent weights optimize predictions
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for each monitoring site, while spatially consistent weights produce an optimized consistent model
prediction for the entire domain. In this study, the latter approach was selected to provide a general
downscaling for the city of Budapest and avoid overfitting on the local environment of each site.

Incorporating surface air quality measurements into air quality models is generally performed by
data assimilation. Assimilating additional surface measurements into air quality simulation yields
a very high improvement in prediction quality (e.g., a 0.4 increase in correlation coefficient in the
PM2.5 analysis in a study over Europe [47]). However, data assimilation is performed as part of the
atmospheric chemistry transport simulation and it enforces grid-scale consistency [25], thus, it cannot be
considered as a downscaling method. Surface air quality measurements over Europe are operationally
assimilated in the CAMS air quality prediction system, thus, data assimilation was included in the
input data for this study. However, urban measurements can be also be used to post-process model
outputs for downscaling to local levels. For this purpose, learning algorithms and data fusion methods
are applied.

Learning algorithms, e.g., artificial neural networks, rely on the regression relationship between
external meteorological factors and air quality and are typically applied in complex urban environments
where the representativity of atmospheric chemistry models is limited. Neural network PM2.5

predictions reached correlations of 0.37–0.46 in a North American [48] and 0.52–0.85 in a European
study [49], compared to the range of 0.56–0.71 reported in this study by the downscaling method.
While learning algorithms are not considered as downscaling tools, atmospheric transport model results
can be used as a predictor variable in the learning algorithm. An artificial neural network coupled
with an atmospheric trajectory model reached an RMSE of 19.8 µg/m3 for 1-day PM2.5 forecasting
and was very efficient at predicting the high peaks observable in the Jing-Jing-Ji area, China [50].
Better performance was found in a study performed in Iran that reached correlations of 0.86–0.91
and an RMSE of 2.76–7.04 µg/m3 for hourly PM2.5 forecast, however, these results were obtained by
using PM10 as a predictor variable for PM2.5 forecasting [51]. While neural networks show impressive
performances in predicting air quality at complex urban sites, their main limitation is that they can
hardly be generalized for broader areas, and obtaining predictions for locations without measurements
requires an atmospheric chemistry model or interpolation between sites. In contrast, the data fusion
method applied in this study benefits from the spatial consistency of the underlying air quality models.

Observing the model weights in different periods offers quantitative time-dependent information
on model applicability for forecasters and thus facilitates the applicability and quality of CAMS-based
operational air quality forecasting and decision making. For example, SILAM had the highest RMSE
among all models during the whole season, but it gained the largest fitted weights in the polluted
mid-winter days. The second highest overall RMSE was that of MATCH, which, on the other hand,
gained larger than 1/7 weights in the cleaner spring months. CHIMERE and MOCAGE were two
models with low overall RMSEs, but their fitted weights dropped to near zero in the polluted January
2019. EMEP showed the most balanced weights as well as the lowest overall RMSE, however, it was
often overweighted by other models, such as EURAD in November, and SILAM in December and
January. Time-dependent model weights provide more applicable information for flexible model
selection in daily forecasts than the overall validation statistics, and they can therefore enhance the
quality of derived forecasts and public trust in CAMS air quality forecasting.

5. Conclusions

A downscaling method using 24-h forecasts from seven independent air quality models of the
Copernicus Atmosphere Monitoring Service (CAMS) was introduced to improve PM2.5 predictions in
Budapest in the heating season of 2018–2019. Hourly observations from six urban monitoring sites
were used to fit time-dependent, but spatially consistent weights in a 10-day long moving training
period to produce a model-weighted prediction. A 10-day additive bias was also corrected for each
model and the CAMS ensemble median.
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Both the bias-corrected ensemble and the model fusion-improved model predictions compared to
the original CAMS ensemble. The RMSE in the overall heating season improved from 11.4 µg/m3 to
10.0 µg/m3. The added value of downscaling was more pronounced during episodes, improving the
RMSE from 17.2 µg/m3 to 12.9 µg/m3. This came at the price of introducing forecast error in rapidly
changing conditions due to the lagged training period, however, the time and direction of pollution
changes were still captured. The European Air Quality Index (EAQI) category was correctly predicted
in 51% of the hourly cases. With downscaling, the same accuracy could be reached in episodes,
while the original CAMS ensemble had a prediction accuracy of 32%. While bias-corrected ensemble
and model fusion had similar overall performance, the latter was more efficient at predicting PM2.5

peaks and the time-dependent model weighting benefited from all the widely different CAMS model
systems in their optimal conditions.
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Appendix A

Measures for comparison of model predictions with measurements:

MAB =

∑N
p=1

(
yp − xp

)
N

(A1)

RMSE =

√√∑N
p=1

(
yp − xp

)2

N
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(
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)(
yp − y

)
√∑N

p=1

(
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)2
√∑N

p=1

(
yp − y

)2
(A3)

where yp is the modeled and xp is the observed value at the model–observation pair p; N is the number
of model–observation pairs; x and y are the means of observed and modeled values, respectively.

Appendix B

Table A1. European Air Quality Index (EAQI) categories for 24-h moving average PM2.5

concentrations [52]:

Category PM2.5 Concentration (µg/m3)

Good 0–10
Fair 10–25

Moderate 20–25
Poor 25–50

Very poor 50–75
Extremely poor >75



Atmosphere 2020, 11, 669 13 of 15

References

1. European Environment Agency. Air Quality in Europe—2019 Report; European Environment Agency:
Copenhagen, Danmark, 2019.

2. World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease;
World Health Organization: Geneva, Switzerland, 2016.

3. Pascal, M.; Corso, M.; Chanel, O.; Declercq, C.; Badaloni, C.; Cesaroni, G.; Henschel, S.; Meister, K.; Haluza, D.;
Martin-Olmedo, P.; et al. Assessing the public health impacts of urban air pollution in 25 European cities:
Results of the Aphekom project. Sci. Total Environ. 2013, 449, 390–400. [CrossRef] [PubMed]
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