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Abstract: This study is motivated by the importance of the stratified turbulence in geophysical flows.
We present a theoretical analysis of the buoyancy subrange based on the theory of strongly stratified
turbulence. Some important turbulent scales and their relations are explored. Scaling constants of
the buoyancy subrange scaling laws for both kinetic and potential energy spectra are derived and analyzed.
It is found that these constants are functions of the horizontal Froude number Frh. For the potential
energy spectrum, the scaling constant also depends on the turbulent flux coefficient of Γ.
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1. Introduction

The vertical density stratification and velocity profile characterize the dynamics of our atmosphere.
Due to the effects of turbulence, the behavior of such stratified shear flows is highly complex
and remains one of the important unresolved problems of classical mechanics. Because of
this complexity, a study of geophysical turbulence is essential in many aspects. First of all,
these processes play a critical role in determining the mixing and vertical transport of passive tracers.
They also contribute to the dissipation of waves and tides in the Mesosphere and Lower Thermosphere
region. Second, geophysical turbulence and gravity waves (GWs) are the main sources of uncertainty
and bias in Global Circulation Models. Third, many dynamical processes with regards to GWs,
such as GW instability, breaking, and nonlinear interaction, contribute to atmospheric turbulence
and also are affected by it. A vivid example of such complex dynamics is the summer mesopause,
which is nearly 100 K colder than a radiatively controlled state, because of the dynamical effects related
to GWs and turbulence [1,2].

Despite its central role in the middle atmosphere, geophysical turbulence is a small-scale
phenomenon, which makes high-resolution measurements from the ground or in-situ an intrinsically
complicated task to accomplish. The presence of stratification further increases the complexity of
mesoscale dynamics. Stratified turbulence that is three-dimensional and vertically anisotropic extends
to horizontal scales of ten to hundreds kilometers. Being more persistent than isotropic turbulence,
it can non-linearly interact with mesoscale GWs. The spectral region where this non-linear interaction
takes place is called the buoyancy subrange.

In the present study, we utilize the theory of stratified turbulence to define buoyancy subrange
as a region between buoyancy (Lb) and Ozmidov (Lo) scales. The existence of this region in geophysical
turbulence was confirmed only recently using data from in-situ measurements [3] (see [4] for more
information on the rocket experiment). A brief historical review on the buoyancy subrange is presented
in Section 2. Some valuable scaling relations are discussed in Section 3. Scaling law constants for
the buoyancy subrange are analyzed in Section 4. A short discussion on the possible application of our
results is given in Section 5. Conclusions are summarized in Section 6.
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2. An Overview of the Spectral Properties in the Buoyancy Subrange

The vertical spectra of horizontal kinetic and potential energy of stratified turbulence despite their
simple form express the dynamics that are more complex than the horizontal one. Due to the effect of
vertical stratification, that begins to play a role in the atmosphere at several kilometers down to tens of
meters vertical scales, there is a buoyancy subrange in these spectra. The first attempts to quantify
the effects of stable stratification were performed by Lumley [5] and Shur [6]. Under the assumption
that turbulence, suppressed by vertical stratification [7], controls the flow dynamics at certain scales,
it was found that the spectrum exhibits a “knee” at the buoyancy scale defined as

Lb =
√

ε/N3. (1)

Here ε is the turbulent dissipation rate of kinetic energy, and N is the Brant-Väisälä frequency.
In particular, it was found that the vertical spectrum exhibits isotropic E(k) ∼ ε2/3k−5/3

z slope at scales
smaller than (1) and should have

E(k) ∼ N2k−3
z (2)

spectral dependence at larger scales. Later, the scale (1) was named an Ozmidov scale [8]
in the oceanological community, although it was first derived in Dougherty [9], who investigated
an anisotropy in the Mesosphere and Lower Thermosphere region. In the present study, we use
this standard definition of (1), namely, the Ozmidov scale (Lo), as it is commonly accepted
in the modern-day stratified turbulence community.

Another important result obtained by Lumley [5] suggests that the spectral flux εk(kz) of kinetic
energy has the following form

εk(kz) = ε(1 + (ko/kz)
4/3)3/2, here ε = 2ν

∫ ko

kλ

Ekin(kz)dkz, (3)

ε is the turbulent dissipation rate, which is equivalent to the net spectral flux in inertial subrange,
ν is the kinematic viscosity, Ekin is the spectral kinetic energy of the stationary flow, ko =

√
N3/ε is

the wavenumber of Ozmidov scale, and kλ is the wavenumber of Taylor microscale. From (3) follows
that not all kinetic energy supplied at large scales kz < ko is dissipated at scales kz > ko and Lumley
proposed that the difference of spectral fluxes should work against gravity.

The first observational confirmation of the (2) was reported by Gregg [10]. From the analysis of
the vertical temperature probes taken at the North Pacific, they have found that vertical spectrum
changes its slope at scales below 10 m from k−2

z to k−3
z . It was proposed that either internal

GWs that dominate the low-wavenumber part of the energy spectrum change their dynamics
or k−3

z is a true fine-scale turbulence spectrum. An alternative hypothesis for the explanation
of k−3

z spectral dependence, but this time for the atmosphere, was proposed in Dewan [11]
and VanZandt [12]. Here authors hypothesize that the buoyancy subrange can be generated by
internal GWs trapped inside the stratified layer (sometimes also called the buoyancy waves). A model
for this dynamics was first proposed by Garrett and Munk [13] and later became widely known
as a Garrett-Munk spectrum. A slightly different explanation of the (2) was given by Phillips [14],
who proposed that internal GWs propagate upwards and grow in height until they become unstable
due to shear or convective instabilities [15–18]. Thus, at the onset of instability, internal GWs
exhibit a saturated spectrum with the slope of the form (2). For the mesosphere, the explanation
of the buoyancy subrange through the dynamics of saturated GWs was given in Smith et al. [19]
(Smith et al. [19], Smith et al. [20]) and for the stratosphere in Dewan and Good [21].

In Weinstock [22], the authors performed a theoretical investigation of the buoyancy flux spectrum
in the buoyancy subrange. They pointed out the weakness of the assumption of Lumley [5] that
the buoyancy flux spectrum should be dependent on ε and kz only. Thus, having refused the local
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inertial condition of ε(kz)/N2 Weinstock [22] found that GWs are strongly damped at wavenumbers
kz > kb, where kb has the following form

kb = L−1
b = aN/uh, (4)

here a =
√

0.8 and uh is the horizontal root-mean-square velocity. At wavenumbers kz < kb GWs
remain undamped. This result was an important step forward in explanation of the dynamics
in buoyancy subrange since Lumley [5]. In the present study, we will follow Weinstock [22] and call
Lb = uh/N the buoyancy lengthscale, which is also a characteristic vertical scale of stratified
layer and is different from the outer scale of isotropic turbulence (1) for flows with strong vertical
stratification (see Figure 1). Later, Munk [23] suggested that kb marks the transition between linear
(unsaturated) and non-linear (saturated) GWs, while Weinstock [24] analyzed the standard deviation
of vertical wind shear and found that the buoyancy subrange of turbulence extends from 50 m to
1000 m in the troposphere and stratosphere.

Figure 1. Schematics of vertical wavenumber spectra of turbulent energy. kb is the buoyancy scale (4);
ko is the Ozmidov scale (1); kλ is the Taylor microscale (5) and kη is the Kolmogorov scale. The blue
arrows show the constant spectral energy flux and red arrows highlight the region in the buoyancy
subrange, where buoyancy flux re-stratifies the flow through partial conversion of potential into
kinetic energy.

Finally, it became clear that there are two main hypotheses to explain dynamics in the buoyancy
subrange. One approach was that this spectral range is due to saturated GWs [15], which can
transport momentum vertically and another that this range is generated by turbulence that is vertically
suppressed by stratification [5]. One important parameter that could provide more insight into the k−3

z
range phenomenon is the buoyancy flux B = −ρ′guz, which reversibly converts available potential
energy into kinetic energy. Although nonlinear wave interactions can redistribute energy, buoyancy
flux of integrated wave field is zero. At the same time, turbulence is very efficient in the generation
and the downward cascade of buoyancy flux. Thus, analysis of the buoyancy flux could help to
determine which of the two above mentioned dynamical concepts dominates the k−3

z spectral range.
According to the Lumley-Richardson approach, spectral flux of kinetic energy in the buoyancy

subrange is much larger than ε: ∆ε/ε ≈ (ko/kz)2, here ∆ε = ε(kz) − ε. Then buoyancy flux
converts ∆ε into the dissipation rate of potential energy εp(kz) = εp + ∆ε. Due to this energy



Atmosphere 2020, 11, 659 4 of 11

transfer, the ratio Γ = εp/ε ≈ (ko/kz)2 � 1. Γ is an important parameter called the turbulent flux
coefficient. Its realistic order of magnitude is Γ ≈ 0.2, however until now, it is largely unknown
how this parameter behaves in the buoyancy subrange [25,26]. So, it suggests that the conclusion of
the Lumley-Richardson approach with regards to Γ requires some reconsideration. Such correction
was proposed by Weinstock [27], who suggested that ∆ε converted into an additional εp is transferred
back to larger scales in the buoyancy subrange. Such an inverse cascade of buoyancy flux that converts
available potential energy into kinetic is called restratification, and it was indeed found in observational
studies [28], numerical simulations of stratified turbulence [29–32] and simulations of turbulence by
gravity wave breaking [33]. An exhaustive review on the restratification phenomenon was written by
Gerz and Schumann [34]. Up to some extent, these results could confirm Weinstock’s idea, but two
significant circumstances undermine it. The restratification takes place at scales close to Lo, where
inertial forces become significant [35], and energy transferred to larger scales was typically much
smaller than downwards cascaded one. Both issues do not seem to be surmountable, and a new theory
that could explain the dynamics of the buoyancy subrange was required.

A different theory that proposes an alternative to the Lumley-Richardson approach explanation
was formulated in Holloway [36] (Holloway [36], Holloway [29]). It states that the buoyancy subrange
is not dominated by buoyancy flux. Thus, only a small part of kinetic energy is lost by working
against gravity, and a unified nonlinear wave interaction theory should be used. Within this approach,
GWs and coherent turbulent structures, usually called as pancake-like vortices, are treated as one
in the buoyancy subrange. This theory also proposes that spectral fluxes of kinetic and potential energy
remain almost unchanged in both buoyancy and inertial subranges.

The approach developed in Holloway [36] (Holloway [36], Holloway [29]) later transformed into
the theory of strongly stratified turbulence (SST) formulated in Smyth and Moum [37], Billant
and Chomaz [38], Lindborg [39] and Brethouwer et al. [31]. It utilizes two non-dimensional
parameters: Frh = uh/(NLh) the Froude number and Reb = ε/(νN2) the buoyancy Reynolds
number and postulates that SST exists when Frh � 1 and Reb � 1. In contrast to the weakly
stratified Kelvin-Helmholtz instability regime, in which Frh ∼ 1, Reb � 1, generation of the SST
regime does not require large-scale wave overturnings. Thus, different dynamic instabilities, such
as zigzag instability [38] or Holmboe wave instability [40,41] play crucial roles. However, recently
Salehipour et al. [42] and Smyth et al. [43] used an ansatz of Self-Organized Criticality to show that
in strongly stratified shear flows turbulence is modulated by Kelvin-Helmholtz instability and has on
average Ri ≈ 0.25 in the whole domain of the flow. That, in turn, suggests that the turbulent flux
coefficient should fluctuate around Γ ≈ 0.2. This result supports the hypothesis of Holloway [36]
(Holloway [36], Holloway [29]) discussed above, and rejects Equation (3).

Figure 1 summarizes our knowledge of the buoyancy subrange of the SST regime. It defines
locations of the buoyancy and Ozmidov scales. Scaling analysis suggests that Frh controls this subrange,
while Reb controls the inertial subrange [44]. Blue arrows represent the constant net spectral energy
flux that later continues to cascade down to the smallest scales, and red arrows highlight the region of
the spectrum with inverse buoyancy flux. kλ is the wavenumber of the Taylor microscale, it is define as

λ = 3.9
√

ν/N (5)

(see for more detail Appendix A). Seemingly simplistic form of the inner scale λ and its importance
for estimation of the turbulent dissipation rate makes (5) of great importance for the geophysical
turbulence. An analytic observation that not only Lo but also λ is dependent on the local value of
the buoyancy frequency N suggests, that even beyond the Ozmidov scale the flow exhibits small-scale
vertical anisotropy. Indeed, an analysis of the turbulent velocity strains confirmed the anisotropy that
vanishes at high Reb [30,45].
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3. On the Concept of Critical Balance

The theory of stratified turbulence proposed by Lindborg [39] suggests that vertical spectra of
kinetic and potential energy have the following form

Ek(kz) ∼ N2k−3
z , (6)

Ep(kz) ∼ N2k−3
z . (7)

As it is clear from the Introduction, this form of spectra in the buoyancy subrange was quite
well studied. However, it was Lindborg [39] who first proposed that stratified turbulence is vertically
bounded by Lb and Lo for the largest and the smallest scales, respectively. Recently scaling laws
(6), (7) were derived using a concept of critical balance in the theory of wave turbulence [46].
This concept proposes that there is a scale-by-scale balance between GWs and turbulent coherent
structures. In other words, it postulates that breaking of gravity wave induces the turbulent eddy with
a similar horizontal (Lh) and vertical (Lb) scales. Using the dispersion relation for incompressible GWs
ω = Nkh/kz and a characteristic turbulent timescale of τ−1 = uhkh, here kh, uh are the characteristic
horizontal length and velocity scales, it is possible to reconstruct the scaling kz = N/uh derived by
Billant and Chomaz [38]. Then, using a property of horizontal isotropy of the stratified turbulence,
it is easy to show that characteristic horizontal velocity satisfies a Kolmogorov-like scaling

uh ∼ ε1/3k−1/3
h . (8)

Together with the scaling for buoyancy scale Equation (8) allows obtaining a relation between
characteristic horizontal and vertical scales in stratified turbulence

Lb = L2/3
o L1/3

h . (9)

Here Lb = uh/N is the buoyancy scale [38], Lo =
√

ε/N3 is the Ozmidov scale [8,9] and Lh = u3
h/ε

is the horizontal integral scale [47]. An interesting feature of relation (9) is that it allows us to explicitly
define horizontal and vertical scales that contribute to the buoyancy subrange of stratified turbulence.
Using a typical numbers for Lo = 100 m and Lb = 1000 m for the mesosphere we can find that
the largest horizontal scale of the stratified turbulence is Lh = 100 km. As, Lh is a horizontal outer
scale of turbulence it closely correlates with measurements of the spectrum that exhibit change of its
form from k−3

h to k−5/3
h [16,48–50].

According to the concept of critical balance [46] relation (9) suggests the largest scales of GWs that
break in the stably stratified atmospheric flow and contribute to the stratified turbulence. However,
GWs of the smaller than horizontal Lh and vertical Lb sizes also contribute to the stratified turbulence
even without breaking. For better physical interpretation of the relation (9), it is possible to rewrite it
in the following form

Lh = Fr−1
h Lb, (10)

where the horizontal Froude number defines the strength of stratification of the flow [44].

4. On Scaling Law Constants in the Buoyancy Subrange

As can be seen from Figure 1, the buoyancy scale is the largest scale of the buoyancy subrange,
which spans from Lb to Lo, and not of the inertial subrange. With this analytic consideration, let us
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find scaling constants for (6) and (7). Following the analysis presented in Fukao et al. [51], we may
write the following relations for inertial and buoyancy subranges separately

1
2
(urms)2 =

∫ ko

kν

αε2/3k−5/3
z dkz, (11)

1
2
(uh

b)
2 =

∫ kb

ko
βN2k−3

z dkz, (12)

here (urms) and (uh
b) are root-mean-square velocities of inertial and buoyancy subranges, respectively,

and α = 0.5 is the Kolmogorov constant for inertial subrange [52], and β is the constant for buoyancy
subrange. Alternatively, the value of Kolmogorov constant is derived in Appendix B. Due to additional
condition of marginally weak stratification of the atmosphere its value is smaller (α = 0.42) than
the classical one.

Integrals (11) and (12) are solved with an assumption that ε and N are not functions of vertical
wavenumber kz. Thus, the following relations for turbulent dissipation rates are obtained

εin = C1N(urms)2, C1 = α−1

[
1−

(
ko

kν

)2/3
]−1

, (13)

εb = C2N(uh
b)

2, C2 = β−1(Fr−1
h − 1)−1. (14)

As can be seen, the functional form of turbulence dissipation rate relations in (13) and (14) are
similar in both subranges. However, it is necessary to indicate that due to a forward turbulent cascade
in the stratified turbulence root-mean-square velocities (urms) and (uh

b), characteristic for these regimes,
are not equal to each other.

For two limiting cases of SST in the inertial subrange (Reb � 1) and buoyancy subrange (Frh � 1),
it is possible to simplify C1 and C2 scaling constants. In case of intense isotropic turbulent cascade
kν � ko so that C1 = α−1 = 2.38, while for strongly stratified flows we have ko � kb and Frh � 1,
so that C2 = β−1Frh.

Assuming equal net spectral energy fluxes for both subranges Holloway [36] (Holloway [36],
Holloway [29]) ∫ ko

kν

dεkz(kz)

dkz
dkz =

∫ kb

ko

dεkz(kz)

dkz
dkz = εin = εb = ε, (15)

we can define β scaling constant through α and Frh, as β = Frhα. Thus, the vertical spectrum of
one-dimensional horizontal kinetic energy has the following form

Ek(kz) = α(ε2/3k−5/3
z + FrhN2k−3

z ). (16)

Similar to (16), it is possible to derive the vertical spectrum of available potential energy

Ep(kz) = αo(ε
−1/3εpk−5/3

z + ΓFrhN2k−3
z ), (17)

here αo = 0.68 is the Obukhov-Corrsin constant, εp is the potential energy dissipation rate,
and Γ = εp/ε is the turbulent flux coefficient (sometimes also called the mixing efficiency) [25,26].

Equations (16) and (17) indicate that scaling parameters in the buoyancy subrange depend on two
non-dimensional ratios, namely, the Froude number Frh and the turbulent flux coefficient Γ.

5. An Implication to Turbulence Strength Measurements Using Radar

A strong correlation between the turbulent kinetic energy dissipation rate and vertical rms velocity
fluctuations ε∼w3

rms is widely used in studies of geophysical turbulence. However, in Weinstock [53],
it was shown that a more accurate relation between ε and wrms exists for the stably stratified atmosphere.
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It was demonstrated, that at low vertical velocity fluctuations, typically when 0 ≤ wrms ≤ 200 cm s−1,
the following relation is more accurate

ε = 0.4w2
rmsN. (18)

In Hocking [54], it was proposed that turbulent dissipation rates can be calculated from radar
measurements of vertical velocity fluctuation. When radar volume is smaller than the largest scales of
turbulence than the following relation is valid

ε = 0.47w2
rmsN. (19)

Otherwise, a more generalized form of this equation shall be used

ε = 0.47c−2/3
f w2

rmsN, (20)

where c f is a scaling factor, that varies between 0.9 and 2. According to [55] Equation (20) is used when
gravity waves significantly contribute to the measured vertical oscillations.

Recent results from the ShUREX campaign [56–58] question applicably of (19) and (20)
in the troposphere region. It is shown that ε = w3

rms/Lc where Lc ≈ 50–70 m correlates much better
than (19) or (20) with the in-situ measurements for both convective and stratified turbulent conditions.
The authors suggest that the characteristic scale Lc is not necessarily related to an effective outer scale
of turbulence (the Ozmidov scale Lo =

√
ε/N3) as it is relevant for all cases. However, since it is

obtained from the horizontal in-situ turbulence measurements, that are isotropic for both stratified
and convective cases, it is highly likely that this scale is still related to the outer scale of turbulence.

Present analysis with the usage of the theory of SST allows us to refine the relation (19).
The value α = 0.42 derived in Appendix B for weakly stratified flow as well as the classical value
of the Kolmogorov constant α = 0.5 are both very close to the one used in (19). In the case of
weak-to-strong stratification, it can be shown that

uv
b =

√
Frhurms, (21)

urms =
√

Frhuh
b , (22)

where uv
b and uh

b are the vertical and horizontal rms velocities in the buoyancy subrange and urms is
the rms velocity in the inertial subrange (urms = wrms). Thus, when the corresponding range resolution
is larger than the outer scale of turbulence and depending on the measured velocity component,
the following relations can be used

ε = 0.42Frh(uh
b)

2N, for horizontal velocity measurements (23)

ε = 0.42Fr−1
h (uv

b)
2N. for vertical velocity measurements (24)

Relation (24) partially correlates with (20) in parameter space. However, that does not necessarily
mean that these two relations have a similar physical interpretation. Further analyses are required to
settle this issue.

6. Conclusions

The main goal of the present study is to analyze the complexity of dynamics in the buoyancy
subrange, which involves GWs and stratified coherent structures, called pancake-like vortices.
The results of the present study could be relevant for the remote and in-situ measurements,
improvement of the sub-grid scale parameterization schemes, and also for the analysis of uncertainties
in future climate projections [59,60].

Following Nazarenko and Schekochihin [46], we have shown that wave turbulence theory
supports k−3

z scaling for this subrange and imposes certain constraints on the scales of breaking
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GWs. These constraints suggest the location of the knee in horizontal energy spectra at O(100–300) km
scales. This estimate is following the transition point in the horizontal energy spectrum observed
in the stratosphere [48] and also with some other measurements in the mesosphere [16,50]
and numerical simulations [49].

An analysis of the scaling constants of the vertical energy spectra in the buoyancy subrange
performed in Section 4 has revealed that relations for turbulence dissipation rates in inertial
and buoyancy subranges have a similar functional form (see Equations (13) and (14)). For the first
time, it was also shown that scaling constants C1 and C2 are both functions of the Froude number.

In Sukoriansky and Galperin [61], using the theory of Quasi-Normal Scale Elimination in the limit
of weak stratification, it was shown that the value of the scaling constant is β = 0.214. Our analysis
supports this result, although the present study is focused on the strongly stratified turbulent regime.

For the potential energy spectrum, it was found that the turbulent flux coefficient Γ is also a part
of the scaling constant, it is following the results of Sukoriansky and Galperin [61].
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SST Strongly Stratified Turbulence
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Appendix A. On the Derivation of Taylor Microscale

The Taylor microscale λ, which is commonly called an inner scale of turbulence, represents
the smallest scale of inertial subrange. In isotropic turbulence it can be defined as [62]

λ = cε(ν/ε)1/2urms, (A1)

here urms is the root-mean-square fluctuation velocity in inertial subrange, and cε =
√

15. According
to the SST theory, the outer scale of isotropic turbulence is defined as the Ozmidov scale Lo =

√
ε/N3.

The characteristic velocity of Lo is
uo =

√
ε/N. (A2)

Since urms = uo = const in the isotropic turbulence, Equation (A1) can be rewritten
in the following form

λ = cε

√
ν/N, (A3)

where cε = 3.9. A different value for the constant cε = 2.7 was proposed in [45]. The authors
used the theory of axisymmetric turbulence and measurements from thermocline to propose a novel
method to the estimation of ε. They also reported that the standard isotropic Formula (5) can be used
in situations when Reb > 20.

Appendix B. On the Derivation of the Scaling Constant

Let us assume that the atmosphere is in the stationary and fully developed turbulent regime with
the turbulent production equivalent to the dissipation rate

u′v′
dU
dz

= ε, (A4)
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here u′v′ is the Reynolds stress and dU/dz is the vertical gradient of the mean horizontal velocity.
It is well known that

|u′v′| = 0.3k, (A5)

here k is the turbulent kinetic energy of homogeneous and isotropic turbulence [63].
According to the recent Self-Organized Criticality theory analysis [43], the Richardson number

fluctuates around 0.25 in geophysical turbulent flows: Ri = N2/S2 = 0.25, here S2 = 2(dU/dz)2.
Thus, we can define the vertical gradient of mean velocity through the buoyancy frequency

dU
dz

=
√

2N. (A6)

Using (A4)–(A6) we find that
ε = 0.42u2

rmsN. (A7)
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