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Abstract: The occurrence of hydrological extremes in the Amazon region and the associated sediment
loss during rainfall events are key features in the global climate system. Climate extremes alter
the sediment and carbon balance but the ecological consequences of such changes are poorly
understood in this region. With the aim of examining the interactions between precipitation and
landscape-scale controls of sediment export from the Amazon basin, we developed a parsimonious
hydro-climatological model on a multi-year series (1997–2014) of sediment discharge data taken at
the outlet of Óbidos (Brazil) watershed (the narrowest and swiftest part of the Amazon River). The
calibrated model (correlation coefficient equal to 0.84) captured the sediment load variability of an
independent dataset from a different watershed (the Magdalena River basin), and performed better
than three alternative approaches. Our model captured the interdecadal variability and the long-term
patterns of sediment export. In our reconstruction of yearly sediment discharge over 1859–2014, we
observed that landscape erosion changes are mostly induced by single storm events, and result from
coupled effects of droughts and storms over long time scales. By quantifying temporal variations
in the sediment produced by weathering, this analysis enables a new understanding of the linkage
between climate forcing and river response, which drives sediment dynamics in the Amazon basin.

Keywords: Amazonia; parsimonious modelling; river basin; soil erosion

1. Introduction

The transfer of sediment and organic carbon from the terrestrial biosphere to the oceans via erosion
and riverine transport constitutes an important component of the global carbon sequestration [1–3]
and nutrient cycling [4,5], resulting in flow transfer among Earth’s reservoirs [6]. The South American
continent is a region with particular climate-biosphere interactions [7,8]. It also presents high
vulnerability to water erosion [9], with average soil loss rates that are significantly higher than the
world average [10]. In fact, with south-eastern Asia, the Amazon basin is a land area under the greatest
effect of erosive precipitation [11]. However, especially for historical times, surface processes and
soil erosion related to the hydrological cycle are still not sufficiently well understood [12,13]. As
the spatial and temporal resolutions of multi-proxy records have increased in recent years, some
hydro-climatic shifts have been recognized as important aspects of environmental applications [14].
These hydrological changes have a multi-scale nature, operating over annual-to-multidecadal time
scales that is where water can be viewed as both a resource and a land disturbing force [15].

Atmosphere 2020, 11, 208; doi:10.3390/atmos11020208 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0003-1484-2738
https://orcid.org/0000-0003-2712-7979
http://dx.doi.org/10.3390/atmos11020208
http://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/2073-4433/11/2/208?type=check_update&version=2


Atmosphere 2020, 11, 208 2 of 15

The Amazon River Basin (ARB) presents several exceptional challenges [16,17] because of the
generally undeveloped nature of its fluvial environments, and soil erosion is one of the most serious
threats [18]. Though research into grassland management options to mitigate nutrient losses from
pasturelands has been an active field [19], a significant change in agricultural practices is still required
to try to decouple productivity from processes of soil erosion and nutrient loss [20,21].

Gaining a deeper understanding of soil erosion control in the humid tropics is an essential
issue [22]. In forestry environments of developing countries, soil erosion regularly constrains rural
development and exacerbates poverty by undermining the productive capacity of land agriculture and
livestock raising [23,24]. However, in the Amazon, as elsewhere, natural oscillations in the hydrological
cycle and the land surface processes influenced by those fluctuations must be distinguished before
possible anthropogenic impacts can be truly attributed. For instance, the El Niño-Southern Oscillation
(ENSO) signal of sea surface temperatures variability in the tropical-equatorial southern Pacific brings
climate anomalies and river flows worldwide and is a potential source of natural climate variability in
the Amazon basin [25–27]. In this humid tropical region, soil erosion can potentially reach dramatic
levels because precipitations are often strong and concentrated [28].

With the progress in large-scale hydrological modelling, scientists have developed physically-based
models to explain patterns of sediment yield worldwide and help reducing vulnerabilities to natural
hazards [29–34]. In the ARB, several extreme hydrological events have occurred during the last decades,
with abundant precipitations in various sectors of the basin, which have determined river floods in 1953,
1989, 1999, 2009, and 2012–2015 (with an associated increasing sediment transport), while droughts
occurred in 1996, 2005 and 2010 [35–37]. Given its large size, the ARB experiences significant variability
in landscape-climate interactions [38]. Complementary to observational studies [39], simulation models
support the understanding and quantification of different Amazonia hydrological processes such as
evapotranspiration, soil and groundwater storages, and river-floodplain hydrodynamics [40]. These
models, however, need several environmental inputs and a detailed parameterization to run over long
temporal scales. This means that they cannot always be applied, especially in poor-gauged basins
or for long temporal scales (e.g., decades to centuries). Additionally, the accuracy of predictions is
seriously hampered by the difficulty to monitor natural complexity and temporally and spatially
multiscale processes. For instance, point sedimentation may depend more on external factors than local
erosion [41], accompanied by the limited availability of detailed datasets in ungauged catchments [42].
Calibration, validation and uncertainty analysis for such complex models is much more challenging
than for parsimonious models, the latter being less data demanding and more ideally applicable to
historical times when data availability and resolution are limited [43,44]. On the other hand, historical
reconstructions are lacking, and represent a challenge for hydrology, climatology and geomorphology,
for which a qualitative hazard ranking methodology is considered where an expert judgement is
made [45]. This is, in part, due to the multi-scale nature of the processes involved [46] and the
inadequacy of gauging monitoring systems in river basins [47,48]. The Amazon basin offers a long-term
hydrological monitoring record, initiated in 1903 and continuing until today [49,50]. However, both
in-situ and satellite River Sediment Discharge (RSD) data for Amazonia are available for recent decades
only [51].

Parsimonious models are particularly useful to reconstruct the interdecadal variability of landscape
responses in time over periods spanning decades in which only monthly precipitation rates are
available. The present study describes a parsimonious model for estimating historical sediment
discharge through the ARB, as driven by hydro-climatic forcing conditions. We have identified a
suite of precipitation-driven components that are effective indicators of RSD and its relationship
with hydro-climatic variations. The model was parameterized and evaluated using an independent
sediment load database, compiled from outside the area used for model calibration. In this way, we
have used the model (RSDA: River Sediment Discharge for Amazonia) to explore the linkage between
regional climate and RSD, identifying the mechanisms that influence sediment discharge, and discuss
how the RSD is likely to change in response to variations in precipitation regime associated with
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climate change. For instance, at regional and sub-regional scales, climatic factors such as precipitation
and rainstorms represent a notable kinetic energy causing erosive splash and runoff [52] as a function
of its amount and intensity, while vegetation represents an opposite force to this release of kinetic
energy at the soil surface.

2. Materials and Methods

2.1. Environmental Setting

Amazonia is a continental area ranging from about 10◦ N to 20◦ S latitude and from 50◦ W to 80◦

W longitude, with an altitudinal gradient from 0 to >6000 m a.s.l. (Figure 1a). Garstang et al. [53]
showed that some of the largest squall lines in the world occur over the Amazon region. Precipitation
distribution for this region is characterized by a large amount of rain concentrated within six months
(December–May), reflecting a typical monsoon climate (tropical climate). This region receives an
important contribution from the South Atlantic Convergence Zone, which consists in a moisture
strip extending from North to Southeastern Brazil, and adds to the influence of frontal systems and
convective activity [54]. The occurrence of rainfalls of high magnitude constitutes a primary natural
cause of erosion hazard for this part of the world (Figure 1b).
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Figure 1. (a) Amazon River Basin with the drainage network and station of Óbidos where river
sediment discharge is measured. (b) Erosivity map of South America (annual mean of the period
2002–2011), based on the Revised Universal Soil Loss Equation as arranged from Panagos et al. [9] (map
view created from a basic Environmental Systems Research Institute (ESRI) ArcGIS configuration [55]).

The largest and greatest rainfall erosivity values were found across Colombia and northwest Brazil
regions, where erosivity may exceeds 15,000–20,000 MJ mm (ha h)−1 year−1 (megajoules millimeter per
hectare per hour per year), corresponding to high rainfall erosivity potential for sediment production.
High volumes of rain can explain these values, the mean annual rainfall being greater than 3000 mm in
the Amazon Forest. Because of this pluvial regime, convective storm events are frequent throughout
the year producing high values of rainfall aggressiveness. Climatic events such as droughts and storms
are sometimes clustered into short-term groups [56,57], with some stormy years nested in dry periods.
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The implication is that recently observed rainfall changes may be an indicator of changes that occur in
hydrological processes across Amazonia. This implies that river sediment rates are sensitive to the
hydro-climatic forcing, which facilitates the application of a parsimonious framework for sediment
yield time-series prediction.

2.2. Data Sources

Eighteen years of continuous annual values of river suspended-sediment loads for the Amazonia
basin are available for the period 1997–2014. Yearly sediment data were derived from HYBAM
Program [50], which are based on a 10-day sampling at Óbidos hydrological station [58]. At Óbidos,
the Amazon watershed covers 4.8 × 106 km2 and the river mouth is located 900 km downstream
(Figure 1a). The study period shows a relatively stable river discharge. The observed sediment load
for the Magdalena River basin over the period 1972–1998 was used for an independent assessment.

For monthly climate dataset, we used the CRU-ST3 via Climate Explorer [59] to obtain monthly
values of precipitation both for the period of calibration (1997–2014) and partial reconstruction
(1901–2014). The dataset of monthly rainfall derived from National Oceanic and Atmospheric
Administration’s (NOAA) reanalysis data [60] was used to go back in time until 1851 (data from
previous years are less reliable and were not used).

2.3. Modelling Approach

Espinoza Villar [61] showed for the Amazonia basin that changes in discharge extremes are
related to the regional plurennial rainfall variability and the associated atmospheric circulation as
well as to tropical large-scale climatic indicators. Based on river suspended sediment loads from
Amazonia, the period with more erosivity was assigned from December to April [62], although large
amounts of rainfall fall each month. In this way, the RSDA model offers a suite of major monthly-based
hydro-geomorphological events that jointly contribute to the annual sediment storage at both basin
and catchment (sub-basin) scales (Figure 2) from sub-decadal time scales. Based on this understanding,
rainfall power was captured by monthly rainfall amounts and variability in different years as follows:

RSDAY=0= α·(CGE + BGE)·
(
1+
√
σP((J–D))

µP((J–D))

)−8

Y = −1
+ ∆ (1)

The model drives a number of soil loss and transport events along the river sub-basins to estimate
yearly RSD (Mg km−2 yr−1), where: Y = 0 is the current year, σ and µ are the standard deviation and
the mean of monthly precipitation (P, mm), respectively, CGE is the catchment gross erosion, and BGE
is the basin gross erosion. These last two factors are multiplied by a function of σ/µ ratio, calculated
each year on the monthly precipitation amounts in the period June–December (J–D). The higher the
ratio the more aggressive is rainfall, and vice versa, after Aronica and Ferro [63], and Diodato et al. [64].
In addition, ∆ represents the sediment amount trapped in the basin; α is a conversion factor.

CGE = prc85·
(
PJ–D

)−4

Y=−1
(2)

BGE = prc90·
(
P(J–D)

)−8

Y=−5
(3)

In Equations (1)–(3), variable subscripts and superscripts take the negative values set to bound
any time window of years (Y) antecedent to the year for which the estimate is made (Y = 0), and over
which the 85th and 90th percentiles (prc85 and prc90, respectively) of cumulative monthly precipitation
(P(J–D), mm) are calculated.

In particular, the CGE component of Equation (2) was designed to represent a simplified
catchment-scale process, where antecedent precipitation events are assumed important for the transport
of soil through the catchment. Equation (2), which uses the 85th percentile of precipitation, is intended
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to capture cumulative rainfall and the associated effects on soil erosion at sub-basin scale transport
within the precedent years (Y = −1 to Y = −4).

In Equation (3), the BGE component of the model was designed to capture the long-term memory
interaction between precipitation and basin, according to the 90th percentile at plurennial regime.
The precipitation percentiles have been successfully used elsewhere to yield relationships between
precipitation and erosivity factor [65], and between precipitation and soil erosion [66].

In the conceptual 2-D scheme (Figure 2), the role played by mesoscale rainstorms (extending
over contiguous areas) in initiating sediment transport is accounted for the basin scale (BGE, Basin
Gross Erosion). This scheme also assumes the importance of local precipitation events for driving
surface and sub-surface flows, and soil losses within the individual catchments ad the web of streams
(CGE, Catchment Gross Erosion) that comprise the basin. Thus, storm events are grouped based on
their scale and then hierarchized according to communication delays between each component of
the spatio-temporal hydrological integration. This dynamic is in agreement with the large variability
in amplitude and temporal dynamics from one year to another, which is linked to the interannual
variation of climatic controls (after [67]).
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Figure 2. Perspective view of a nested scheme of hydrological processes modelling for Amazonia
drainage basin (arranged from OpenStreet Map [68]). BGE, Basin Gross Erosion; CGE, Catchment
Gross Erosion.

2.4. Model Assumptions

Following Callède et al. [69] and Espinoza Villar et al. [70], the RSDA model takes into account
both long- and short-term rainfall variability that leads to a better understanding of soil movement by
the storm and transport to the main stream of the Amazonia River, particularly with respect to extreme
storms that occur in remote areas of the basin. A third component (inter-monthly variability) also
appears to be significant when we consider a function of the inter-monthly coefficient of variation,
computed as (1 +

√
σ/µ), based on a concept translated by Aronica and Ferro [63]. This would reflect

the erosion activity associated with changes in storm-drought cycles at intra-decadal scale (from Y =

−1 to Y = −8).
The CGE factor operates in any catchment of the basin as soil detachment from raindrop splash

erosive forces, driven by seasonal rain showers. At the annual scale, the fluvial transportation process
cannot always take the necessary pathways or links to convey the sediment to the outlet of basin. In
this way, the plurennial rainfall accounted for in the RSDA model acts to redistribute sediment across
the drainage basins (Equation (2)). Afterward, the percentile of the antecedent rainfall within Y =

−5 to Y = −8, as in Equation (3), includes the streamflow and water level long-memory processes
associated with the massive storage capacity of the Amazon basin [67]. The last component of the
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model (∆, Mg year−1) in Equation (1) is a sink term. It represents the amount of sediment involved in
the re-sedimentation process, which is a fraction of the gross erosion (GE, Mg year−1).

Based on Diodato and Grauso [71], the term ∆ can be expressed as:

|∆| = (1 − SDR) × GE (4)

where SDR (sediment delivery ratio) is the ratio of sediment yield at the catchment outlet to the total
(gross) erosion in the catchment. The concept is an analogue to the connectivity ratio (the amount
of sediment reaching a stream over the amount of sediment eroded), which refers to slope-channel
transfers (e.g., [72]).

2.5. Model Calibration

For the time series of available annual River Sediment Discharge (RSD) data, a recursive procedure
was performed to obtain the best fit of a regression equation y = a + b·x, where y = observed RSD and
x = predicted RSD data, according to the following criteria:

MAE = min
R2 = max
|b− 1| = min

(5)

The first condition is to minimize the distance between modelled and observed data, by minimizing
the mean absolute error (0 ≤MAE < ∞, Mg year−1, [73]). The second condition is to maximize the
goodness-of-fit (0 ≤ R2

≤ 1) that is the variance explained by the model (also supported by an ANOVA
test of the relationship between observed and predicted data). The third condition approximates the
unit slope (b) of the straight line that would minimize the bias of the linear function estimates versus
observations. Poor models have high MAE, low R2 and b far from unity. The calibration work was
performed through a trial-and-error process comparing the model predictions with observational data.
We iteratively added in predictors, one-at-a-time until modelling solutions with small mean absolute
error and large R2 value were obtained. Then, for the final selection, the third criterion—|b−1| =

min—was additionally involved. Each predictor was repositioned over >50 iterations until convergence
was achieved. The analysis of variance (ANOVA) was subsequently applied to find out if all predictors
were necessary (and not redundant) for the modelling purpose. The Durbin-Watson statistic [74] was
also performed to test for autocorrelated residuals because strong temporal dependence may induce
spurious correlations [75]. Spreadsheet-based statistical analyses were performed with the graphical
support of STATGRAPHICS [76] and WESSA routines [77].

3. Results and Discussion

3.1. Model Parameterization and Evaluation

Equation (1) was parameterized with α = 0.469, ∆ =−132.660 Mg km−2 year−1. At the same time,
we derived the parameters of Equation (2) with the percentile equal to 85 and the time window equal to
four years, and that of Equation (3) with the percentile equal to 90. The solutions obtained constitute a
satisfactory performance for the output variable according to the criteria of Equation (5). Since one-way
ANOVA computed a p-value < 0.05, there is a statistically significant relationship between observed
and predicted RSD. The R2 statistic indicates that the fitted model explains 70% of the variability in y
(Figure 3a).
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Figure 3. Performance of the RSD model for the Amazonia River basin (Equation (1)) in the period
1997–2014. (a) Scatterplot of observed and predicted river sediment discharge (Mg km−2 year−1),
with their respective 1:1 line, the inner bounds showing 90% confidence limits for the mean y of
many observations at given values of x, and the outer bounds showing 95% prediction limits for new
observations. (b) Histogram of residuals. (c) Coevolution of RSDA model estimates (blue curve) and
observed sediment load (brown histogram) for the validation stage at the Magdalena River basin
(Colombia, from Walling [78]), both expressed in Mg km−2 year−1.

The standard deviation of the residuals was equal to 7.4 Mg km−2 year−1. The mean absolute
error (MAE) of the parametrized model was 5.8 Mg km−2 year−1, compared with an annual mean
value of 131±13 Mg km−2 year−1 over the study period (1997–2014). Except for two records that are
aligned over the 90% prediction limits, negligible differences of the data-points from the theoretical 1:1
line are observed (Figure 3a).

The quasi-Gaussian pattern of model residuals (Figure 3b) indicates that these data are bias-free.
The Durbin–Watson (DW) statistic (1.83671) provided no indication of serial autocorrelation in the
residuals (p = 0.2736).

The Figure 3c presents an independent validation of the RSDA model, obtained by comparing the
predicted sediment discharge with the observed sediment load for the Magdalena River basin over the
period 1972–1998. Except for the absolute values of sediment, which are logically different because the
model needs to be recalibrated for Magdalena River, the relative coevolution is satisfactory (both blue
curve and brown bars in Figure 3c follow the same trend). In fact, the correlation coefficient equals
0.52, indicating a moderately strong relationship between the variables. The ANOVA p-value is less
than 0.05, and the Durbin–Watson statistic is equal to 1.94596 (p-value = 0.3997).

To further evaluate the RSDA model based on hierarchic monthly rainfall data, we compared
its performance with three well-known approaches developed for sediment rate (SR) estimation that
use water discharge (WS), SRWD(Y) [79], the Fournier Index (FI), SRFI(Y) [30], and precipitation
characteristics (SAR: soil antecedent rainfall), SRSAR(Y) [80], as main explanatory drivers of basin-wide
sediment yield:

SRWD(Y) = a × WDb (6)

SRFI(Y) = aFI ×
p2

P
+ bFI (7)

SRSAR(Y) = aSAR ×

−3∑
i= −1

Pi + bSAR (8)

where WD is the annual water discharge (m3 s−1), P is the total precipitation (mm) of the year Y, p is
the maximum monthly precipitation (mm) in each year Y, a (scale coefficient) and b (shift coefficient
estimating sediment rate when the precipitation input is equal to zero in Equations (7) and (8)) are
empirical parameters used for model calibration in the Amazonian basin.

The comparison to the prediction equations of water discharge, Fournier Index and antecedent
rainfall-based models, revealed that RSDA performed better, as the residuals of each alternative model
were larger and the explained variability considerably lower than with RSDA (Figure 4). The mean



Atmosphere 2020, 11, 208 8 of 15

absolute errors were 2.10 Mg km−2 year−1 for RSDA, and 10.37, 10.62 and 9.27 Mg km−2 year−1 for water
discharge, Fournier index and antecedent rainfall-based models, respectively. The better performance
of RSDA model compared to the water discharge-based model of Equation (5) is important because the
latter is frequently used for basin-wide estimates of sediment yield (e.g., [81]) but its use in scenario
studies is often hindered by the unavailability of long-term water discharge data [82,83].
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confidence limits for the mean y of many observations at given values of x, and the outer bounds
showing 95% prediction limits for new observations.

3.2. Discussion on the RSDA Model

An increase in sediment discharge occurred in the Amazon basin may be attributed to stronger
erosion processes caused by either a regional change (rainfall) or changes in land cover (e.g., resulting
from deforestation) or both. Borrelli et al. [10] estimated a notable increase of soil erosion in the study
area due to deforestation and increased conversion to agricultural land. Callède et al. [49] observed
a rather stable river discharge at Óbidos in the period 1997–2007. This indicates that hydrological
discharge cannot be a suitable proxy for estimating the RSD, since river sediment seems to increase
in the same period. Stronger rainfall variability upstream may support a more efficient production
and transport of sediments downstream. Thus, a change in rainfall pattern may account for sediment
discharge variations [51].

In this respect, the interacting factors σ, µ, CGE, BGE and ∆ in Equation (1) involved in the
temporal response of RSD, reflect the magnitude and frequency of events nested within longer-term
patterns of climate change at different timescales [84]. In particular, given the occurrence of multiple
processes, the long-term constant ∆ cannot be easily calculated. The ∆ value estimated for the ARB
with Equation (1), −132.660 Mg km−2 year−1, is intermediate in the range of estimates (−44 to −235 Mg
km−2 year−1), reported in previous studies [85–87], which is typical for moderate to high elevation
ranges and slope gradients. The ARB has widely varying climatic and topographic features, with
precipitations patterns ranging from about 1500 (in the lower basin near the outlet) to 6000 mm year−1

(in the south-western part of the basin near the Andes), and elevations ranging from sea level (the
river’s mouth) to ~6500 m a.s.l. in the Andes [88]. However, only the extreme western part has steep
gradients. Crossing the low interior basin of Brazil, the Amazon River flows along gentle gradients of
about 5–20 cm per km [89]. The estimated average gross erosion for the simulated period is about 245
Mg km−2 year−1, which gives sediment delivery ratio (Equation (4)) equal to 0.46, indicating that high
amounts of soil are mobilized by erosion (gross erosion) but a relatively high fraction is retained in the
basin area. This result matches the lookup values given by Pelletier [46] for the Amazonian region.
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3.3. River Sediment Discharge Historical Reconstruction

We applied the RSDA model to reconstruct the sediment discharge from 1859 to 2014. In this
time span, the mean value of sediment discharge is 113 ± 11 Mg km−2 year−1. The overall trend of
the long-term reconstructed hydro-climatic forcing for sediment discharge series is increasing within
sudden shifts, featured by decadal-to-multidecadal patterns of variability (Figure 5a).
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Figure 5. (a) Reconstructed river sediment discharge rate (orange curve) in the Amazonia River basin
over 1858–2014 by means of the RSDA model (Equation (1); Table S1) with over-imposed mean values
(orange dotted lines) before and after the first change point of series in 1931 (bold red vertical line)
as found by cumulative deviation-Buishand test, and the annual evolution of Niño-4 (grey curve,
from [90] with its smoothed long-term trend (black curve). (b) the rainfall rate change occurred during
the wet season (1979–2015) across Southern America as derived from CRU dataset (arranged from [91]).

In particular, the break point that occurred around 1931 (bold grey vertical line in Figure 3a),
implies a discharge increase after that date. Until 1931, the average sediment discharge was about 105
± 5 Mg km−2 year−1, followed by an increase between 1932 and 2014, with a mean value around 120 ±
10 Mg km−2 year−1. The last decade also reveals a stronger inter-annual variability in the sediment
rate as compared to previous decades, with outliers in 2010 (144 Mg km−2 year−1), 2012 (146 Mg km−2

year−1) and 2013 (143 Mg km−2 year−1).
The change point in 1931 corresponds to the beginning of the increasing phase of the Niño-4

index (black curve), which is related to the variability of sea surface temperatures occurring in the
central region of the Southern Pacific Ocean [92]. A change in circulation as part of a tropical-wide
climate reorganization was observed during recent decades, most likely triggered by rapid tropical
Atlantic warming [93]. A physical link may exist between the overturning Walker circulation [94]
connecting the tropical ocean basins and having an ascending branch right over Amazonia, and
intensified deep convection and flooding in the region [37]. During the positive phase of ENSO (El
Niño years) in the central equatorial Pacific, in particular, above-normal precipitation can be observed
over the Amazonia in autumn, winter and spring [95], resulting in significantly higher water erosion
rates and an undesirable lengthening of the sedimentation period [96]. This is in agreement with the
results reported by Aalto et al. [97], who found transient processes driven by the ENSO cycle to control
and modulate downstream delivery of sediments to the Amazonian food-plains. With ENSO, also
the Atlantic Multidecadal Oscillation (AMO) affects the decadal and multi-decadal fluctuations of
precipitation in the Amazon basin [98]. This in turn affects the sediment mobilization associated with
erosive rainfall events. In particular, Mello et al. [99] found a correlation between erosive events in
Brazil and sea surface temperature of the Equatorial Pacific region (El Niño-3.4). This means that in
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years with significant ENSO events, rainfall regime tends to increase in this region, which implies
increased rainfall erosivity and, so, sediment rates.

Accordingly, Figure 5b shows the positive change in amount rate of the precipitation during the
six different months (DJFMAM) from 1979–2015 on most of the Amazon basin, and with spatial range
from 30 to 100 mm per season [91]. Marengo and Espinoza Villar [36] also found that hydrological
data show trends towards more extreme events across the Amazonia region during the 20th century.

However, it is remarked as during these recent decades a significant positive trend in river
discharge was not observed (e.g., [100]). This agrees with the mechanism proposed by Cohen et
al. [101], who found that regions with high reliefs and soft lithology amplify the effect of higher than
average precipitation by producing an increase in sediment yield that greatly exceeds increases in
water discharge. These results are also in agreement with the increased sediment found by Martinez
et al. [51]. In addition, the changes in precipitation and discharge associated with the Amazonian
deforestation demonstrate a potential for significant vegetation shifts and further feedbacks to climate
and discharge [102].

4. Conclusions

This paper documents recent progresses in the study and understanding of extreme seasonal
events in the Amazon region, focusing on the effects of pulsed floods on soil erosion. In fact, fluvial
responses may be dominated by the climatic shift in such circumstances, and climate change may also
induce land-use changes, by making for instance agriculture either possible or impossible. This is why
an explicit separation of the effects of climate and land-use changes on river sediments is complicated.
Change in land use likely plays more important roles at the centennial time-scale while climate change
may have had a strong impact and exerted important feedbacks on erosional processes and sediment
transport in the last decades [103]. When only rainfall data are available on monthly basis, the use
of models based on percentiles of the monthly precipitation distribution is desirable for long-term
reconstructions [104]. The newly developed parsimonious model RSDA provides satisfactory estimates
of sediment discharge as the only function of hierarchic antecedent rainfall data for the Amazon basin.
It invokes a combination of monthly-based precipitation factors associated with rainfall amount and
variability to explain the sustained sediment rates of the Amazon basin in the recent decades. Our
model better estimates sediment discharge, as generated by hydrological and climatic forcing, than
other competing parsimonious models of large use worldwide (e.g., [105,106]). Without the claim of
providing information about the hydrology of the region, this study demonstrates the importance of
the antecedent rainfall distribution and memory precipitation-runoff interaction for the prediction
of the hydrological forcing of basin-wide sediment discharge. This suggests several hydrological
implications, which must be taken into account when, for instance, the consequences of hydropower
dams, mining, plantation expansion, and deforestation are monitored. Though lack of long-term
records of sediment yields has hampered a complete evaluation of the RSDA model, the rationale
of the model is that erosive events are reflected by year timespan memory of precipitation events
and their antecedent monthly variability. We add that the seasonal windows and percentile values,
over which erosion processes dominate and are relevant for sediment export rates, remain critical
and may require review in the future (as the sample data size increases) to ensure the reliability
of RSDA estimates at sites where detailed pluviometric series are missing. Then, our approach
does not distinguish between channel and floodplain erosion, which would require a mechanistic
approach. Even with these limitations, our results provide useful insights. First, they demonstrate
the appropriateness of a semi-empirical (parsimonious) hydro-climatic model as a way to represent
long-term erosive dynamics in an environmentally sensitive target area such as the Amazon basin.
Second, they suggest that extreme hydrological events have been more frequent in the last decades
in the study area. Third, the methodology used (which links variations in sediment discharge to
changes in ocean circulation) generates climatologically interpretable sediment series. In fact, our
results are consistent with changes in the variability of the hydrometeorology of the basin and add
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to a complementary body of literature that elucidates the mechanisms by which large-scale (ocean)
phenomena drive soil erosion in Amazonia. In particular, some recent intense rainfalls and subsequent
floods were associated (though not exclusively) with El Niño events occurring in the central equatorial
Pacific Ocean. The latter point is promising for novel studies aimed to enhance research capabilities on
hydrologic modelling and forecasting in the Amazon basin.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/2/208/s1,
Table S1: Precipitation and Niño-4 index data, and RSDA model estimates.
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