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Abstract: Upper-air observational networks in Southwest Asia (SWA) are geographically sparse and
reanalysis datasets (RDs) are a typical alternative. However, RDs can perform with varying degrees of
quality and accuracy due to differences in assimilation schemes and input observations, among other
factors. Geopotential height (gph), air temperature (tmp) and horizontal wind (U and V) modelled by
the Japanese 55-year Reanalysis (JRA-55), the European Centre for Medium-Range Weather Forecasts
Reanalysis Interim (ERA-I), the ERA fifth-generation (ERA-5), and the National Aeronautics and
Space Administration (NASA) Modern Era Retrospective Analysis for Research and Applications
version 2 (MERRA), are compared with radiosonde observations at three standard vertical levels (850,
500 and 300 hPa). Results showed that most RDs represent the general climatology, and ERA-5 tended
to show the smallest agreements in most cases. RDs did not show consistent performance across
seasons, variables, and pressure levels. RDs tended to conduct reasonable estimates over subregions
with less complex topography. RDs showed better resampling performance at the upper and lower
ends of sounding data distributions more frequently than around the means for most of the variables.
This highlights the high potential usefulness of RDs in studying extremes over the region.
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1. Introduction

The climate of Southwest Asia (SWA) is warming, and it is expected that this will lead to
hardship [1,2]. There is a growing risk that the area will be inhabitable by the end of this century [1,2].
The ongoing warming in the region is expected to continue, and the extreme temperatures of today
will become the norm, and severe conditions are likely to emerge which may not be survivable,
particularly during summertime [1]. This is associated with more widespread and stronger South
Asian monsoon troughs, which are projected to join with intensifying thermal lows over the Sahara
during summertime [2]. However, these projections present possibilities and are nondeterministic,
as the outputs of climate models depend mainly on the quality of input data and our understanding
of climatic and atmospheric mechanisms. Climate model outputs are examined against historical
observations to assess model performance and infer future model validity. The only limitation in this
type of evaluation using past climate is the availability of climatological datasets with high reliability,
including high quality and accurate representation [3].

Fixed observational networks are one common option to assess the state of the atmosphere at
different levels. However, these networks have some disadvantages such as limited spatial coverage
and resolution, low availability to researchers, and instrument changes. Climate networks (including
surface and upper-air observational networks) in SWA are geographically sparse [4] and mostly
located in or near urban settlements. Such networks have low spatial resolution to enable satisfactory
understanding and depiction of atmospheric processes, and thus predict future changes at an adequate
resolution. Reanalysis data (RD) is an increasingly popular alternative to overcome most of these
limitations, particularly for monitoring inaccessible and remote areas such as deserts [5–9]. Using
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numerical atmospheric model outputs and data assimilation techniques (i.e., a reanalysis system) and
observations from multiple data sources (e.g., upper air balloons, satellite data, aircraft observations)
for multiple variables (e.g., temperature, humidity, solar radiation, geopotential height, etc.) are
combined to represent the state of atmosphere at different temporal and spatial scales. The resulting
data set is gridded and referred to as reanalysis (retrospective analysis) data. This has global coverage
and an extended homogeneous time series with no temporal and spatial gaps [5,10].

In regions with inadequate in situ spatial coverage, RDs may be biased and their reliability is of
great concern [10,11]. Previous studies have reported that RDs are not consistently reliable or equally
effective due to differences in assimilation schemes and the observational data used [9,11]. RD efficiency
is time [9], region [12] and weather [13] dependent, and small differences between RD and observations
may lead to substantially different results [14]. Findings from studies concerning the performance of RD
lack broad application due to diverse regional climate conditions [7,8]. In assessing the quality of four
reanalyses representing the diurnal cycle over East Asia during summer, [11] showed that reanalyses
performed differently at the subregional scale than at a large scale. Differences in local atmospheric
processes and topography are among significant factors affecting the efficiency of RD [7,15].

As climate and weather modeling and data simulations methods advance along with new
observations, new and improved RDs emerge, and their effectiveness should be assessed [16]. Given the
diversity of subregional atmospheric processes [4], topography and scarce soundings across SWA
shown in Figure 1 in Section 2, RDs are expected to perform with varying degrees of quality and
accuracy. Research on this is lacking for SWA and needs to be established for the region. The availability
of such knowledge is crucial not only for atmospheric studies, but also for evaluating the performance
of different models and assimilation schemes, as well as the development and planning for future
observational networks [8]. In fact, the region has been considered as a good area for evaluating climate
models’ effectiveness [4]. The present research, thus, aims to provide a general regional evaluation of
four selected reanalysis datasets at annual and seasonal scales, using sounding observations at three
atmospheric heights (850, 500 and 300 hPa).
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2. Datasets

2.1. Radiosonde Data

Upper-air observations for this study were obtained from the Integrated Global Radiosonde
Archive version 2 (IGRAv2). The IGRA dataset aims to provide reliable data on the vertical structure
of the atmosphere. IGRAv2 [17] is the latest version and is an enhanced version of IGRAv1 [18]
with more data sources and additional variables. The data is quality controlled, as several quality
control procedures are applied before archiving soundings. The data, along with documentation and
background information, are available at (https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:
C00975). As [19] discussed, IGRA is an acceptable source to assess the reliability of RDs. Reanalysis
estimates are derived from observations from multidata sources (e.g., upper-air balloon, remote sensing,
aircraft observations); this leads to competition among data sources, and models may disregard ground
observations in some cases [19]. Outputs of assimilation systems are the best fits (i.e., estimates) of
input observations, and when some of the inputs diverge largely from the fit, they are excluded [15].
Furthermore, RDs increasingly rely on satellite data as a key observations input [9]. Thus, IGRA can be
used as a valuable source for evaluation, as in other studies (e.g., [19–21]).

IGRAv2 (henceforth abbreviated to IGRA) was obtained at 00 and 12 UTC periods for the selected
four variables: geopotential height (gph), air temperature (tmp) and horizontal wind (U and V) at three
standard vertical levels (850, 500 and 300 hPa). These levels were selected as they usually represent the
lower, mid and upper troposphere layer, in which most of the weather occurs. Data was acquired for
the evaluation domain (Southwest Asia) situated at 12◦–36◦ N and 34◦–65◦ E, shown in Figure 1 as
defined by [1].

2.2. Reanalysis Data

Four well-known reanalysis datasets were inspected, as shown in Table 1. This work focuses on
new reanalyses generations since they tend to have better performances as they are constructed with the
state-of-the-art atmospheric models and assimilation approaches (e.g., [8,11]). ERA-Interim (ERA-I) [5]
was produced by the European Center for Medium Range Weather Forecasting (ECMWF), and was
initiated in 2006 to improve on some important aspects of the ERA-40 dataset. ERA-I was produced
using a 4-dimensional variational analysis (4D-Var), using Cycle 31R2 of an integrated forecast system
(IFS), with a 12 h analysis window on 60 vertical levels (surface up to 0.1 hPa). The fifth-generation
ERA (ERA-5) [6] is the latest ECMWF atmospheric reanalysis and replaces the ERA-I, which stopped on
31 August 2019. ERA-5 provides a much higher native spatial resolution and improved global balance
of precipitation and evaporation, among other key differences. This is due to improvements in the
data assimilation system, IFS Cycle 41r2. The Japanese 55-year Reanalysis, or JRA-55 [22], is produced
by the Japan Meteorological Agency (JMA); it employs the TL319 version of JMA’s assimilation system
using recently available and improved observations. It replaces the JRA-25 reanalysis, and lessens two
major biases of JRA-25 (a cold bias in the lower stratosphere and a dry bias in the Amazon basin) due to
improvements in the original assimilation system. The Modern-Era Retrospective Analysis for Research
and Applications version 2 (MERRA-2) [23] replaces the original MERRA reanalysis dataset. MERRA-2
uses the latest version of the Goddard Earth Observing System Data Assimilation System Version 5
(GEOS-5), as it enables assimilation of recently available observations such as modern hyperspectral
radiance and microwave observations. MERRA-2 (henceforth abbreviated to MERRA) was produced
by NASA’s Global Modeling and Assimilation Office, and covers the period 1980–present. These RDs
are known as the third generation and readers are kindly directed to references above for more details
concerning each reanalysis dataset.

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00975
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00975
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Table 1. Key characteristics of evaluated reanalyses in this study.

Dataset Source Scheme for
Assimilation

Vertical
Levels

Native Spatial
Resolution

Temporal
Coverage

ERA-I ECMWF 4D-Var 60 0.75◦ × 0.75◦ 1979–2018

ERA-5 ECMWF 4D-Var 137 0.25◦ × 0.25◦ 1979–present

JRA-55 JMA 4D-Var 60 1.25◦ × 1.25◦ 1957–present

MERRA NASA 3D-Var 72 0.5◦ × 0.625◦ 1980–present

3. Methodology

3.1. Quality Control

The radiosonde data used was thoroughly checked to reduce uncertainty in evaluating the
reliability of RDs. Stations were enrolled in this study if they met the following criteria at each
examined pressure level [20,24,25]: (1) a minimum of ten months of observations for a given year;
(2) at least four years of climatology data; (3) observations available at both 00 and 12 UTC; (4) at least
ten data points available for a given month. Monthly climatology was calculated at station level for
qualified stations, using observations at 00 and 12 UTC. Correspondingly, 00 and 12 UTC periods were
used to calculate monthly climatology from RDs. RDs have shown better agreement with observational
data after 1979 due to the inclusion of satellite observations [26,27]. Thus, the period 1980–2018 was
considered for the analysis and to adjust for ERA-I and MERRA-2, as shown in Table 1. When two
or more stations were located inside the same grid, station(s) with lower quality or shorter records
were omitted; otherwise, their measurements were averaged. Following [14], monthly instead of daily
averages were used for comparison to eliminate the high-frequency effects of daily time series.

3.2. Evaluation Procedure

Since both observational data and RDs originally involve some bias, a subsampling technique [24]
was used: RDs were first interpolated to sounding stations [8] and then subsampled over the IGRA
dataset. This approach accounts for inherent biases and allows direct comparison between reanalyses
and in situ datasets (e.g., [24,28,29]). Given the uneven distribution of stations shown in Figure 1,
and to capture spatial differences, the study domain was divided into three equally sized longitude
zones (e.g., [8,20]), as shown in Figure 1. For each zone, two common statistical measures were used
to compare RDs with the radiosonde data: mean bias (reanalysis minus radiosonde) and a weighted
version of coefficient of determination (ωr2). It is well documented that coefficient of determination
(r2) is an inadequate measure of model performance, as a weakly performing model could still achieve
a high r2 value [30,31]. As showed by [31], this limitation can be overcome by including the slope
(b) of the regression line between observations and estimates to weigh r2 and values range from one
(optimum) to zero:

ωr2 =

{
|b| · r2 f or b ≤ 1
|b|−1
· r2 f or b > 1

(1)

Additionally, graphical plots were used for visual performance analysis to compare the statistical
distributions using a probability distribution function (PDF). The main advantage of visual analysis
is that any remaining or hidden biases in the above statistical evaluations can be detected [32].
A multi-validation approach was used to allow different aspects of RDs performances to be
examined [31,32]. Following [33], root-mean-square error statistic was avoided, as it is not purely
a function of average error and generally elevates the mean errors. Evaluations were carried out
at annual and seasonal levels. Although ERA-I and ERA5 data could be obtained at higher spatial
resolutions from the ECMWF data server, native resolutions were kept, as their accuracies would not
be improved with downscaling [34].
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4. Results and Discussion

4.1. Annual Climatology

First, the observed vertical annual climatology means of gph, tmp and horizontal wind (U and V)
are presented and then compared with analyses, as shown in Figure 2. The annual mean observed
gphs over the region exhibited eastward decreasing patterns at all heights. Over zone one, the average
observed gphs were 1507, 5830 and 9584 m at 850, 500 and 300 hPa, respectively. Over zones two and
three, the average observed heights were lower (compared to zone one) by about 4 and 7 m at 850 hPa.
As altitude increases, the differences rise to 11 and 48 m (at 500 hPa), then 19 and 80 m (at 300 hPa).
Similarly, eastward decreasing patterns were found for tmp at 500 and 300 hPa. Mean observed tmps
were −10 (500 hPa) and −35 ◦C (300 hPa) over zone one with differences of less than 0.5 ◦C over zone
two and about 2 ◦C over zone three. Near the surface (850 hPa), the average observed tmps were 19, 20
and 16 ◦C over zones one, two and three, respectively.

The annual mean-observed u-wind component showed that the winds were mainly westerlies
over the region as shown in Figure 2, increasing in magnitude with altitude as the effects of surface
diminish. Higher westerly averages were obtained at all heights over zone two (2, 11 and 22 m/s at
850, 500 and 300 hPa, respectively), followed by zones one (1.5, 10 and 20 m/s at 850, 500 and 300 hPa,
respectively) and three (0.8, 9 and 19 m/s at 850, 500 and 300 hPa, respectively). Such patterns may
reflect the locations of stations, as most of the stations in zone two were in flat, open surfaces, as
shown in Figure 1. For meridional wind (V), values were positive over zone one at all heights, ranging
from 0.33 to 2.7 m/s, followed by those over zone two at the upper levels, ranging from 0.5 to 1.5 m/s.
Negative V values were over zone three at all heights (~−1 m/s at 850 and 500 hPa and −0.3 m/s at
300 hPa) and over zone two at 850 hPa (−1.22 m/s).
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Figure 2. Annual mean vertical profiles of geopotential height (gph), air temperature (tmp) and
horizontal wind averaged over soundings, along with means from the four reanalysis products.

The results presented in Figure 2 shows that RDs generally followed the overall patterns of
observed climatology, but with differences in magnitudes. Figure 3 shows the overall mean bias for the
vertical profiles for the examined variables. All RDs had underestimated gphs over all zones increasing
from −4 to −22 m and biases tended to increase with altitudes by most of RDs. Over zone one, RDs
exposed similar bias values at 850 hPa (~−10 m), except ERA-I which showed a higher bias of −12.5 m.
At 500 and 300 hPa MERRA showed the lowest bias values (~−12 m) followed by ERA-I (−14 m) with
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stable biases at both levels. Over zones two and three, inverse patterns were found; an RD recorded
the lowest bias at 850 hPa and the highest or second highest bias at 300 hPa. However, the deviations
among RDs at 850 hPa (500 hPa) were in the order of a few meters over both zones (zone 2); ERA-I
thus performed reasonably. In general, these bias values may not be that significant for capturing the
general climatological features (not the magnitudes) in gph over the region, as both ωr2 values and
the PDF suggest, as shown in Figures 4 and 5. RDs showed comparable weighted coefficients at each
level as displayed in Figure 4, and ERA-5 had the minima in all cases. Correspondingly, acceptable
resampling of the general distributions (i.e., PDF) of observed gph was achieved by most of the RDs
at the upper levels, compared to at 850 hPa, as shown in Figure 5. In most cases, ERA-5 showed the
worst resampling. Both ωr2 and PDF showed that agreements between estimated and observed gphs
were higher at upper levels as the effects of local factors minimized. This suggests more consideration
is needed when selecting RDs for gph studies near the surface.
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The mean biases of temperature for all datasets were small and were mostly within ±0.3 ◦C,
except at lower altitudes for JRA-55 (across zones) and MERRA (over zone three), as shown in Figure 3.
The corresponding ωr2 values showed similar patterns in the lower troposphere and were nearly
higher than ~0.9, as shown in Figure 4. ERA-I and MERRA tended to obtain weighted coefficients
close to one at all heights over zones one and two and at upper levels over zone three. Both datasets
reasonably resembled the distribution of observed tmps across zones one and two, and MERRA
(ERA-I) outperformed other RDs at 850 hPa over zone two (three), as shown in Figure 5. For the
u-wind component, overestimations were found over zones one and three through the vertical column,
except in the upper troposphere (zone three) and lower troposphere (zone one) by ERA-I and JRA-55,
respectively, as shown in Figure 3. Excluding JRA-55, bias values ranged from −0.25 to 0.60 m/s. RDs
tended to show relatively similar biases at each height in most cases. Both ωr2 and PDF showed fair
agreement between estimated and observed U in the middle and upper troposphere, excluding ERA-5
which exhibited the lowest ωr2 values, as shown in Figures 4 and 5. At 850 hPa, no RD fully captured
the observed zonal wind distribution, as shown by ωr2 and PDF. Bias values for V-wind were within
an extremely low range of ±0.25 m/s at all heights over zones one and two. Over zone three, biases
were within a wider range, and ERA-I and ERA-5 exhibited the lowest values (−0.45 to 0.00 m/s).
Weighted coefficients for meridional wind tended to be smaller than the other variables; RDs showed
comparable values at each height excluding ERA-5, which had the lowest values in all cases, except at
850 hPa over zone three, as shown in Figure 4.

4.2. Seasonal Climatology

Seasonal variations in the climatology of the vertical column of observed gph, tmp, and wind are
shown in Figure 6. The 850 hPa altitude is lower during summer (1475 m on average) and higher during
autumn (1523 m on average) across all zones. At zone level, 850 hPa is at the lowest altitude over zone
two followed by zones three and one, during summer. This pattern is related to the presence of the
Indian summer monsoon trough (a thermal trough) accompanied by the Arabian heat low situated over
the Empty Quarter desert (zone two). The 500 hPa and 300 hPa altitudes are higher during summer
(5882 and 9725 m on average, respectively) and lower during winter (5730 and 9397 m on average,
respectively) across all zones. Comparing zones, 300 and 500 hPa are at higher altitudes over zone one,
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with westward decreasing patterns through the year. However, during summer, 300 hPa is highest over
zone two, followed by zones one and three. Temperatures decrease with height and are highest during
summer, followed by autumn, spring and winter, throughout the vertical column, as shown in Figure 6.
Over zone three, tmp is the lowest at all heights through the year, as most of the stations are located at
higher altitudes, as shown in Figure 1. Throughout the year, u-wind is mostly westerly, with lower
magnitude during autumn (< 1 m/s) and higher during winter (31–37 m/s) across SWA. The seasonal
differences at the 850 hPa level are within 3 m/s and as altitudes increase, the zonal wind increases at a
higher (lower) rate during winter (summer), and more frequently over zone 2. There are also higher
westerlies at higher altitudes over zone two, except during summer. The meridional wind showed a
lower vertical variation rate with altitude, and mostly increased with altitudes. Negative u-wind means
were distinguished during summer and autumn over zones three (at all heights) and two at 850 and
500 hPa, and during spring at 850 hPa. The surface horizontal wind was mostly higher during winter;
this could be related to winter Shamal (northerly and northwesterly winds).
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Reanalysis data did not perform equally at the seasonal level. All reanalyses underestimated
gph over the entire region, except for ERA-5 during spring at the upper levels, as shown in Figure 7a.
During winter, the mean biases of gph ranged from −9 (850 hPa) to −24 m (300 hPa) over zone one;
MEERA had the smallest mean bias values at all the pressure levels (−9 to −13 m), followed by ERA-I
with roughly 2 m greater differences at the upper levels. However, over zone one, ERA-I outperformed
MEERA in representing the gph’s distribution of soundings, as displayed in Figure 7a. Over zones
two and three, mean gph biases ranged from −8 to −18 m (zone two) and −3 to −20 m (zone three);
ERA-I showed the minimum biases at most heights during winter. During spring, mean gph biases
were mostly similar over each zone, −8 to −19 m (zone two), −7 to −18 m (zone three) and −10 to
−21 m (zone one), excluding ERA-5 which showed large differences from observations in most cases.
During this season, most RDs displayed comparable gph biases at 850 hPa over each zone, and MEERA
(ERA-I) showed smaller biases at upper levels over zones one and two (three). Nevertheless, ωr2

values were lower in the lower troposphere (except over zone three) and higher at the upper levels
shown in Figure 7c, with relatively comparable values. In comparing frequency distributions at upper
levels, RDs showed relatively similar performances, except for ERA-5, which tended to perform worst
in most cases, as displayed in Figure 7b. During summer, most RDs presented similar biases at each
pressure level. Over zones two and three during this season, RDs with small mean biases in the lower
troposphere tended to record the highest biases in the upper troposphere. Looking at the ωr2 index,
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no major differences among RDs at each of the upper levels were found (excluding, JRA-55, which
showed the lowest values). However, no RD outperformed the others in representing the distribution
of soundings, as shown in Figure 7b. During autumn, all datasets (not including ERA-5) showed
relatively similar gph biases at each pressure level over all zones with ~5 m differences at 850 and
500 hPa and within ~10 m differences at 300 hPa. During this season, ERA-5 performed the poorest at
the upper levels, as confirmed by ωr2 values and PDF, as shown in Figure 7b,c.
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The vertical mean biases, ωr2, and PDF of tmp at subregional and seasonal levels are shown in
Figure 8. The mean bias values of ERA-5 were the most abundant (> ±1 ◦C) across zones during spring
(warming biases) and autumn (cold biases). As showing in Figure 8c, the lowest ωr2 values for tmp
were obtained by ERA-5 across seasons and zones more frequently with low PDF performances during
transitional seasons, as shown in Figure 8b. For the other RDs during transitional seasons, ERA-I tended
to achieve the lowest mean biases at 300 hPa across SWA with no substantial differences at 500 hPa (about
±0.3 ◦C). At the 850 hPa level, ERA-I and MERRA performed similarly (about ±0.2 ◦C) over zones one
and two throughout seasons and achieved small biases and high weighed coefficients interchangeably.
During winter and summer, all RDs showed mean bias values of tmp within ±0.5 ◦C at 300 and 500 hPa,
across all zones. These were higher during summer and over zone three. At both heights, ERA-5 tended
to obtain the lowest weighed coefficients shown in Figure 8c, with low PDF performance shown in
Figure 8b. Over zone three and at 850 hPa, ERA-I showed the highest weighted coefficient with the
smallest tmp bias values (within ±0.25 ◦C) across seasons, except during spring (0.5 ◦C).
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Figure 8. As in Figure 7, but for temperature (◦C).

Over zones one and two, the mean biases of v-wind were small. Excluding ERA-5 during
spring and autumn, they were regularly within ±0.5 m/s throughout the vertical column and across
seasons, as shown in Figure 9a. Over zone three, biases increase near the surface with mostly negative
directions. Generally, the mean bias indicator showed that all RDs tended to obtain similar values
in the upper troposphere (excluding ERA-5 in some cases). Weighted coefficients were smaller for
the lower troposphere, and ERA-5 had the lowest values across zones and throughout the vertical
column, as displayed in Figure 9c. The corresponding PDF showed that RDs performed similarly
in the upper troposphere, where ERA-5 showed the smallest agreement in most cases, as shown in
Figure 9b. Near the surface, PDF tended to show less agreement, particularly over zone three and RDs
achieved interchangeable performance.
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Figure 9. As in Figure 7, but for v-wind (m/s).

For zonal wind, large mean biases were recorded during spring and autumn by ERA-5, whereas
other datasets showed values ranging from −0.5 to 1 m/s during spring (largest over zone three)
and within ±0.5 m/s during autumn, as shown in Figure 10a. During both seasons, RDs (excluding
ERA-5) showed no fundamental differences at each height, as generally indicated by ωr2, as shown in
Figure 10c. During winter, most RDs (excluding JRA-55) overestimated observed u-wind over zones
one (within about 1 m/s) and three (within about 0.5 m/s. Over zone two, JRA-55 showed no biases (less
than 0.1 m/s) at 850 and 500 hPa, whereas other RDs exhibited biases within about ±0.5 m/s throughout
the vertical column. During summer, biases were within ±1 m/s and RDs (excluding ERA-5) tended
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to show relatively similar performances at 300 and 500 hPa as suggested by ωr2. As PDF indicates,
ERA-5 showed the highest deviation from observed u-wind distribution across zones during summer,
as shown in Figure 10b. Other datasets displayed comparably good performance at upper levels over
zones one and two, during summer. Over zone three, JRA-55 showed the best resampling performance
at 850 hPa over zone three during summer, as it had the highest ωr2 values, as shown in Figure 10b,c.
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5. Summary and Conclusions

The capability of four reanalyses to capture general climatology features within the troposphere
layer in SWA was assessed. It was found that most RDs represent the climatology of the lower, mid
and upper troposphere generally, but with differences in magnitudes. In the lower troposphere, RDs
overestimated gph with comparable differences (mean biases) from soundings over all zones, with
similar weighted coefficients (except for ERA-5). In the midtroposphere, all RDs showed similar gph
bias performances over zone two. At upper altitudes, ERA-I showed the lowest biases over zones two
and three, and MERRA showed the lowest biases over zone one. Nevertheless, both were comparable
over zones two and three. For tmp, all RDs performed equally in terms of mean biases and weighted
coefficients at upper altitudes, across zones. However, ERA-5 had a stronger tendency to deviate from
the soundings’ distributions. For zonal wind, biases were within lower ranges (−0.25 to 0.4 m/s) over
zones one and two (excluding JRA-55); ERA-5 displayed the lowest unity (weighted coefficient) and
PDF performance. A relatively similar finding was seen over zone three but with a larger bias range.
For v-wind, all RDs showed similar weighted coefficients (excluding ERA-5) and biases over zones
one and two. Over zone three, ERA-I and ERA-5 showed the smallest biases and ERA-5 showed the
lowest weighted coefficient values.

At seasonal scale, MERRA and ERA-I showed reasonable fits over zones one and two for both gph
(except during summer, where no dataset outperformed at all heights) and tmp. Over zone three, ERA-I
had a higher tendency to show reasonable performance in estimating gph and tmp. For v-wind, RDs
(except for MERRA) behaved similarly across zones and seasons, and ERA-I tended to achieve higher
ωr2 values and PDF performance in most cases. For u-wind, RDs showed similar performance during
spring and autumn (excluding ERA-5), but they performed interchangeably during other seasons.
At both annual and seasonal scales, mean bias values were higher at the upper levels for most variables.
During transition seasons (autumn and spring), ERA-5 tended to experience large biases in all zones
(e.g., Figures 7 and 8). This is highly related to the dataset itself rather than to the weather conditions
over the region, as the other RDs did not display such an issue. Biases and differences among RDs
at different timescales and subregional levels are due to several reasons, including differences in the
assimilated input observations, assimilation methods, resolutions (horizontal and vertical) [9,35] and
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differences in local atmospheric processes and topography [7,15]. Differences in input observations
are a key reason [9,36], as different reanalysis systems rely on different subsets of inputs to assimilate
the atmospheric state. For example, aircraft temperature observations are assimilated in all of the
examined RDs in this work except for JRA-55, which is the only RD that assimilates satellite radiance
observations form the Tropical Rainfall Measuring Mission Microwave Imager [36]. Furthermore,
different RDs apply different quality control criteria, even for a given input type. For instance, satellite
radiance observations assimilated from a given sensor vary among RDs [9]. For example, MERRA
and JRA-55 assimilate channels 4–14 from Advanced Microwave Sounding Unit-A, whereas ERA-I
assimilates channels 5–14.

It should also be noted that differences in the main biases can partly be attributed to the nature
of the mean bias index, as negative and positive errors cancel each other out depending on their
frequencies and sizes. Both ωr2 and PDF tended to agree that most RDs performed reasonably at
upper levels. From the climate dynamic perspective, results of ωr2 and PDF are more rational, as
the atmosphere becomes more homogenous further from the surface (i.e., effects of local factors are
minimized). RDs thus have a greater ability to produce reasonable estimates. Interestingly, most RDs
showed better resampling ability at the upper and lower ends of sounding data distributions more
frequently than around the means. This highlights the high potential usefulness of RDs for studying
extremes over the region. At subregional levels, RDs tended to produce reasonable estimates over
zones one and two; this may be due to the less complex topography of those zones compared to
zone three. Wind components seem to be challenging variables for all RDs in this region, particularly
near the surfaces as both ωr2 and PDF suggested. Both observations support the idea that RDs are
not only time [9] and region dependent [12], but are also variable dependent, and consequently
phenomena dependent. This mainly implies that when an atmospheric phenomenon is studied at a
local/subregional scale using RDs, the reliability of RDs should be evaluated at the phenomenon level.
In the literature, increasing effort is being made to evaluate RDs at the phenomenon and application
levels (e.g., [12,28,35,37]). The results of this work also have important implications for planning future
weather and climate monitoring networks and evaluating the effectiveness of models within the region.

This work was a general assessment of a set of variables at the subregional scale, and researchers
considering particular phenomena are advised to view this work as a general guideline. Recommending
a dataset was not possible, as no dataset outperformed others for all levels, variables, seasons and
zones (although ERA-I seems to be a fair candidate). In fact, a specific recommendation was avoided
here, as research objectives vary among studies, and, consequently, criteria for dataset selection vary.
Additionally, all of the reanalyses (except ERA-I) examined here are operational datasets, so their
quality and performance are continually monitored and updated.
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