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Abstract: A reduction of greenhouse gas (GHG) emissions as well as an increase in the share of
renewable energy are the main objectives of EU energy policy. In Poland, biofuels play an important
role in the structure of obtaining energy from renewable sources. In the case of biofuels obtained from
agricultural raw materials, one of the significant components of emissions generated in their full life
cycle is emissions from the cultivation stage. The aim of the study is to estimate and recognize the
structure of GHG emission from biomass production in selected farms in Poland. For this purpose,
the methodology that was recommended by the Polish certification system of sustainable biofuels and
bioliquids production, as approved by the European Commission, was used. The calculated emission
values vary between 41.5 kg CO2eq/t and 147.2 kg CO2eq/t dry matter. The highest average emissions
were obtained for wheat (103.6 kg CO2eq/t), followed by maize (100.5 kg CO2eq/t), triticale (95.4 kg
CO2eq/t), and rye (72.5 kg CO2eq/t). The greatest impact on the total GHG emissions from biomass
production is caused by field emissions of nitrous oxide and emissions from the production and
transport of fertilizers and agrochemicals. Emissions that were generated at the stage of production,
storage, and transport of seeds and during the use of fuels in agricultural and forestry machinery
have a significantly smaller share in the total GHG emissions from biomass production.
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1. Introduction

Using renewable energy sources (RES) is one of the crucial components of the sustainable
development, giving rational economic, ecological, and social effects. Developed countries notice the
necessity of emission reduction from combustion of energy fuels processes and the necessity of seeking
alternative energy resources. Support for development of the use of renewable energy sources became
a very important objective within the European Union (EU) [1]. The share of energy from renewable
sources in the EU, in gross final consumption of energy by 2030, should be at least 32%, according to
the Directive of the European Parliament and of the Council of 11 December 2018 on the promotion of
the use of energy from renewable sources [2]. The directive defines, among other things, the criteria
of sustainable development and reduction of greenhouse gas (GHG) emission in relation to biofuels,
bioliquids, and fuels from biomass. According to its assumptions, this limitation should be at least 50%
in relation to the fossil equivalent in the case of biofuels and biogas used in the transport sector and
bioliquids produced in installations that were put into operation on 5 October 2015 or earlier, and at
least 60% in the case of biofuels and biogas used in the transport sector and bioliquids produced in
installations that were put into operation from 6 October 2015 to 31 December 2020. This is expected to
increase to 65% from the 1st January 2021 and from 2026 to 70%. The national target for Poland, as set
out in Annex I of the aforementioned Directive, assumes the achievement of 15% share of energy from
renewable sources in gross final energy consumption in the year 2020. Based on the data of the Central
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Statistical Office [3], the share of energy from renewable sources in the total primary energy acquisition
in Poland in 2018 amounted to 14.3% (as compared to 29.9% in EU-28), which gives an increase of 2.2%
when compared to 2014 (in EU-28 there was a 3.8% increase during the same period).

Biofuels and biogas play an important role in the structure of energy generation from renewable
sources in Poland [4]. Solid biofuels (mainly agricultural biomass, firewood, and waste from forestry)
are the main carrier of renewable energy—their share in obtaining energy from RES in Poland is
69.3%. However, it is worth noting that this share has been systematically decreasing in the period of
2011–2017. An increase, in this regard, took place in the wind power sector and in the production of
liquid biofuels. From liquid biofuels, 10.2% of energy is obtained from renewable sources, while, from
biogas—3.3% [3,5]. Therefore, green technologies in the Polish energy sector are primarily based on
biomass, and full use of its energy potential might be ensured by reaching the National Indicative Target
and the fulfilment of EU legal obligations for 2020 [6–8]. Biomass for energy has a key role within the
EU policy support for RES, in which targets are the main drivers, together with overarching biomass
guidelines to anticipate any environmental constraints [9]. However, it is necessary to know the GHG
emission generated in their full life cycle, including those related to cultivation of raw materials, in
order to assess the fulfilment of the criterion concerning the GHG emission reduction capacity in
relation to biofuels, bioliquids and fuels from biomass. The aim of the study is to estimate GHG
emission that are caused by the cultivation of selected plants (winter wheat, triticale, winter rye, and
maize), used for biofuel production in Poland, as well as to recognize the structure of emission from
biomass production. The basis for the study was the assumption that emissions from the cultivation of
raw materials are an important source of total GHG emissions in a biofuels life cycle. An important
assumption was also to check the possibility of using the Global Nitrous Oxide Calculator (GNOC) to
estimate the field emissions of nitrous oxide.

2. Materials and Methods

Questionnaires that were provided by agricultural producers of raw materials for biofuel
production were the source material for the research. The questionnaires were sent to 15 agricultural
producers of biofuels in the north-western part of Poland. All of them were responded and provided
information on the size of the farm, crop area, fuel consumed, seed used, yield, mineral, and organic
fertilizers and pesticides used (their dose, type, and composition).

2.1. Location and Characteristics of the Studied Farms

The studied farms are located in the north-western and western part of Poland, in West Pomeranian
Voivodeship (12 locations) and Lubusz Voivodeship (three locations), respectively (Table 1, Figure 1).
All of the farms are located in the lowland area of Poland, at altitudes not exceeding 100 m above sea level,
with the exception of two farms in the central and southern part of the Lubusz Voivodeship—located
150–200 m above sea level. The studied farms are characterized by different natural conditions for
agricultural production. The last glacial (Vistulian) and postglacial processes form the landscape of
these areas. The study area is located in temperate warm transitional climate zone. Its territory is
affected by air masses from both the Atlantic Ocean and the continental Eurasian landmass. Concerning
the transfer of air masses, westerly winds are the most prevailing ones in the study area. On average,
annual totals of precipitation are ca. 550–600 mm. The number of days with precipitation (RR > 0.1 mm)
is approximately 160 per year [10]. Brunic Arenosols, Haplic Luvisols, and Podzols dominate the soil
cover of the studied area. The Fluvisols occur in river valleys [11].
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Table 1. Location and area of study farms.

No. of Farms Place Farm Area (Hectares) Voivodeship District

1 Banie 900 West Pomeranian Gryfice

2 Świerzno 100 West Pomeranian Kamień Pomorski

3 Gryfice Zdrój 300 West Pomeranian Gryfice

4 Trzebiatów 60 West Pomeranian Gryfice

5 Kicko 120 West Pomeranian Stargard

6 Lusowo 65 West Pomeranian Gryfice

7 Chojna 700 West Pomeranian Gryfino

8 Płoty 180 West Pomeranian Gryfice

9 Gryfice 165 West Pomeranian Gryfice

10 Gościejewo 142.5 West Pomeranian Gryfice

11 Swobnica 121 West Pomeranian Gryfino

12 Godków 350 West Pomeranian Gryfino

13 Mycielin 250 Lubusz Żagań

14 Brzozowa 68.5 Lubusz Sulęcin

15 Świebodzin 520 Lubusz Świebodzin
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On the basis of the analysis of the spatial distribution of the index of agricultural valorisation
of production space in Poland, taking soil quality, agroclimate, relief, and water conditions into
account [12,13], it was found that the farms in Banie and Swobnica have excellent conditions (Figure 1).
The decisive factor is constituted by soils, partially included in the so-called Pyrzyce black earths,
which are among the most fertile in Poland [14,15]. The other two farms in the Gryfino district are
characterized by very good conditions. The remaining farms in the West Pomeranian Voivodeship
have half as good and moderate conditions for cultivation, whereas, in the Lubusz Voivodeship:
Mycielin has good conditions and the other two are moderate. The studied fields were not irrigated.

The 15 farms under analysis cover a total area of 4042 ha (Table 1). Their acreage is highly
diversified, from 60 to 900 ha. They can be divided into four surface categories. The four smallest
ones (up to 100 ha) are located in the northern part of the area, being closest to the Baltic Sea, and in
Brzozowa. The next five, occupying from a 101 to 200 ha each, are located in the area of Gryfice and
Płoty as well as in Kicko and Swobnica. Three large farms (250–350 ha each) are located in Zdrój near
Gryfice, Godków, and Mycielin. The three with the largest area are located in Świebodzin (520 ha),
Chojna (700 ha), and Banie (900 ha)—the last two in the best agro-ecological conditions.

2.2. The Methodology for Assessment GHG Emissions from Biomass Production

The estimation of GHG emission caused by the cultivation of raw materials for biofuel production
in the above-mentioned farms was made in accordance with the methodology that was recommended
by the KZR INiG system [16]. This is the Polish system of certification of sustainable production
of biofuels, bioliquids, and raw materials, owned by the Oil and Gas Institute—National Research
Institute. The European Commission approved this system in 2014 in relation to proving compliance
with the sustainable development criteria, according to the directives of the European Parliament and
the EU Council [17,18].

The assessment of the KZR INiG system covers, in terms of compliance with the sustainable
development criteria, biomass cultivated and collected in the territory of the European Union, wastes
and residues collected in the territory of the EU, as well as raw materials, biofuels, and bioliquids
produced in the territory of the European Union. The assessment covers the entire life cycle of biofuels,
bioliquids, commencing from the stage of raw material cultivation or waste collection point, to the
final stage of consumption of biofuels and bioliquids, formation of wastes and residues, taking into
account all intermediate stages (buying, trading, and processing of the biomass). The KZR INiG system
also has a clearly set procedure to assess biofuels received in a co-processing process (processing
with fossil fuel). The procedure describes the methodology of the calculation of biomass fraction
and GHG emission [19]. For the purposes of the article, it was limited to assessing GHG emissions
from the cultivation of plants used for biofuel production. Input data (variables) affecting emissions
from crops include seeds, fuel, fertilizers, pesticides, yield, and field emission of N2O. On the basis of
questionnaires that were gathered from selected agricultural producers, information was obtained
in the area of cultivation, the name and amount of fertilizers used, the name and amount of plant
protection products used, the amount of seed, fuel consumption for driving agricultural machinery,
and other energy sources used during cultivation in 2019 (Table 2).
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Table 2. Agricultural data based on which components of greenhouse gas (GHG) emissions have
been determined.

No. of Farms Crop Seed
(kg/ha)

Yield
(t/ha)

Mineral Fertilizers
(kg/ha Pure Nutrient)

Pesticides
(kg/ha)

Fuel
Consumption

(l/ha)N P2O5 K CaO

1
wheat 117 6.8 61.1 21.2 48.0 0 1.0 120

triticale 135 10.0 53.1 21.2 48.0 0 1.0 85

2
wheat 180 5.8 46.0 40.0 60.0 0 0.02 100

triticale 180 5.8 46.0 40.0 60.0 0 0.02 100

3 maize 60 7.0 8.0 6.3 72.0 1000 0.2 80

4 rye 120 4.5 23.8 6.0 12.0 0 0 80

5 triticale 120 6.0 45.6 30.0 140.0 0 0.4 80

6 triticale 200 6.0 51.7 20.0 30.0 33.4 1.1 85

7

wheat 160 7.0 53.8 6.0 25.0 333.3 0.2 105

triticale 150 5.5 46.6 0 0 222 0.2 105

maize 20 9.0 46.2 13.8 24.0 333.3 0.1 105

8 rye 180 5.0 30.1 2.4 3.6 500 1.2 100

9 triticale 200 4.5 30.1 2.4 3.6 500 1.2 100

10 triticale 160 5.0 26.0 14.4 14.4 0 0 105

11 triticale 165 7.2 28.8 13.8 26.4 387.5 1.0 87

12 triticale 110 6.0 39.2 0 40.0 750 0.4 110

13
wheat 140 8.0 41.9 21.2 4.0 0 0.8 140

triticale 150 6.0 39.1 21.2 40.0 0 0.8 80

14 rye 150 5.0 0 0 0 0 0.2 85

15 maize 20 5.0 57.6 32.0 48.0 0 0.06 85

(Source: Authors based on surveys of agricultural producers).

The greenhouse gas emissions from biomass production were calculated according to the
following formula:

eec = eseed + echem + eirr + efield + eburn + emm (1)

where: eec—GHG emissions from biomass production; eseed—emissions from the use of
grain for sowing; echem—emissions from the production and transport of fertilizers and
agrochemicals; eirr—emissions from irrigation; efield—emissions from soil cultivation (field emissions);
eburn—emissions from burning of ground before and after cultivation; and, emm—emissions from
agricultural and forestry machinery and other mobile or stationary equipment.

The GHG emission from biomass production (eec) was expressed in carbon dioxide equivalent
(CO2eq) per dry matter unit [kg CO2eq/t], adopting the global warming potential (GWP) for N2O = 265,
according to the value that was indicated in the IPCC Fifth Assessment Report [20]. The GHG emission
from seeds used for sowing (eseed) includes the emission that is generated during the production,
storage, and transport of seeds. Where the seed was self-produced, the amount of biomass retained as
seed was deducted from the total biomass production in order to calculate the net biomass production.
The standard coefficients of GHG emission from seeds used for sowing were applied according to the
BioGrace calculator (v. 4d), as recommended by the European Commission [21]. The GHG emission
from the production and transport of fertilizers and plant protection products (echem) was calculated
according to a formula:

echem = Qchem × Fchem (2)

The amount of fertilizers or plant protection products (Qchem) applied per unit area of land (ha)
is expressed in mass unit (kg) of the pure component—nitrogen, phosphorus, potassium, or active
substance of the plant protection product. The GHG emission factor from the production and transport
of mineral fertilizers or plant protection products (Fchem) is expressed in CO2 equivalent per unit mass
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of fertilizer or plant protection product. The emission factors were applied according to the BioGrace
calculator (v. 4d) [21].

The GHG emissions from field irrigation (eirr) are those that result from the use of equipment
for pumping, storing, and distributing water. The associated GHG emissions are calculated as emm

emissions. The studied fields were not irrigated; hence, GHG emissions from crop irrigation are zero.
The GNOC (Global Nitrous Oxide Calculator) recommended by the European Commission was

used in order to calculate the field emission of nitrous oxide (efield) [22]. In accordance with the
Communication of the European Commission [23] as well as the guidelines of the KZR INiG [16],
the IPCC methodology, including both direct and indirect emissions, can be applied when taking the
N2O emission from soils into account. All three levels are allowed—from the basic and commonly
used Tier 1 level, not even based on national data, to the most detailed Tier 3 level. The GNOC
calculator used in this work allows for estimating the amount of field emission at Tier 2 level. Tier 2
methodologies require data that are both detailed and respect the relationships between emission
sources. These data can only be collected by sampling at the farm scale [24]. The GNOC tool was
developed based production data from the Food and Agriculture Organization of the United Nations
(FAO) database and the input data that are necessary for performing the calculations include, among
others, the place of cultivation, grain and straw yields, soil conditions, information on irrigation,
the dose of applied fertilizers, information on post-harvest residues, as well as basic environmental
parameters [25,26]. This tool calculates N2O emissions that are based on the approach of Stehfest
and Bouwman [27]. It uses an exponential algorithm that considers site and management specific
characteristics, such as soil texture, climate, soil organic matter, pH, and vegetation [28,29].

The combustion of plants, dead organic matter, and post-harvest residues might cause the emission
of CH4 and N2O due to incomplete combustion. The CO2 emission from biomass combustion (eburn) is
considered to be zero [30,31]. The emission from the use of fuels in agricultural and forestry machines
(emm), expressed in CO2 equivalent per unit of area during the year, was calculated according to
the formula:

emm = Qmmf × Ef (3)

Fuel consumption in the use of agricultural and forestry machinery (Qmmf) is expressed in volume
unit per area unit per year (dm3/ha/year). The standard coefficient of emissions from production and
fuel consumption (Ef), according to the data of BioGrace calculator (v. 4d), was used [21]. For diesel, it
is 87.64 gCO2eq/MJ.

3. Results and Discussion

The estimated emissions from biomass production in the farms under study ranged from 41.5 kg
CO2eq/t dry matter in the case of rye cultivation (in the farm No. 14) to 147.2 kg CO2eq/t in the case of
maize cultivation (in the farm No. 15) (Table 3). The low value of emission from rye cultivation in
the farm No. 14, located in Lubusz Voivodeship, is mainly the result of not using mineral fertilizers
at the cultivation stage. On the other hand, the maximum GHG emission that is caused by maize
cultivation in farm No. 15 is mainly the result of the applied dose of fertilizers and relatively high
nitrous oxide field emission estimated in the GNOC calculator at 1.4 kg N2O-N/ha. However, it should
be emphasized that the highest emissions from maize cultivation were also shown by studies for the
cultivation of winter wheat, spring wheat, winter rapeseed, sugar beet, and maize in arable farm in
eastern Poland, which were carried out using the GNOC calculator by Syp et al. [32]. In turn, Jarosz
and Faber [33], estimating GHG emissions from wheat, maize, and rapeseed cultivation using the
BioGrace (v. 4d) calculator, showed that the highest emissions from cultivation was for rapeseed,
followed by wheat and maize.

The average GHG emissions from biomass production are the highest for wheat cultivation at
103.6 kg CO2eq/t. The lower average emission value was obtained for maize (100.5 kg CO2eq/t),
followed by triticale (95.4 kg CO2eq/t) and rye (72.5 kg CO2eq/t) respectively (Figure 2). This sequence
due to GHG emission from wheat, maize, and rye cultivation is consistent with the results of
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Rajaniemi et al. [34] and Sapkota et al. [35]. However, Tongwane et al. [36], studying GHG emissions
from different crop production and management practices in South Africa, found almost 50% higher
emissions from maize cultivation when compared to wheat.

Table 3. GHG emissions from cultivation of agricultural crops for biofuels (eec).

No. of Farms Crop eec (kg CO2eq/t Dry Matter)

1
wheat 113.4

triticale 74.4

2
wheat 112.4

triticale 104.5

3 maize 77.6

4 rye 78.1

5 triticale 106.8

6 triticale 108.4

7
wheat 105.6

triticale 99.8

maize 76.7

8 rye 98.0

9 triticale 108.5

10 triticale 79.0

11 triticale 76.0

12 triticale 101.4

13
wheat 82.9

triticale 95.2

14 rye 41.5

15 maize 147.2

Total

minimum 41.5

maximum 147.2

average 94.4

σ 21.9
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The calculations show that field emissions of nitrous oxide (efield) as well as emissions from the
production and transport of fertilizers and agrochemicals (echem) are the key components of GHG
emissions from biomass production (Table 4). The dominant share of these sources in the structure
of GHG emission is characteristic for all of the examined crops and amounts, on average, to 52.7%
(maximum 73.5% for rye in farm No. 14) in the case of field emission and 37.4% (maximum 53.8%
for maize in farm No. 3) in the case of emission from the production and transport of fertilizers and
agrochemicals. Similarly, the results of analysis of GHG emissions in winter wheat farms, as carried out
by Syp et al. [37] in south-central Poland, indicate that in total emissions the highest share was field N2O
emissions (49–52%), followed by nitrogen fertilizer (31–33%) and diesel fuel (11–13%). For comparison,
Brock et al. [38], conducting research on GHG emissions from the production of 1 t of wheat (in the life
cycle) in Central Zone (East) New South Wales, found that 54.7% of emissions are generated on farm,
of which 25.7% from fertilizers and 13.5% from combustion of diesel in tractor and harvester. There are
a variety of management techniques that should conserve N and decrease the amount of N application
that is needed to grow crops and limit N2O emissions. Using nitrification inhibitors is an option for
decreasing fertilizer N use and additionally directly mitigating N2O emissions. Inhibitors may be
selected for climatic conditions and the type of cropping system, as well as the type of nitrogen (solid
mineral N, mineral N in solution, or organic waste materials) and applied with the fertilizers [39].
Although the factors that control N2O production are known, it is impossible to predict their interaction
under field conditions on the basis of the available information. These factors greatly affect the N2O
emission that is generated by fertilizers. The processes of nitrification and denitritication, and the
controls of the reduction of N2O to N2, have specific optimum conditions. Redox, moisture, and C
sources change during the year and from one year to another, and the importance of the different N2O
producing processes also changes as a consequence. The variability in the data is caused by a variety
of factors that are related to weather and management and their interaction, such as local rainfall and
temperature, timing and frequency of irrigation, history, mode and timing of fertilizer application,
presence or absence of crops, type of crop, and soil management [40,41].

Table 4. The structure of GHG emissions from cultivation of agricultural crops for biofuels.

No. of Farms Crop Share of Individual Emission Sources (%)

eseed echem efield emm

1
wheat 4.8 40.3 53.5 1.4

triticale 5.7 36.9 56.4 1.0

2
wheat 8.5 39.6 50.6 1.3

triticale 9.1 42.6 46.9 1.4

3 maize 5.5 53.8 39.1 1.5

4 rye 10.9 31.6 55.5 2.0

5 triticale 5.8 47.8 45.3 1.1

6 triticale 9.8 41.1 47.9 1.1

7

wheat 6.7 38.3 53.8 1.2

triticale 8.5 38.8 51.0 1.6

maize 1.3 39.8 57.6 1.4

8 rye 11.2 42.0 45.0 1.7

9 triticale 12.5 42.6 43.2 1.7

10 triticale 12.2 31.4 54.1 2.2

11 triticale 11.3 24.1 63.0 1.6

12 triticale 5.5 48.0 45.0 1.5

13
wheat 6.4 32.6 59.9 1.0

triticale 8.1 36.0 54.7 1.2

14 rye 22.2 0.8 73.5 3.4

15 maize 1.1 39.2 58.7 1.0

Total

minimum 1.1 0.8 39.1 1.0

maximum 22.2 53.8 73.5 3.4

average 8.4 37.4 52.7 1.5

σ 4.6 10.8 7.9 0.6
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For this reason, it is also important to use an appropriate tool to estimate the emissions from
cultivation. The improvement of the accuracy of field emission estimations is of significant importance
for the reduction of agricultural emissions in the full life cycle of the biofuel [42].

The studies carried out so far of other authors [26,29,43,44] have indicated that taking local
environmental conditions in the GNOC calculator used in this work into account allows for a more
accurate estimation of field emission of N2O. It is usually lower than the emission estimated with the
use of a simpler, but omitting local climatic conditions, soil, and farm management method, IPCC
method at the Tier 1 level. Moreover, the application of this tool enables the development of effective
climate change mitigation strategies, including the assessment of the impact of the dose and type
of fertilizer, period and manner of its application, as well as the applied cultivation techniques [45].
Taking the emissions from the production and transport of fertilizers and agrochemicals into account,
it should be noted that not only the dose of applied fertilizers, but also their type (manufacturer,
composition, and emission factor), is important for the final GHG emission from biomass production.
Therefore, it is necessary to raise farmers’ awareness in this respect and increase the attention of
fertilizer manufacturers to the aspect of GHG emission reduction [46]. It is necessary to analyse to
what extent the existing eco-innovations in the fertilizer domain might reduce the fertilizer carbon
footprint without compromising crop productivity. For example, typical mineral fertilizers were
compared with so-called stabilized nitrogen fertilizers and secondary raw material fertilizers in the
study of Hasler et al. [47]. Additionally, an effect of the combination of irrigation with fertilization
(i.e., fertigation) was investigated. With an adopted life cycle assessment approach focusing on CO2 and
N2O emission, the carbon footprints of the different fertilizer options were considered. The calculations
showed that, especially the use of stabilized nitrogen fertilizer, reduced the fertilization related carbon
footprint up to 13%. However, the adoption of these innovations is expected to be rather limited in
the near future because of higher costs or incomplete supply chain relationships. Fertilizers that were
made from secondary raw materials resulted in similar carbon footprints as mineral ones, but they can
help to close nutrient cycles and use by-products of other production processes [47].

The total GHG emissions from biomass production are much less affected by emissions generated
during the production, storage, and transport of seeds (eseed). Its share in the structure of emissions
from cultivation ranges from 1.1% for maize in farm No. 15 to 22.2% for rye in farm No. 14, averaging
8.4%. For comparison, research on the yield gaps and ecological footprints of potato production
systems in Chile by Haverkort et al. [48] showed that main sources of emission (75%) were those
that were related to fertilizer production (35%), fertilizer-induced field emission (25%), and seed
production (15%).

Of minimum significance is the emission from the use of fuels in agricultural and forestry machines
(emm)—from 1% for triticale in farm No. 1 and wheat in farm No. 13, to 3.4% for rye in farm No. 14,
with the average for all of the examined crops at the level of 1.5%. While fossil fuel consumption
is small in comparison to other terms in the agricultural GHG balance (such as nitrous oxide and
ruminant methane), modeling on-farm fossil fuel consumption in response to these land management
measures has a role to play in climate change mitigation strategies [49]. It should also be borne in mind
that the yield level of individual plants also influences the GHG emission from biomass production.
Calculations and studies of other authors [38,50,51] show that lower yields cause an increase in the
estimated greenhouse gas emissions as a result of the cultivation of raw materials, being expressed per
dry matter unit.

4. Conclusions

The estimated emissions from biomass production in the examined farms vary from 41.5 kg
CO2eq/t of dry matter in the case of rye cultivation to 147.2 kg CO2eq/t in the case of maize cultivation.
The average emissions are the highest for wheat (103.6 kg CO2eq/t), slightly lower for maize (100.5 kg
CO2eq/t) and triticale (95.4 kg CO2eq/t), and the lowest for rye (72.5 kg CO2eq/t).
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The field emissions of nitrous oxide and emissions from the production and transport of fertilizers
and agrochemicals are the key components of GHG emissions from biomass production. The dominant
share of these sources in the emission structure is characteristic for all of the crops examined and amounts
to 52.7% (maximum 73.5%) and 37.4% (maximum 53.8%), respectively. Taking local environmental
conditions, such as soil texture, climate, soil organic matter, pH, and vegetation in the GNOC calculator
used in this study into account allowed for a more accurate estimation of field emission of nitrous
oxide, which is important in reducing agricultural emissions in the full life cycle of biofuel. In the
case of emissions connected with the use of fertilizers, not only their dose, but also their type and
composition are important.

The emission generated at the stage of seed production, storage and transportation (8.4% on
average), as well as the emission from the use of fuels in agricultural and forestry machines (1.5% on
average) have much lower impact on the total GHG emission from biomass production. Crop yield
also has a noticeable impact on the obtained results—its decrease causes an increase in the estimated
GHG emission from biomass production.
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32. Syp, A.; Gębka, A.; Żukiewicz, A. N2O emissions in arable farm. Ann. Paaae 2016, 18, 328–332.
33. Jarosz, Z.; Faber, A. Changes in the development of the sector of liquid biofuels. Ann. Paaae 2016, 18, 110–116.
34. Rajaniemi, M.; Mikkola, H.; Ahokas, J. Greenhouse gas emissions from oats, barley, wheat and rye production.

Agron. Res. 2011, 9, 189–195.
35. Sapkota, T.B.; Aryal, J.P.; Khatri-Chhetri, A.; Shirsath, P.B.; Arumugam, P.; Stirling, C.M. Identifying high-yield

low-emission pathways for the cereal production in South Asia. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23,
621–641. [CrossRef]

http://dx.doi.org/10.2478/ssa-2019-0019
http://dx.doi.org/10.18668/NG.2016.05.09
https://www.biograce.net
https://gnoc.jrc.ec.europa.eu
http://dx.doi.org/10.1515/intag-2016-0013
http://dx.doi.org/10.1007/s10705-006-9000-7
http://dx.doi.org/10.1016/j.agee.2017.07.039
http://dx.doi.org/10.1111/j.1757-1707.2011.01102.x
http://dx.doi.org/10.1007/s11027-017-9752-1


Atmosphere 2020, 11, 394 12 of 12

36. Tongwane, M.; Mdlambuzi, T.; Moeletsi, M.; Tsubo, M.; Mliswa, V.; Grootboom, L. Greenhouse gas emissions
from different crop production and management practices in South Africa. Environ. Dev. 2016, 19, 23–35.
[CrossRef]
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