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Abstract: Real-time and effective human thermal discomfort detection plays a critical role in achieving
energy efficient control of human centered intelligent buildings because estimation results can provide
effective feedback signals to heating, ventilation and air conditioning (HVAC) systems. How to
detect occupant thermal discomfort is a challenge. Unfortunately, contact or semi-contact perception
methods are inconvenient in practical application. From the contactless perspective, a kind of
vision-based contactless human discomfort pose estimation method was proposed in this paper.
Firstly, human pose data were captured from a vision-based sensor, and corresponding human
skeleton information was extracted. Five thermal discomfort-related human poses were analyzed,
and corresponding algorithms were constructed. To verify the effectiveness of the algorithms, 16
subjects were invited for physiological experiments. The validation results show that the proposed
algorithms can recognize the five human poses of thermal discomfort.

Keywords: thermal discomfort; machine learning; computer vision; human centered intelligent buildings

1. Introduction

At present, global energy consumption has increased rapidly, of which the energy consumption
of commercial and residential buildings accounts for 21% of the world′s total energy consumption [1].
Fifty percent of building energy consumption is related to heating, ventilation and air conditioning
(HVAC) systems [2]. The main method currently adopted in the air conditioning industry is to provide
a constant environment for buildings in accordance with international standards (ASHRAE (American
Society of Heating, Refrigerating and Air-Conditioning Engineers) standard 55 [3], ASHRAE standard
62.1 [4]). This method does not take into account the individual difference and time variability
of thermal comfort for building occupants. Studies have shown that even small adjustments to
room temperature (such as 1 ◦C) can have a huge impact on the energy consumption of the entire
building [5,6]. If the energy distribution can be combined with the specific environment, it can not
only meet the individual thermal comfort requirements but also achieve energy efficiency goals.

The ASHRAE Standard 55 and ISO (International Organization for Standardization) Standard
7730 define thermal comfort as follows: In an indoor space, at least 80% of building occupants
are psychologically satisfied with the current temperature range of the thermal environment [3,7].
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Therefore, human thermal comfort, as a subjective feeling, often needs to be tested for each individual.
Sim [8] used a wristband to detect human skin temperature and invited eight subjects to participate
under different thermal conditions. A human body thermal comfort model was constructed based on
parameters such as average skin temperature, temperature gradient and temperature time difference.
Dai [9] proposed a thermal comfort prediction method based on a support vector machine (SVM),
which used the skin temperature as an input and improved the model by combining the comprehensive
skin temperature of different body parts. The prediction accuracy rate reaches 90%. Ghahramani [10]
proposed a skin temperature detection method based on infrared thermal imaging sensing. By installing
sensors on glasses, the skin temperature of the face is detected to predict human thermal comfort.
Nkurikiyeyezu [11] used human heart rate variability (HRV) to estimate human thermal comfort. The
subjects’ electrocardiogram (ECG) signals were used to calculate the HRV index using the special HRV
analysis software they developed. Studies have shown that the accuracy of using the HRV index to
predict human thermal comfort reaches 93.7%. Barrios [12] proposed an architecture—Comfstat, which
uses smart watches and Bluetooth chest straps to obtain human heart rate data and uses machine
learning methods to combine heart rate data with environmental data to achieve thermal comfort
predictions. Kawakami [13] used photoelectric plethysmography (PPG) to monitor the index of blood
circulation to evaluate the human body thermal comfort. Chaudhuri [14] used the wearable device to
obtain human physiological characteristics, such as skin temperature, pulse rate and blood pressure,
and combined the convolutional neural network and SVM kernel method to assess the thermal state of
the subject; the accuracy of the two methods reached 93.33% and 90.6%. Salamone [15] proposed an IoT
(Internet of Things) platform with integrated machine learning algorithms to obtain the thermal comfort
of occupants. He used wearable devices, such as wristbands, to obtain the occupants’ physiological
parameters while using sensors to obtain indoor environmental parameters. Then, he used machine
learning algorithms to achieve the occupant’s thermal comfort prediction. The above method can
realize human thermal comfort detection by capturing physiological parameters of the human body.
However, some sensors must be installed directly or indirectly on corresponding body parts to obtain
physiological parameters.

In order to solve the above problems, some scholars use the non-contact method to carry out relevant
research on thermal comfort. Combining video magnification and deep learning, Cheng [16–18] tried
to establish the relationship between the skin changes and skin temperature under different conditions,
and proposed non-contact skin temperature detection methods to assess human thermal comfort.

From the perspective of human posture, we proposed a contactless detection method to detect the
thermal comfort state of the human body. We used OpenPose, a deep learning-based open-source
library, to recognize human body postures to determine thermal comfort. Meier [19] built a library of
postures related to thermal discomfort by retrieving public image libraries and observing postures
related to thermal discomfort. The library introduces postures that are used to represent most people’s
reactions when they feel too cold or too hot and describes the details of these postures. We selected
five postures from the library to complete our pose estimation algorithm, including splayed posture,
hair movement, rubbing hands, buttoning up and shivering.

The main contributions of this paper are: On the basis of Yang [20], five sub-algorithms were
constructed for the five thermal discomfort poses proposed by Meier. Sixteen subjects were invited to
obtain data and verify the algorithm proposed.

The structure of the paper is as follows: The first part explains the theoretical basis and
implementation process of the algorithm; the second part uses real-time captured data to verify
the utility of the proposed algorithm; the third part gives the conclusion of the paper and points out
the follow-up research direction.

2. Methodology

The programming language we used was python. The integrated development environment we
used was Spyder. Spyder is a powerful and open-source interactive Python language development
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environment. On this basis, we implement the algorithm proposed in this paper. The overall algorithm
of this paper includes 4 parts: perception of human body key points, extraction of key point coordinate
information, estimation of poses and display of the poses. The specific algorithm process is shown in
Figure 1.
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Figure 1. Flow chart of the human pose estimation algorithm.

2.1. Perception of Human Body Key Points

The basis of the algorithm in this paper is derived from OpenPose [21–23], a real-time multi-person
key point detection library. It is an open-source library based on Caffe, which can detect the key
points of the face, hand and body through images, videos or real-time shooting of cameras [24]. The
distribution of key points is shown in Figure 2. There are 25 key points on the body to build the basic
human body skeleton, 42 key points on the hand (21 for each hand) and 70 key points on the face.
The corresponding instructions can be used to get pictures from the camera by frame and save the
coordinates of key points in each picture.
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2.2. Extraction of Key Points

Pose estimation is mainly achieved through the corresponding relationship among the body key
points. When OpenPose is used to detect human body key points, the algorithm also starts to read the
pictures captured by OpenPose and the files that save the key points. The coordinates of key points
from the files are read by instructions and are saved as arrays.

2.3. Pose Estimation

Each point consists of three values, where the first two values represent its coordinates and the
third value represents the confidence. Each pose is primarily judged by the positional relationship
between points and the Euclidean distance between points. The Euclidean distance between the two
points is calculated by Equation (1).

d =
2
√
(x1 − x2)

2 + (y1 − y2)
2 (1)

For the same posture, since the body type of each person may be different, the Euclidean distance
between the calculated points is also different, which may lead to incorrect pose estimation. To avoid
this problem, the Euclidean distance from the wrist to the elbow of the subject is used as the reference
distance through Equation (2).

d′ =
2
√
(x3 − x4)

2 + (y3 − y4)
2 (2)

The subscripts in Equation (2) correspond to the right elbow and right wrist of the human body.
Based on Equation (3), the distance between points is converted to the ratio of the distance between
points and the reference distance ρ.

ρ =
d′

d
(3)

According to human body thermal comfort, this paper designed the following five algorithms in
combination with the five poses defined by Meier. The array containing the coordinates is imported
into the algorithm. When the calculation result meets the conditions of the defined pose, the name of
the pose is returned. Table 1 shows the pose estimation algorithm of the splayed posture. The result of
the pose estimation is obtained by calculating the distance from the wrist to the hip and comparing the
x-coordinate values of the wrist and elbow.

Table 1. Pose estimation algorithm of the splayed posture.

The Pose Estimation Algorithm of the Splayed Posture

Input: key points array: D = {(x0,y0),(x1,y1), . . . ,(x24,y24)}
Process:
1: calculate Euclidean distance from left (right) wrist point to left (right) hip point d
2: calculate reference distance d′

3: calculate the ratio of d′ to d ρ
4: if ρ > 0.7 and x3 < x4 and x6 > x7
Output: splayed posture, hot

Table 2 shows the pose estimation algorithm of hair movement. This pose detection is a dynamic
process. In order to achieve this continuous motion estimation, a continuous set of images needs to be
selected as the input of the algorithm. The number of images in this article is 60. Afterward, a pairwise
comparison between pictures is performed in a circular manner. We calculate the distance of the ear
point between the front and back images. In order to avoid the point change caused by the overall
movement of the human body, we also need to calculate the distance of the nose point between the
front and back images. Since this pose is a continuous action, the conditions may not be met between
any two images. In the judgment process, the number of cases where the calculation result between
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the two pictures meets the conditions is counted. Finally, the result of the counter is compared to 60. If
the result of the comparison exceeds a defined threshold, the name of the pose is returned.

Table 2. Pose estimation algorithm of hair movement.

The Pose Estimation Algorithm of Hair Movement

Input: key points array: D = {(x0,y0),(x1,y1), . . . ,(x24,y24)}
Process:
1: initialize the counter: count=0
2: for i = 1, . . . ,60 do
3: calculate the distance between the left ear point in Di and the left ear point in Di + 1 d1
4: calculate the distance between the nose point in Di and the nose point in Di + 1 d1
5: if d1 > 15 and d2 < 5
6: count+=1
7: end for
8: if count > 60/10
Output: hair movement, hot

Table 3 shows the pose estimation algorithm of rubbing hands. Firstly, the distance between the
left and right wrist points needs to be calculated to ensure that the hands are tightened. Secondly, the
distance of the wrist point between the front and back pictures is calculated, and the posture judgment
is performed by using the method mentioned in the previous algorithm. Finally, the name of the pose
is returned.

Table 3. Pose estimation algorithm of rubbing hands.

The Pose Estimation Algorithm of Rubbing Hands

Input: key points array: D = {(x0,y0),(x1,y1), . . . ,(x24,y24)}
Process:
1: initialize the counter: count=0
2: calculate Euclidean distance from left wrist to right wrist d
3: calculate reference distance d′

4: calculate the ratio of d′ to d ρ
5: if ρ >1:
6: for i = 1, . . . ,60 do
7: calculate the distance between the left wrist point in Di and the left wrist point in Di + 1 d1
8: if 2 < d1 <15
9: count+=1
10: end for
11: if count >
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Table 4 shows the pose estimation algorithm of buttoning up. Similar to the previous pose
estimation algorithm of the splayed posture, it is necessary to compare the position of the wrist
and shoulder points and calculate the distance between the wrist and neck points to achieve the
pose estimation.

Table 4. Pose estimation algorithm of buttoning up.

the pose estimation algorithm of buttoning up

Input: key points array: D ={(x0,y0),(x1,y1), . . . ,(x24,y24)}
Process:
1: calculate Euclidean distance from left (right) wrist point to neck point d
2: calculate reference distance d′

3: calculate the ratio of d′ to d ρ
4: if ρ > 1 and x4 < x5
Output: buttoning up, cold
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The posture of shivering is different from the first four poses because it needs to use the key points
of the face. There are 70 key points on the face, which are distributed on the contours of the face, lips,
nose and eyes. When a person is shivering, the lip is more active. Therefore, the points of the lip are
mainly selected to detect the posture of shivering. Table 5 shows the estimation algorithm of shivering.
The detection mechanism is similar to the pose estimation of hair movement. The pose estimation is
completed by calculating the distance of the three points of the lip between the front and back pictures.

Table 5. Pose estimation algorithm of shivering.

The Estimation Algorithm of Shivering

Input: key points array: D ={(x0,y0),(x1,y1), . . . ,(x69,y69)}
Process:
1: initialize the counter: count=0
2: for i = 1, . . . ,60 do
3: calculate the distance between three lip points in Di and three lip points in Di + 1 d1,d2,d3
4: if 1.3 < d1 < 5 and 1.3 < d2 < 5 and 1.3 < d3 < 5
5: count+=1
6: end for
7: if count > 60/10
Output: shivering, cold

2.4. Display of the Poses

When the pose estimation is completed, the pose name and the corresponding picture are displayed
on the screen through a window.

3. Results

The algorithm proposed in this paper is used to process real-time video obtained by ordinary
cameras. Sixteen subjects were invited to perform experiments. They are students from school. The
experiments are conducted in a laboratory with controlled temperature. The subjects complete the
pose in front of the camera, and the algorithm recognizes and displays the pose of the subjects. Table 6
gives the basic information of the subjects, such as gender, age, height and weight.

Table 6. Subjects information form.

ID Gender Age Height (m) Weight (kg)

1 male 25 1.83 73
2 male 25 1.77 74
3 male 23 1.76 63
4 male 25 1.69 95
5 male 23 1.60 58
6 male 26 1.75 71
7 male 25 1.69 64
8 male 25 1.70 57
9 male 25 1.77 70

10 male 24 1.73 65
11 male 25 1.77 74
12 male 27 1.78 68
13 male 26 1.70 60
14 female 25 1.58 51
15 male 25 1.70 63
16 male 25 1.70 72

Our algorithm detects five poses. The names of the five postures and the cold or hot states they
represent are given in Table 7.
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Table 7. Information on five postures.

State Posture

hot
splayed posture
hair movement

cold
hand rubbing
buttoning up

shivering

The detection results of the algorithm are shown below. Five pictures were used to show the
detection results of five poses. Each picture contains four sections to show the test results of four
subjects. Each section in the picture contains two boxes, the text box at the top shows the name of the
current pose, and the pose picture detected by the algorithm is below the text box. The height of each
subject in the four sections decreases in order.

When people feel hot, they try to stretch their limbs to dissipate heat. For example, people often
place their hands on their waists to keep their bodies and arms as far apart as possible. Therefore, we
asked the subjects to place their hands on the waist so that our algorithm could detect this splayed
posture. Figure 3 shows the splayed posture recognized by the algorithm.
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Figure 3. Recognition results of splayed posture ((a)–(d)) shown the same posture name but the subjects
are different, the heights of the subjects decrease in order.).

People with long hair are more susceptible to weather. When they feel hot, they may shake their
hair to prevent it from clinging to the skin. In the experiment, we used the shaking of the head instead
of the movement of the hair because the two situations are often concurrent. Figure 4 shows the
posture of hair movement identified by the algorithm. The subject shakes his head to the completed
pose estimation.
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When the weather is cold, people often try to rub their hands rapidly to produce frictional
heat to provide heat to the body. Figure 5 shows the posture of rubbing hands identified by the
algorithm. The subject rubs his hands together. The algorithm estimates the pose based on the subject’s
continuous action.
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In cold weather, people will fasten the top button of the clothes or press the neckline of the clothes
to reduce the air circulation between the clothes and the chest. Figure 6 shows the posture of buttoning
up recognized by the algorithm. The subject uses the left or right hand to hold the neckline of the
clothes, and the algorithm estimates the current posture.
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Figure 6. Recognition results of buttoning up ((a)–(d)) were the recognition results of different subjects
for the same posture, they have different heights.).

People tend to shiver involuntarily due to physiological reactions in cold weather. The more
intuitive manifestation is the shaking of the teeth, so we tried to recognize this pose. Figure 7 shows the
posture of shivering identified by the algorithm. The subject shakes teeth quickly, and the algorithm
completes pose detection.

Atmosphere 2020, 11, x FOR PEER REVIEW 9 of 11 

 

 

Figure 6. Recognition results of buttoning up ((a–d) were the recognition results of different subjects 

for the same posture, they have different heights.). 

People tend to shiver involuntarily due to physiological reactions in cold weather. The more 

intuitive manifestation is the shaking of the teeth, so we tried to recognize this pose. Figure 7 shows 

the posture of shivering identified by the algorithm. The subject shakes teeth quickly, and the 

algorithm completes pose detection. 

 

Figure 7. Recognition results of shivering ((a–d) shown the results of four subjects with different 

heights for the same posture.). 

4. Discussion 

The purpose of this study is to detect human posture in a contactless way, so as to determine 

the thermal comfort state of the human body without affecting occupants. The recognition results 

are fed back to the air-conditioning system to realize the automatic adjustment of the indoor 

environment. 

Each person’s body size is different, and if the distance between points is used as a basis for 

judgment, detection errors may result. In the algorithm, we decided to use the distance from the 

wrist to the elbow of the people as the reference distance and rely on the proportional relationship 

to achieve the posture detection. We also selected subjects of different heights for testing. It can be 

seen from the results that for people of different body sizes, the algorithm can correctly detect when 

they complete the same pose.  

Figure 7. Recognition results of shivering ((a)–(d)) shown the results of four subjects with different
heights for the same posture.).

4. Discussion

The purpose of this study is to detect human posture in a contactless way, so as to determine the
thermal comfort state of the human body without affecting occupants. The recognition results are fed
back to the air-conditioning system to realize the automatic adjustment of the indoor environment.

Each person’s body size is different, and if the distance between points is used as a basis for
judgment, detection errors may result. In the algorithm, we decided to use the distance from the wrist
to the elbow of the people as the reference distance and rely on the proportional relationship to achieve
the posture detection. We also selected subjects of different heights for testing. It can be seen from the
results that for people of different body sizes, the algorithm can correctly detect when they complete
the same pose.
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However, the proposed algorithm also has certain limitations. Except for the posture of shivering,
the other four poses are macro in this paper. In daily life, for the hot and cold states, some micro poses
produced by the body are of great research value. At the same time, based on more consideration
of the influence of body size on the algorithm, the subjects we selected are mostly males who have
different body size.

5. Conclusions

The pose estimation algorithm proposed in this paper extracts the coordinates of key points of the
body based on OpenPose, and then uses the correlation between the points to represent the features
of each pose. On this basis, the algorithm is completed. After verification, our algorithm is useful in
detecting these postures.

In the follow-up studies, while improving the performance of the current algorithm, we will also
study the micro posture of body. Combining these two types of poses can better achieve thermal
comfort detection. We will conduct more experiments on different groups of people in the future.

Author Contributions: Conceptualization, X.C., J.Q.; methodology, X.C., B.Y.; software, J.Q., Z.L.; validation,
X.C., J.R.; formal analysis, X.C.; investigation, X.C.; resources, X.C.; data curation, X.C.; writing—original draft
preparation, X.C., J.Q.; writing—review and editing, B.Y., Z.L.; visualization, X.C.; supervision T.O., H.L.; project
administration, X.C.; funding acquisition, X.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the International Postdoctoral Fellowship Program from China Postdoctoral
Council, grant number 20160022; the National Natural Science Foundation of China, grant number 61401236; the
Jiangsu Postdoctoral Science Foundation, grant number 1601039B; the Key Research Project of Jiangsu Science and
Technology Department, grant number BE2016001-3.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. U.S. Energy Information Administration. International Energy Outlook 2017. Available online: https:
//www.eia.gov/outlooks/archive/ieo17/pdf/0484(2017).pdf (accessed on 11 August 2019).

2. Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build.
2008, 40, 394–398. [CrossRef]

3. ASHRAE. ASHRAE Standard 55: 2017, Thermal Environmental Conditions for Human Occupancy; American
Society of Heating, Refrigeration and Air-Conditioning Engineers: Atlanta, GA, USA, 2017.

4. ASHRAE. Standard 62.1: 2016, Ventilation for Acceptable Indoor Air Quality; American Society of Heating,
Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2016.

5. Ghahramani, A.; Zhang, K.; Dutta, K.; Yang, Z.; Becerik-Gerber, B. Energy savings from temperature setpoints
and deadband: Quantifying the influence of building and system properties on savings. Appl. Energy 2016,
165, 930–942. [CrossRef]

6. Ghahramani, A.; Dutta, K.; Yang, Z.; Ozcelik, G.; Becerik-Gerber, B. Quantifying the influence of temperature
setpoints, building and system features on energy consumption. In Proceedings of the 2015 Winter Simulation
Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2015; pp. 1000–1011.

7. ISO. ISO Standard 7730. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of
Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; International
Organization for Standardization: Geneva, Switzerland, 2005.

8. Sim, S.Y.; Koh, M.J.; Joo, K.M.; Noh, S.; Park, S.; Kim, Y.H.; Park, K.S. Estimation of thermal sensation based
on wrist skin temperatures. Sensors 2016, 16, 420. [CrossRef] [PubMed]

9. Dai, C.; Zhang, H.; Arens, E.; Lian, Z. Machine learning approaches to predict thermal demands using skin
temperatures: Steady-state conditions. Build. Environ. 2017, 114, 1–10. [CrossRef]

10. Ghahramani, A.; Castro, G.; Becerik-Gerber, B.; Yu, X. Infrared thermography of human face for monitoring
thermoregulation performance and estimating personal thermal comfort. Build. Environ. 2016, 109, 1–11.
[CrossRef]

https://www.eia.gov/outlooks/archive/ieo17/pdf/0484(2017).pdf
https://www.eia.gov/outlooks/archive/ieo17/pdf/0484(2017).pdf
http://dx.doi.org/10.1016/j.enbuild.2007.03.007
http://dx.doi.org/10.1016/j.apenergy.2015.12.115
http://dx.doi.org/10.3390/s16040420
http://www.ncbi.nlm.nih.gov/pubmed/27023538
http://dx.doi.org/10.1016/j.buildenv.2016.12.005
http://dx.doi.org/10.1016/j.buildenv.2016.09.005


Atmosphere 2020, 11, 376 11 of 11

11. Nkurikiyeyezu, K.N.; Suzuki, Y.; Tobe, Y.; Lopez, G.F.; Itao, K. Heart rate variability as an indicator of thermal
comfort state. In Proceedings of the 2017 56th Annual Conference of the Society of Instrument and Control
Engineers of Japan (SICE), Kanazawa, Japan, 19–22 September 2017; pp. 1510–1512.

12. Barrios, L.; Kleiminger, W. The Comfstat-automatically sensing thermal comfort for smart thermostats. In
Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications
(PerCom), Kona, HI, USA, 13–17 March 2017; pp. 257–266.

13. Kawakami, K.; Ogawa, T.; Haseyama, M. Blood circulation based on PPG signals for thermal comfort
evaluation. In Proceedings of the 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE), Nara,
Japan, 9–12 October 2018; pp. 194–195.

14. Chaudhuri, T.; Zhai, D.; Soh, Y.C.; Li, H.; Xie, L.; Ou, X. Convolutional neural network and kernel methods
for occupant thermal state detection using wearable technology. In Proceedings of the 2018 International
Joint Conference on Neural Networks (IJCNN), Rio, Brazil, 8–13 July 2018; pp. 1–8.

15. Salamone, F.; Belussi, L.; Currò, C.; Danza, L.; Ghellere, M.; Guazzi, G.; Lenzi, B.; Megale, V.; Meroni, I.
Integrated method for personal thermal comfort assessment and optimization through users’ feedback, IoT
and machine learning: A case study. Sensors 2018, 18, 1602. [CrossRef] [PubMed]

16. Cheng, X.; Yang, B.; Olofsson, T.; Liu, G.; Li, H. A pilot study of online non-invasive measuring technology
based on video magnification to determine skin temperature. Build. Environ. 2017, 121, 1–10. [CrossRef]

17. Cheng, X.; Yang, B.; Hedman, A.; Olofsson, T.; Li, H.; Van Gool, L. NIDL: A pilot study of contactless
measurement of skin temperature for intelligent building. Energy Build. 2019, 198, 340–352. [CrossRef]

18. Cheng, X.; Yang, B.; Tan, K.; Isaksson, E.; Li, L.; Hedman, A.; Olofsson, T.; Li, H. A contactless measuring
method of skin temperature based on the skin sensitivity index and deep learning. Appl. Sci. 2019, 9, 1375.
[CrossRef]

19. Meier, A.; Cheng, X.; Dyer, W.; Chris, G.; Olofsson, T.; Yang, B. Non-invasive assessments of thermal
discomfort in real time. In Proceedings of the 1st International Conference on Comfort at the Extremes:
Energy, Economy and Climate, Heriot Watt University, Dubai, United Arab Emirates, 10–11 April 2019;
pp. 692–707.

20. Yang, B.; Cheng, X.; Dai, D.; Olofsson, T.; Li, H.; Meier, A. Macro pose based non-invasive thermal comfort
perception for energy efficiency. arXiv 2018, arXiv:1811.07690.

21. Wei, S.E.; Ramakrishna, V.; Kanade, T.; Sheikh, Y. Convolutional pose machines. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 4724–4732.

22. Simon, T.; Joo, H.; Matthews, I.; Sheikh, Y. Hand keypoint detection in single images using multiview
bootstrapping. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 1145–1153.

23. Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 7291–7299.

24. Qiao, S.; Wang, Y.; Li, J. Real-time human gesture grading based on OpenPose. In Proceedings of the
2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–6.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s18051602
http://www.ncbi.nlm.nih.gov/pubmed/29772818
http://dx.doi.org/10.1016/j.buildenv.2017.05.021
http://dx.doi.org/10.1016/j.enbuild.2019.06.007
http://dx.doi.org/10.3390/app9071375
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Perception of Human Body Key Points 
	Extraction of Key Points 
	Pose Estimation 
	Display of the Poses 

	Results 
	Discussion 
	Conclusions 
	References

