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Abstract: An accurate assessment of pollutants’ exposure and precise evaluation of the clinical
outcomes pose two major challenges to the contemporary environmental health research. The common
methods for exposure assessment are based on residential addresses and are prone to many biases.
Pollution levels are defined based on monitoring stations that are sparsely distributed and frequently
distanced far from residential addresses. In addition, the degree of an association between outdoor
and indoor air pollution levels is not fully elucidated, making the exposure assessment all the more
inaccurate. Clinical outcomes’ assessment, on the other hand, mostly relies on the access to medical
records from hospital admissions and outpatients’ visits in clinics. This method differentiates by
health care seeking behavior and is therefore, problematic in evaluation of an onset, duration, and
severity of an outcome. In the current paper, we review a number of novel solutions aimed to
mitigate the aforementioned biases. First, a hybrid satellite-based modeling approach provides daily
continuous spatiotemporal estimations with improved spatial resolution of 1 × 1 km2 and 200 ×
200 m2 grid, and thus allows a more accurate exposure assessment. Utilizing low-cost air pollution
sensors allowing a direct measurement of indoor air pollution levels can further validate these models.
Furthermore, the real temporal-spatial activity can be assessed by GPS tracking devices within the
individuals’ smartphones. A widespread use of smart devices can help with obtaining objective
measurements of some of the clinical outcomes such as vital signs and glucose levels. Finally, human
biomonitoring can be efficiently done at a population level, providing accurate estimates of in-vivo
absorbed pollutants and allowing for the evaluation of body responses, by biomarkers examination.
We suggest that the adoption of these novel methods will change the research paradigm heavily
relying on ecological methodology and support development of the new clinical practices preventing
adverse environmental effects on human health.

Keywords: exposure assessment; clinical outcome assessment; air pollution; hybrid satellite-based
models; real temporal–spatial activity; low-volume air pollution sensors; human biomonitoring

1. Introduction

There is number of ways in which an air pollution may affect the biosphere, and human health in
particular. Pollution is associated with the damaging of food and water supplies while reducing crops
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yields, damaging wildlife habitats by accelerating arctic warming, triggering climate changes, increasing
energy consumption, elevating morbidity burden and millions of premature deaths. According to
a global burden of disease report (GBD, 2016), air pollution was ranked as the fifth leading risk factor
to disability-adjusted life-years (DALY) and responsible for 7.5% of mortality cases in the world [1].

Research programs investigating the association between air pollution and human health normally
encounter two major challenges of exposure assessment and health outcomes evaluation. Methods
currently in use for exposure assess have several inherent problems, affecting the way clinical studies
evaluate environmental impacts. The following are the common barriers for accurate estimates of the
exposure burden (Figure 1): (1) Low spatiotemporal resolution relying on sparse monitoring stations
might lead to misclassification bias for patients residing distantly from the monitoring sites [2,3];
(2) lack of the assessment of the indoor air quality [4,5], as most of the models dismiss the difference
between the indoor/outdoor pollution and essentially use the outdoor air pollution as a proxy for
overall exposure [6,7]; (3) static spatio-temporal approach to the exposure assessment based mostly
on residential address and without taking into consideration individuals’ mobility throughout the
day [8–11].
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Figure 1. Exposure assessment challenges and their novel solutions.

Health outcomes are frequently based on medical records which poses a number of challenges
(Figure 2). (1) The use of electronic medical records that might provide inaccurate data and frequently
lack information on the onset and the duration of events [12–14]; (2) Seeking medical attention is
frequently influenced by patients’ self-perception regardless of their clinical state [15–17]. Subclinical
events, i.e., events without clinical symptoms presentation, are not routinely recorded while can be
clinically important [18–26]; (3) The need to obtain human tissue samples for measuring of biological
indicators that can reveal a plausible biological mechanism is limited due to a small sample size
prospective studies plagued by high costs [27–31].

Atmosphere 2019, 10, x FOR PEER REVIEW  3 of 18 

 

 

Figure 2. Outcome assessment challenges and their novel solutions. 

2. Exposure Assessment 

Accurate exposure assessment is essential for studying the association between health outcomes 

and air pollutants. Relying on air pollution measurements from ground-based monitors for health 

exposure assessment introduces exposure misclassification due to the limited spread of monitors 

over space and time. The monitors are usually located in urban areas where the spatial and temporal 

variability in air pollution is high due to variations in human activity [32,33]. These limitations led to 

the development of various modeling approaches which aim to provide spatiotemporally resolved 

estimations of different air pollutants and allow improved exposure assessment.  

Air pollution exposure models can be divided to the following main classes [6,7,34], each 

characterized by certain merits and limitations:  

(1) Proximity-based assessments that are based on the distance between patients ' locations or 

their residential address and a certain emission source (e.g., distance to roads [35]), or on the mean of 

the monitors within a city [3], or simply from the closest monitor [36,37]. The strength of this 

approach is mainly its simplicity that does not require special expertise; however, its shortcoming is 

the difficulty to accurately assess the inter-urban variations;  

(2) Statistical interpolation that provides estimations using geostatistical techniques (e.g., kriging 

[38], inverse distance weighting [39]) of air pollutants based on the measurements taken in a network 

of monitors. This approach might be too simplistic for urban areas that are characterized by high 

spatial variability of air pollutants derived by local sources . This limitation might be resolved by 

relying on more advanced geostatistical methods such as universal kriging that combines measured 

pollutants observations with modelled data [40];  

(3) Land use regression models that provide air pollution estimations by calibrating the model 

using measurements from sparse air quality monitors. Multiple predictors (e.g., land use data, 

altitude, meteorology, traffic, and roads data) are used in a stochastic model that is applied to 

unsampled locations [41] in order to provide spatially continuous estimations. Although these 

models provide spatially resolved predictions, the land-use terms do not vary temporally, thus 

estimations from such models are relevant mainly for studying association with long term health 

outcomes [42];  

(4) Chemical transport models (CTMs) that simulate dynamics of atmospheric pollutants by 

combining meteorological and chemical modules. Calculations from such models have shown good 

agreement with observations in some regions [43,44], however their development is usually 

computationally intensive, demands detailed input data, and requires expertise in meteorology and 

climatology to run such models [6]; and  

 

Figure 2. Outcome assessment challenges and their novel solutions.



Atmosphere 2020, 11, 122 3 of 18

We aimed to review the challenges of both exposure and clinical outcomes assessment, and present
novel approaches to face these challenges.

2. Exposure Assessment

Accurate exposure assessment is essential for studying the association between health outcomes
and air pollutants. Relying on air pollution measurements from ground-based monitors for health
exposure assessment introduces exposure misclassification due to the limited spread of monitors over
space and time. The monitors are usually located in urban areas where the spatial and temporal
variability in air pollution is high due to variations in human activity [32,33]. These limitations led to
the development of various modeling approaches which aim to provide spatiotemporally resolved
estimations of different air pollutants and allow improved exposure assessment.

Air pollution exposure models can be divided to the following main classes [6,7,34], each
characterized by certain merits and limitations:

(1) Proximity-based assessments that are based on the distance between patients’ locations or
their residential address and a certain emission source (e.g., distance to roads [35]), or on the mean of
the monitors within a city [3], or simply from the closest monitor [36,37]. The strength of this approach
is mainly its simplicity that does not require special expertise; however, its shortcoming is the difficulty
to accurately assess the inter-urban variations;

(2) Statistical interpolation that provides estimations using geostatistical techniques (e.g.,
kriging [38], inverse distance weighting [39]) of air pollutants based on the measurements taken
in a network of monitors. This approach might be too simplistic for urban areas that are characterized
by high spatial variability of air pollutants derived by local sources. This limitation might be resolved
by relying on more advanced geostatistical methods such as universal kriging that combines measured
pollutants observations with modelled data [40];

(3) Land use regression models that provide air pollution estimations by calibrating the model
using measurements from sparse air quality monitors. Multiple predictors (e.g., land use data, altitude,
meteorology, traffic, and roads data) are used in a stochastic model that is applied to unsampled
locations [41] in order to provide spatially continuous estimations. Although these models provide
spatially resolved predictions, the land-use terms do not vary temporally, thus estimations from such
models are relevant mainly for studying association with long term health outcomes [42];

(4) Chemical transport models (CTMs) that simulate dynamics of atmospheric pollutants by
combining meteorological and chemical modules. Calculations from such models have shown
good agreement with observations in some regions [43,44], however their development is usually
computationally intensive, demands detailed input data, and requires expertise in meteorology and
climatology to run such models [6]; and

(5) Hybrid models which provide spatiotemporally continuous air pollutants estimates using
elements of land use regression that account for the local effect of spatial predictors [34] (e.g., land
use data, proximity to roads and emission sources, roads and population density) alongside the
effect of various temporal variables such as: meteorology, green space and measures of pollutants
from satellite-based remote sensing, and pollutants estimates from CTMs. These models implement
different statistical approaches to account for the relationship between pollutants measurements from
ground-based devices (monitors or sensors) and various predictors. Both parametric and nonparametric
statistical approaches have been used to model this relationship, allowing extending the estimates of
air pollutants beyond the limited spread of measurements over space and time.

The models above relate to outdoor pollution exposure assessment methods, however, most of the
population spends the majority of their times indoors [45]. Outdoor levels contribution to indoor levels
depends on pollutants particles size, ventilation and buildings structures [46], yet indoor activities
dominant the indoor pollutants levels [47,48]. This makes understanding the influence of indoor air
pollution sources on human health crucial, but quantifying the influence of each source is challenging
since information on indoor pollution levels is constructed of various possible sources such as ambient
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particles penetration to homes and generated indoors particles due to raising pets, air conditioning or
heating systems, smoking, cooking, candles, or wood burning and other combustion processes [49,50].
Despite numerous attempts to establish an association function between indoor and outdoor pollution,
the levels of the indoor pollution (although arguably more important to the human health) are difficult
to ascertain. Our group has attempted to develop such function [51], but the overall accuracy of the
approach remains questionable.

2.1. Remote Sensing

The integration of satellite-based remote sensing data in air pollution hybrid models became
widely used over the last decade, specifically for particulate matter (PM10 and PM2.5) [7,34], and
Nitrogen Dioxide (NO2) [7] assessment. Aerosol optical depth (AOD) is an example of satellite-based
products available from the moderate resolution imaging spectroradiometer (MODIS) onboard the
Terra and Aqua satellites. It is a measure of the extinction of the solar beam by aerosol particles
in the vertical column of atmosphere over a given location and is therefore useful to estimate PM
concentrations. Remote sensing data has been also used to provide a product of the total NO2 in
the tropospheric column measured by the ozone-monitoring instrument (OMI) on board of the Aura
satellite. The strength of remote sensing products is that they constitute real physical measurements
of specific air pollutants within the atmospheric column. The availability of satellite-based products
from multiple satellite platforms for a sequence of several years made them useful as inputs in air
pollution models that aimed to provide spatiotemporally resolved estimations allowing for exploring
associations with both short and long-term health effects. Yet, the known challenge is to integrate
these products in models that aim to estimate air pollution at breathing level since they provide
measurements for the entire atmospheric column between ground level and the satellite. Various
statistical approaches were used to incorporate satellite-based products in ground level air pollution
hybrid models. One example is the hybrid mixed effects approach that was used to model the relations
between ground level measured air pollutants, satellite-based products, and various spatiotemporal
predictors. This approach assumes that the relations between ground level air pollution measurements
and the satellite-based observations might change on a daily level, and in some cases also by region,
therefore the model allows the regression intercepts and slopes of the satellite observations to vary daily
and spatially. Using spatially and temporally resolved satellite-based products as a predictor allows
extending the air pollution estimates to locations and time points where ground level measurements
are absent. This modelling approach was used in different regions, including Europe [52,53], United
States (US) [54–57], China [58], Mexico city [59], and Israel [60,61] to estimate daily PM10 and PM2.5

concentrations in spatial resolution of 1 × 1 km2 and showed good performance with cross validated
(cv) total R2 ranging between 0.70–0.92, depending on the area and the specific methodology that
was applied. Similar approach was used to estimate daily NO2 concentrations in the US [62], Hong
Kong [63], and Switzerland [64] with cv R2 of 0.79, 0.84, and 0.58, respectively.

Ensemble modelling is another common statistical approach [64–67], that incorporates predictions
from multiple base learners, which allows combining their predictive power and creating a final model
that outperforms each base learner. A recent model developed for the contiguous US used generalized
additive model that accounted for geographic difference to combine PM2.5 estimates from neural
network, random forest, and gradient boosting. This model showed good performance with cv R2

of 0.86 for daily PM2.5 predictions [65]. Similar ensemble modelling approach was used over Italy
to estimate PM10 and PM2.5 concentrations using estimations from various models (mixed effects
model, random forests, extreme gradient boosting and chemical transport model) showing improved
model performance in comparison to the individual input models [68]. Random forest (RF) were
successfully used to estimate PM10 and PM2.5 concentrations over Italy [67], showing promising results
that outperformed previous model that was based on the mixed effects modelling approach [52].

These recent satellite-based hybrid models carried out a preliminary step of filling in using machine
learning methods [52,65,67,68]. These models used simulated AOD\NO2 data from chemical transport
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models (e.g., GEOS-Chem, Community Multiscale Air Quality (CMAQ)) or from the Copernicus
Atmosphere Monitoring Service (CAMS) Reanalysis alongside additional predictors such as land-use
types, and meteorological variables, day of the year and geographical coordinates.

Some limitations and future research directions should be considered for satellite-based hybrid
models. The above mentioned studies estimate daily mean (24 hour) air pollutants level using
measurements taken in a spcefic time of day by sattelites with sun-syncronuch orbit. Integration of
sattelite-based products from geostationary satellites that provide frequent daytime measurements
might be benefical as frequent measurements can be combined and constitute a better predictor of
daily (24 hour) mean air pollutants. Future research might also benefit from including satellite-based
products with improved spatial and temporal resolution from the new generation of satellites (e.g.,
the MAIA instrument of NASA and the Sentinel-5 mission of ESA) and possibly provide additional
information about the chemical composition of particles. The challenge of modelling air pollution
at the ground level might be further addressed by studying the relations between ground-based
measurement and products from satellites that provide information about the vertical profile of the
atmospheric column. Another direction that should be taken into account in future studies is the
integration of measurements from low cost air monitors that will increase their spread to rural areas or
provide better spread of measurements whithin urban areas.

2.2. Low Cost Air Pollution Sensors

Several common methods for measurements of particulate matter are used for quantitative and
modeling research. The gravimetric principle describes a quantitative determination of an analysis based
on the mass of a solid (1405 TEOM Continuous Ambient Air Monitor). Such certified high-precision
devices are typically large, stationary and expensive and therefore very sparsely deployed. Typically,
only a few stations will cover large urban areas [69]. More fine-grained measurements are important,
since exposure levels have been observed to vary even in close proximity during dust storm events.
Despite the relatively nearby measurements of dust-PM by portable industrial instruments (such as
the portable TSI DustTrak Aerosol Monitor) [70], the accuracy of the assessment for dust atmospheric
distribution remains questionable.

The high cost of industrial, certified gravimetric instruments makes their use non-ideal for
researches major, extensive research program. Previous studies considered the possibility of
using commercial off-the-shelf (COTS) sensors for a more plausible economic solution, giving high
temporal resolution along with a wider spatial one [71–75]. Low-cost sensors (typically mini-lasers,
electrochemical sensors and metal oxide (MOx) sensors, but also passive samplers) are becoming
common in air pollution assessments, although some of the sensors available on the market are
delivering highly questionable results. Many of these have detection levels at PPM concentrations far
beyond what is found even at pollutant hot spots, which is relevant for many high-risk environments.

Khadem et al, suggested a measurement method, utilizing a node system of spatially distributed
smart COTS sensors [76]. Along with a connection to a wireless network at sink nodes, such a system
has the potential to increase spatial resolution significantly with limited effects on temporal resolution.

Urban measurements have also shown great promise, when the Indian government sanctioned
various experiments to monitor and reduce air pollution levels in major cities (Delhi and Mumbai),
including one conducted with COTS sensors [77]. The testing, which was conducted for over a week
at the end of December, showed the high temporal resolution that could be gained, while additional
factors were able to be taken into consideration: from junctions with slower traffic movement which
caused a spike in PM counts, up to 45,000 particles per 0.01 cubic feet (PPCF) compared to the average
20,000 PPCF count, to an empirical decrease a simple face mask could provide in inhalation of said
dust (from an average of 9000 PPCF in polluted areas, a decrease of over 50% to less than 4000 PPCF).
The comprehensive report has also shown the association between climatological factors to changing
air pollution levels, where pollution levels increased by over 400% with rising humidity levels, while
temperature levels show an inverse correlation to dust levels.
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A similar attempt was made when a participatory urban sensing framework for PM2.5 monitoring
with more than 2500 devices (predominantly Plantower G3) was deployed in Taiwan and 29 other
countries [78]. Based on two case studies, rising dust levels were seen based on local predictions
(holidays, traffic etc.) and were confirmed through mechanisms that assess the data quality based on
historical data and nearby devices correlation. GIS (Geographic Information Systems) software was
incorporated to spatially present all relevant data for participating cities.

A prototype called HOPES (Hone Pollution Embedded System) was created based on new indices
for the indoor air quality (IAQ) criterions [79]. Under the slogan “A cheap and third-age-friendly
home device for monitoring indoor air quality” the new approach based on PM and specific gases
sensors is beginning to emerge. Furthermore, a recent study took personal measurements a step further,
by creating a WSN (wide sensor network) that is capable of sensing different environmental factors:
PM2.5, temperature, relative humidity, air pressure and UV radiation [80]. These readings can play
a significant role in personal health monitoring and protection. Through the web user interface, each
user can assess her ambient environment. Personalized alarms can also be set to notify users to take
timely protections when PM2.5 value is above the recommended value.

Exposure assessment based on the mobile phone devices is an another promising direction
Outdoor mobile measurements with COTS are still in the works, but more professional instruments
have already been used on different platforms (i.e., car, van, pedestrian, bicycle, tram, airship) for
mobile monitoring of the various properties of PM. In particular, mobile air quality monitoring is
mainly carried out through motor vehicles that can be equipped with voluminous and moderately
heavy instruments [81–85]. This poses another issue in data reliability due to pollution caused by said
vehicles. To alleviate the disturbances caused by motorized vehicles, Hankey et al. used a bicycle-based
system to develop different LUR models for particulate concentrations [86]. A similar attempt was
made by Thai et al, who used an instrumented bicycle to elucidate particulate matter exposures over
a 14 day period [87].

2.3. Real Time Location Activity and the Use of Smart Devices

Human activities throughout the day determine the burden of individual air pollution exposure.
The great variability in human activities, together with their time spent indoors, at work or in traffic,
makes the accurate determination of their exposure to air pollution extremely difficult [8,9,88,89]. New
methods for ambient air pollution exposure assessment in epidemiological studies were developed
in recent years, but they are still predominantly based on the static temporo-spatial approach. Thus,
the most prevalent method to estimate personal exposure is based on residential addresses [7]. This
method is prone to bias due to a person’s mobility throughout the day that may result in variability in
exposure and thus lead to an inaccurate estimation when only home address-based concentrations are
taken into account [10,11].

A study conducted in the United States (US) examined the association between residential mobility
during pregnancy and possible exposure misclassifications in birth defect studies [90]. The study
showed that maternal residential mobility patterns during pregnancy were associated with various
socio-demographic characteristics. Their results suggest that birth defects studies that use maternal
residential addresses may be subjected to non-differential exposure misclassification. Another study
carried out in the US examined the effect of residential mobility of children on estimates of traffic-related
air pollution (TRAP), satellite estimated greenspace and socioeconomic characteristics [91]. Estimations
based on birth and last known addresses compared to annual address history revealed a significant
exposure misclassification. Similarly, disregarding the type of individual daily activity may result
in exposure misclassifications. Staying in indoor workplaces, industrial or recreation centers, and
driving or spending time in traffic while exposed to TRAP causes the variability in exposure to air
pollution [92].

These limitations demonstrate that valid and updated information on the temporal-spatial
distribution correlated with the timing and the levels of exposure to air-pollution by real time location,



Atmosphere 2020, 11, 122 7 of 18

is crucial for the estimation of environmental pollution exposure. So far, the proposed solutions for
achieving this level of accuracy were either too expensive or labor intensive.

One of the modern necessities of almost every human today is an ownership of a smart phone.
Almost every citizen in developed countries carries a smartphone to help in navigating, communicating,
acquiring knowledge and improving the quality of life [93]. According to Ericsson Mobility Report,
in 2016 there were 3.8 billion global smartphone users with estimated growing numbers of up to
6.8 billion users by 2022 [94]. The growing number of smartphones can lead to the development of
computerized methods to assess individuals’ exposure to air pollution with more precise temporal-spatial
resolution [95]. GPS information can also determine the velocity of individuals which can detect whether
an individual is in traffic, located at work or sleeps at home, and by that, differentiate their exposure
while in different activities. Real-time location tracking using smartphones enables analysis of human
behavior and activities, minimizes uncertainties due to human mobility during exposure assessment.

Studies carried out in both Belgium and the US examined the exposure to NO2 [96] and PM2.5 [97]
pollutants concentrations using a dynamic approach based on mobile devices and cellular networks to
solve the spatial distribution and compared the results to the traditional static residential addresses
evaluation method revealed significant differences between two approaches in the exposure quantitation.
Another study conducted in the US on a large population scale, demonstrated that measurements of
exposure to PM2.5 pollution based on data location derived from mobile devices, compared to data
based on residence-only, results in more precise estimates of the particular matter [98].

Time activity patterns assessed by GPS tracking also serves as a tool for advanced personal
spatiotemporal exposure assessment models [99]. GPS based individual exposure assessment models
evolved from extracting spatiotemporal raw data from daily land-use individuals’ mobile devices to
analyzing GPS geo-spatial data and data mining trajectories by highly sophisticated algorithms for
outdoor and indoor microenvironments [100]. Assessment of time activity patterns using GPS analysis
was also utilized in an experimental prospective study in which exposure to ultrafine particles (UFP)
was evaluated in 24 couples (same residential address) of full-time working men and homemaker
women, suited with particle counter and GPS monitor [101]. This study found different levels of
exposure thus demonstrating the feasibility of the personal GPS monitoring.

Assessing time activity patterns can also be done using mobile devices such as Garmin GPS
receivers that can record participants’ location several times a day. These devices were used to
evaluate the association between the levels of exposure and the roads type or mode of transportation
used [102]. Moreover, integrating the data from the devices with pollution sensors and objective
clinical measurements gives insight about spatio-temporally resolved levels of pollution and the health
effects of the exposure [103,104].

Mobile phones in recent years are increasingly used as a technological basis for air pollution
sensing devices [105]. Using low-cost mobile stations connected to mobile phones enable acquisition of
large data quantities and can be used by a large population in a relatively cost-effective manner [106,107].
This method of exposure assessment can provide data on the personal exposure to air pollution and
help get high spatio-temporal resolution on urban air pollution assisting for example in municipal
planning [108,109]. The limitation of this method is that mobile sensing devices provide data with
missing values in both time and space. The missing values can be due to loss of battery power [110],
loss of signal in indoor environment [100] or device misuse [111]. Dealing with missing GPS data
is challenging and can be handled by methods such as data filtration like selecting days with fewer
missing data, smoothing techniques [112], interpolation and imputation of the data [113]. Mendes
et al., approached this limitation using kriging technique for data interpolation, showing superiority of
this method to the traditional ones [114].
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3. Assessment of Clinical Outcomes

Evaluating the outcomes of exposure to air pollution is frequently based on administrative data
from health institutions, yet the variability of the medical coding, and the availability and accuracy of
the health data, have well known limitations.

The most common method to evaluate the incidence of outcome in environmental studies is
based on the events in which the subjects have sought medical attention (e.g., hospital visits or
outpatients’ clinics visits). However, assessing the clinical outcomes using medical records poses
several problems. First, medical attention is frequently delayed by the patients and is influenced by
the patient characteristics such as low medical literacy, social network characteristics, socioeconomic
status, severity of the condition and availability of medical services [15–17]. In addition, medical
records might lack information on the evaluation of the onset and the duration of the event, e.g., in of
the analysis of atrial fibrillation (AF) it is important to determine the start and the duration of the
event [12–14]. Finally, subclinical events, i.e., events without clinical presentation such as elevated
glucose [25,26], elevated blood pressure [23,24], subclinical AF [20,21] etc. [18,19,22], are not routinely
recorded. These limitations can narrow the outcome assessment and introduce bias in the estimation
of the effects of air pollution on health outcomes.

3.1. Utilization of Smart Devices

In recent years there has been a growing use of smart devices and wearable devices for assessing
clinical health outcomes in different fields. The devices can be used to detect the development of
diabetes [115], to monitor glucose levels [116] and levels of glycated hemoglobin [117], to record
symptoms related to Chronic Obstructive Pulmonary Disease (COPD) [118] and to improve blood
pressure control using self-management systems [119]. These studies have demonstrated how patients’
health can be improved by incorporating smart devices into medical practice, yet frequently the use of
these devices relays on the patient collaboration and greatly depend on unbiased patient reports that
can result in misclassifications of the outcome [117].

In the field of cardiovascular medicine, the implantable cardioverter defibrillator (ICD) and
pacemakers can be used for detecting cardiac arrhythmias since these devices are capable of recording
and analyzing abnormal heart rate events. Several studies have examined the importance of these
devices for the detection of new onset of AF [120] and asymptomatic AF [121,122]. However, the inherent
limitation of the health information provided by these devices is that it is pertinent to a selected group
of patients in whom the use of these devices was clinically indicated.

Smart devices such as wrist bands and smart watches have been used for assessing abnormalities
in cardiac rhythm [123], AF and asymptomatic AF [124], without the constrains of the subjective
patients reports and without the need to constantly validate the data. A recent study used smart Apple
Watches to detect cases of an irregular heart pulse in the general population, thus creating for the first
time a prospective large-scale study that identifies subclinical events [125].

However, the use of the smart devices has a number of limitations: first, the efficacy of the smart
watches for detecting clinical events was still not evaluated in clinical trials; furthermore, patients
are frequently non-compliant with the requirement of fulfilling personal diaries, unlike in traditional
studies during which patients are closely monitored for all clinical events. Additionally, use of
smart devices requires a certain degree of technological literacy, thus limiting their use to younger
population groups. Another limitation is the smart phones’ energy consumption and the need for
frequent charging [126,127], which needs to be addressed for example by the development of the
energy-efficient algorithms [128] In addition clinical and physiological data ascertainment via mobile
phones poses a number of challenges: (1) Accurate, "medical grade" data acquisition. Only lately FDA
approved devices capable of providing ECG tracking; (2) Data processing and optimization, which
requires threshold-based methods [129]; (3) Data transfer which is usually done by third-party systems
which might result in random and partial data transfers. This can be addressed by applications that
provide fixed transfers times [130]; (4) Data storage, especially of the large volume longitudinal signals
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such as blood pressure, ECG etc. An efficient solution requires cloud storage services [131]. Lastly,
although not within the scope of the current manuscript, the serious issues of the health data privacy
must be addressed on the legislative level. Missing values of measured clinical parameters such as
heart rates and ECG can be a consequence of lack of charging and misfunctions of the devices due
to technical problems [132]. This can be handled using methods such as data interpolation [133] and
imputation [134].

3.2. Human Biomonitoring

The underlying assumption of ecological research is that ambient outdoor air pollution is a valid
proxy of the true individual levels of exposure. Nevertheless, the health effect of an ambient exposure
is frequently confounded by socio-economic status, occupation, smoking and other factors, that are
hard to account for in a standard analysis, resulting in spurious or biased associations.

We believe that measurable biological indicators sampled from human tissues are required to
validate the current ecological methods of exposure assessments. Furthermore, this approach will
extend our insight on the plausible biological mechanisms which contribute to the pathophysiology of
the environmental health effects.

Biologic indicators or biomarkers include biochemical, molecular, genetic, immunologic,
or physiologic signals [135]. Human biomonitoring (HBM) is frequently used worldwide to estimate the
extent of exposure of populations to potentially dangerous chemical substances [136]. However, HBM
studies have been used mainly in the occupational-health field [137–139]. Yet, recently the focus has
changed towards the assessment of an environmental exposure in the general population. For instance,
an HBM of environmental chemicals in the Canadian Health Measures Survey is a comprehensive
initiative providing general population HBM data in Canada. It is an ongoing cross-sectional survey
implemented in 2 year cycles with an enrollment of up to 7000 people in each cycle. Its recent 2016
report presented the information on biomonitoring results for 279 chemicals; approximately half of the
chemicals measured in individual’s blood and urine samples were detected in more than 60% of the
samples [140].

The Center for Disease Control (CDC) and Prevention have been providing similar information
on the nationally representative biomonitoring data in the general population in the US since 1999.
The CDC reports present analyses of blood, serum, and urine samples from random subsamples of
2 year surveys (National Health and Nutrition Survey–NHANES), typically including up to 6000–7000
participants at each round, and an extensive list of chemicals tested [141].

Biomarkers have an additional role related to environmental health research; validation of the
causal relationship between air pollution exposure and health outcomes by revealing of a plausible
biologic mechanism. Studies have examined the effect of pollutants on biomarkers expression in
different human tissues such as adipose tissue [29], cardiomyocytes [30], lung epithelial cells [31],
and blood [28]. For instance, the Multi-Ethnic Study of Atherosclerosis (MESA) showed that the
PM2.5 exposure was correlated with an increase in blood concentration of C-reactive protein (CRP),
fibrinogen and E-selectin [142], markers related to the atherogenic process [143–145], suggesting
a plausible biological mechanism by which air pollution could contribute to the development of
cardiovascular diseases.

The main problem with conducting such a survey is a potential bias introduced through the
sampling design and the participant selection, e.g., subjects with higher socioeconomic status and
women are more likely to participate in such studies [146]. The WHO recommends a minimum of
120 randomly selected individuals per population group to allow for the estimation of group-specific
reference values with sufficient precision and meaningful comparison of population groups in surveys.
Additionally, the high cost for obtaining and analyzing each sample in such studies is extremally high,
ranging from less than €100 for metals to €800 for dioxins [147].
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Population Biomonitoring

We recently have developed an innovative cost-effective approach to population biomonitoring
based on the national blood banking system. The method is based on analyzing the blood donations
collected and processed daily in Israel.

The use of blood from blood donors for research objectives is previously described; e.g., the
Danish Blood Donor Study (DBDS), a large-scale research project and biobank established in 2010 [148].
Although numerous studies were conducted via the extensive database of blood donors, showing
associations between risk factors, biomarkers, health effects, and diseases, to this date, the use of the
blood banking for the human biomonitoring is yet to be widely established.

Based on the established blood bank system, blood samples of donors can be tested for the
detection of different pollutants. Per National Blood Bank regulation, the serum separated from the
unit of the blood is to be stored for the period of one year. The donors are routinely consented to
the testing of the stored plasma. Levels of the pollutants’ concentration levels can then be linked
with the air pollution and meteorological data assessed at the location of blood collection services
(short-term exposure) and at the donors’ permanent address (medium and long-term exposure),
by using satellite-based exposure models. The sampling method of donations used for such studies
can be aimed to create geographically representative cohorts for different areas. Repeated testing
for recurrent donors in certain regions will provide indication on changing trends in exposure in
these areas.

This method has a number of advantages. First, the tested population comprised healthy
volunteers who represent an ideal population for the precise assessment of the environmental exposure,
as they are not treated with medications and conduct an active lifestyle; second, 80% of the blood
donors are returning donors, thus, repeated testing for recurrent donors in the population will provide
indication on changing trends in exposure in the area; lastly, as blood donation stations are spread
all over the country, the population of donors will serve a geographically valid proxy for the general
population. The method has some challenges as well with the main being the use of the collection
and storage equipment not specifically designed for the measurement of the low concentrations of the
potential pollutants, i.e., possibility of the contamination. In addition, the specific medium to be used
for the pollutants testing can be different from the usual standard for blood banking. For instance, our
preliminary experiment demonstrated that only whole blood would reflect the actual concentration of
some of the heavy metals in the blood, while only the serum is routinely collected and stored in the
National Blood Bank.

The important consequence of such studies is the establishment of a framework of dynamic
national biomonitoring by repeatedly assessing the exposure to selected chemicals and pollutants.
In the future, daily assessments of potentially hazardous elements in the donated blood will allow to
map the areas of exposure. Furthermore, the information collected in proposed surveys can lead to
a new paradigm of tailored environmental preventions measures.

4. Conclusions

The environmental health research faces the inherent problem of the balance between the desire
to assess a population on a wider scale and ability to obtain an accurate exposures and outcomes
data. So far, we have been forced to sacrifice one goal to achieve another; the researchers could
assess large populations using an ecological design with imprecise exposure assessment of conduct
personal exposure studies on a small scale. Latest development in the field of the exposure assessment
together with the ability to access detailed clinical data is changing the research paradigm. Estimation
of real-time location-activity using GPS tracking of cellular phones together with a high-resolution
hybrid satellite model that can measure pollutants levels with a spatial resolution of up to 1 × 1 km2

allows for a precise spatio-temporal solution. Wearable devices will provide continuous real time
clinical measurements altering the way the health data is being collected and assessed. Smart devices
combined with real time location activity retain information on exact locations and timeframes in
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which populations were exposed to different hazards. Human biomonitoring samples can help better
understand both the dose of pollutants the body absorbs and the plausible biological mechanisms
which contribute to the health outcome. Finally, the use of advanced computational and statistical
approaches incorporating the elements of the machine learning can provided the new analytical
framework. We believe that the described approaches will allow us to develop novel diagnostic and
treatment tools to address the environmental effects on human health, which in turn, will be adopted
by the clinical community.

Author Contributions: Conceptualization, L.N., I.K. (Itzhak Katra), I.K. (Itai Kloog), and V.N.; investigation,
S.Y., L.H., A.S., and D.L.; writing—original draft preparation, S.Y.; writing—review and editing, L.N. and V.N.;
visualization, S.Y.; supervision, V.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gakidou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.;
Abera, S.F.; Aboyans, V.; et al. Global, regional, and national comparative risk assessment of 84 behavioural,
environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis
for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [CrossRef]

2. Zeger, S.L.; Thomas, D.; Dominici, F.; Samet, J.M.; Dockery, D.; Cohen, A. Exposure measurement error in
time-series studies of air pollution: Concepts and consequences. Environ. Health Perspect. 2000, 108, 419–426.
[CrossRef] [PubMed]

3. Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer,
cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002,
287, 1132–1141. [CrossRef] [PubMed]

4. Baek, S.O.; Kim, Y.S.; Perry, R. Indoor air quality in homes, offices and restaurants in Korean urban
areas—Indoor/outdoor relationships. Atmos. Environ. 1997, 31, 529–544. [CrossRef]

5. Leung, D.Y.C. Outdoor-indoor air pollution in urban environment: Challenges and opportunity.
Front. Environ. Sci. 2015, 2, 69. [CrossRef]

6. Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C.
A review and evaluation of intraurban air pollution exposure models. J. Expo. Anal. Environ. Epidemiol. 2005,
15, 1–20. [CrossRef]

7. Hoek, G. Methods for Assessing Long-Term Exposures to Outdoor Air Pollutants. Curr. Environ. Health Rep.
2017, 4, 450–462. [CrossRef]

8. Pas, E.I.; Koppelman, F.S. An examination of the determinants of day-to-day variability in individuals’ urban
travel behavior. Transportation 1987, 14, 3–20. [CrossRef]

9. Wu, X.; Bennett, D.H.; Lee, K.; Cassady, D.L.; Ritz, B.; Hertz-Picciotto, I. Longitudinal variability
of time-location/activity patterns of population at different ages: A longitudinal study in California.
Environ. Health 2011, 10, 80. [CrossRef]

10. Setton, E.; Marshall, J.D.; Brauer, M.; Lundquist, K.R.; Hystad, P.; Keller, P.; Cloutier-Fisher, D. The impact
of daily mobility on exposure to traffic-related air pollution and health effect estimates. J. Expo. Sci.
Environ. Epidemiol. 2011, 21, 42–48. [CrossRef]

11. Park, Y.M.; Kwan, M.P. Individual exposure estimates may be erroneous when spatiotemporal variability of
air pollution and human mobility are ignored. Health Place 2017, 43, 85–94. [CrossRef] [PubMed]

12. Majeed, A.; Car, J.; Sheikh, A. Accuracy and completeness of electronic patient records in primary care.
Fam. Pract. 2008, 25, 213–214. [CrossRef] [PubMed]

13. Hogan, W.R.; Wagner, M.M. Accuracy of Data in Computer-based Patient Records. J. Am. Med. Inf. Assoc.
1997, 4, 342–355. [CrossRef] [PubMed]

14. Stewart, A.L.; Lynch, K.J. Identifying discrepancies in electronic medical records through pharmacist
medication reconciliation. J. Am. Pharm. Assoc. 2012, 52, 59–68. [CrossRef]

http://dx.doi.org/10.1016/S0140-6736(17)32366-8
http://dx.doi.org/10.1289/ehp.00108419
http://www.ncbi.nlm.nih.gov/pubmed/10811568
http://dx.doi.org/10.1001/jama.287.9.1132
http://www.ncbi.nlm.nih.gov/pubmed/11879110
http://dx.doi.org/10.1016/S1352-2310(96)00215-4
http://dx.doi.org/10.3389/fenvs.2014.00069
http://dx.doi.org/10.1038/sj.jea.7500388
http://dx.doi.org/10.1007/s40572-017-0169-5
http://dx.doi.org/10.1007/BF00172463
http://dx.doi.org/10.1186/1476-069X-10-80
http://dx.doi.org/10.1038/jes.2010.14
http://dx.doi.org/10.1016/j.healthplace.2016.10.002
http://www.ncbi.nlm.nih.gov/pubmed/27914271
http://dx.doi.org/10.1093/fampra/cmn047
http://www.ncbi.nlm.nih.gov/pubmed/18694896
http://dx.doi.org/10.1136/jamia.1997.0040342
http://www.ncbi.nlm.nih.gov/pubmed/9292840
http://dx.doi.org/10.1331/JAPhA.2012.10123


Atmosphere 2020, 11, 122 12 of 18

15. Matthews, K.A.; Siegel, J.M.; Kuller, L.H.; Thompsonk, M.; Varat, M. Determinants of decisions to seek
medical treatment by patients with acute myocardial infarction symptoms. J. Personal. Soc. Psychol. 1983, 44,
1144–1156. [CrossRef]

16. Berkanovic, E.; Telesky, C.; Reeder, S. Structural and social psychological factors in the decision to seek
medical care for symptoms. Med. Care 1981, 19, 693–709. [CrossRef]

17. Berkanovic, E.; Telesky, C. Social networks, beliefs, and the decision to seek medical care: An analysis of
congruent and incongruent patterns. Med. Care 1982, 20, 1018–1026. [CrossRef]

18. Haentjens, P.; van Meerhaeghe, A.; Poppe, K.; Velkeniers, B. Subclinical thyroid dysfunction and mortality:
An estimate of relative and absolute excess all-cause mortality based on time-to-event data from cohort
studies. Eur. J. Endocrinol. 2008, 159, 329–341. [CrossRef]

19. Aichner, F.T.; Topakian, R.; Alberts, M.J.; Bhatt, D.L.; Haring, H.P.; Hill, M.D.; Montalescot, G.; Goto, S.;
Touzé, E.; Mas, J.L.; et al. High cardiovascular event rates in patients with asymptomatic carotid stenosis:
The REACH registry. Eur. J. Neurol. 2009, 16, 902–908. [CrossRef]

20. Roche, F.; Gaspoz, J.M.; Da Costa, A.; Isaaz, K.; Duverney, D.; Pichot, V.; Costes, F.; Lacour, J.R.; Barthélémy, J.C.
Frequent and prolonged asymptomatic episodes of paroxysmal atrial fibrillation revealed by automatic
long-term event recorders in patients with a negative 24-hour Holter. Pace—Pacing Clin. Electrophysiol. 2002,
25, 1587–1593. [CrossRef]

21. Page, R.L.; Wilkinson, W.E.; Clair, W.K.; McCarthy, E.A.; Pritchett, E.L.C. Asymptomatic arrhythmias in
patients with symptomatic paroxysmal atrial fibrillation and paroxysmal supraventricular tachycardia.
Circulation 1994, 89, 224–227. [CrossRef]

22. Matsui, Y.; Eguchi, K.; Ishikawa, J.; Hoshide, S.; Shimada, K.; Kario, K. Subclinical Arterial Damage in
Untreated Masked Hypertensive Subjects Detected by Home Blood Pressure Measurement. Am. J. Hypertens.
2007, 20, 385–391. [CrossRef] [PubMed]

23. Allen, N.B.; Siddique, J.; Wilkins, J.T.; Shay, C.; Lewis, C.E.; Goff, D.C.; Jacobs, D.R.; Liu, K.; Lloyd-Jones, D.
Blood pressure trajectories in early adulthood and subclinical atherosclerosis in middle age. J. Am. Med. Assoc.
2014, 311, 490–497. [CrossRef] [PubMed]

24. McEvoy, J.W.; Chen, Y.; Rawlings, A.; Hoogeveen, R.C.; Ballantyne, C.M.; Blumenthal, R.S.; Coresh, J.;
Selvin, E. Diastolic Blood Pressure, Subclinical Myocardial Damage, and Cardiac Events: Implications for
Blood Pressure Control. J. Am. Coll. Cardiol. 2016, 68, 1713–1722. [CrossRef] [PubMed]

25. Catalano, P.M.; Bernstein, I.M.; Wolfe, R.R.; Srikanta, S.; Tyzbir, E.; Sims, E.A.H. Subclinical abnormalities
of glucose metabolism in subjects with previous gestational diabetes. Am. J. Obstet. Gynecol. 1986, 155,
1255–1262. [CrossRef]

26. Saydah, S.H.; Loria, C.M.; Eberhardt, M.S.; Brancati, F.L. Subclinical states of glucose intolerance and risk of
death in the U.S. Diabetes Care 2001, 24, 447–453. [CrossRef]

27. Balti, E.V.; Echouffo-Tcheugui, J.B.; Yako, Y.Y.; Kengne, A.P. Air pollution and risk of type 2 diabetes mellitus:
A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2014, 106, 161–172. [CrossRef]

28. Schwartz, J. Air pollution and blood markers of cardiovascular risk. Environ. Health Perspect. 2001, 109,
405–409.

29. Hassan, L.; Pecht, T.; Goldstein, N.; Haim, Y.; Kloog, I.; Yarza, S.; Sarov, B.; Novack, V. The effects of ambient
particulate matter on human adipose tissue. J. Toxicol. Environ. Health Part A Curr. 2019. [CrossRef]

30. Yang, X.; Feng, L.; Zhang, Y.; Hu, H.; Shi, Y.; Liang, S.; Zhao, T.; Fu, Y.; Duan, J.; Sun, Z. Cytotoxicity induced
by fine particulate matter (PM 2.5) via mitochondria-mediated apoptosis pathway in human cardiomyocytes.
Ecotoxicol. Environ. Saf. 2018, 161, 198–207. [CrossRef]

31. Carter, J.D.; Ghio, A.J.; Samet, J.M.; Devlin, R.B. Cytokine production by human airway epithelial cells
after exposure to an air pollution particle is metal-dependent. Toxicol. Appl. Pharmcol. 1997, 146, 180–188.
[CrossRef] [PubMed]

32. Zhu, Y.; Hinds, W.C.; Kim, S.; Shen, S.; Sioutas, C. Study of ultrafine particles near a major highway with
heavy-duty diesel traffic. Atmos. Environ. 2002, 36, 4323–4335. [CrossRef]

33. Eeftens, M.; Tsai, M.Y.; Ampe, C.; Anwander, B.; Beelen, R.; Bellander, T.; Cesaroni, G.; Cirach, M.; Cyrys, J.;
De Hoogh, K.; et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations
between and within 20 European study areas and the relationship with NO2—Results of the ESCAPE project.
Atmos. Environ. 2012, 62, 303–317. [CrossRef]

http://dx.doi.org/10.1037/0022-3514.44.6.1144
http://dx.doi.org/10.1097/00005650-198107000-00001
http://dx.doi.org/10.1097/00005650-198210000-00004
http://dx.doi.org/10.1530/EJE-08-0110
http://dx.doi.org/10.1111/j.1468-1331.2009.02614.x
http://dx.doi.org/10.1046/j.1460-9592.2002.01587.x
http://dx.doi.org/10.1161/01.CIR.89.1.224
http://dx.doi.org/10.1016/j.amjhyper.2006.10.008
http://www.ncbi.nlm.nih.gov/pubmed/17386344
http://dx.doi.org/10.1001/jama.2013.285122
http://www.ncbi.nlm.nih.gov/pubmed/24496536
http://dx.doi.org/10.1016/j.jacc.2016.07.754
http://www.ncbi.nlm.nih.gov/pubmed/27590090
http://dx.doi.org/10.1016/0002-9378(86)90155-9
http://dx.doi.org/10.2337/diacare.24.3.447
http://dx.doi.org/10.1016/j.diabres.2014.08.010
http://dx.doi.org/10.1080/15287394.2019.1634381
http://dx.doi.org/10.1016/j.ecoenv.2018.05.092
http://dx.doi.org/10.1006/taap.1997.8254
http://www.ncbi.nlm.nih.gov/pubmed/9344885
http://dx.doi.org/10.1016/S1352-2310(02)00354-0
http://dx.doi.org/10.1016/j.atmosenv.2012.08.038


Atmosphere 2020, 11, 122 13 of 18

34. Sorek-Hamer, M.; Just, A.C.; Kloog, I. Satellite remote sensing in epidemiological studies. Curr. Opin. Pediatr.
2016, 28, 228–234. [CrossRef] [PubMed]

35. Hoek, G.; Brunekreef, B.; Goldbohm, S.; Fischer, P.; van den Brandt, P.A. Association between mortality and
indicators of traffic-related air pollution in the Netherlands: A cohort study. Lancet 2002, 360, 1203–1209.
[CrossRef]

36. Ostro, B.; Lipsett, M.; Reynolds, P.; Goldberg, D.; Hertz, A.; Garcia, C.; Henderson, K.D.; Bernstein, L.
Long-term exposure to constituents of fine particulate air pollution and mortality: Results from the California
Teachers Study. Environ. Health Perspect. 2010, 118, 363–369. [CrossRef]

37. Hoek, G.; Pattenden, S.; Willers, S.; Antova, T.; Fabianova, E.; Braun-Fahrländer, C.; Forastiere, F.; Gehring, U.;
Luttmann-Gibson, H.; Grize, L.; et al. PM10, and children’s respiratory symptoms and lung function in the
PATY study. Eur. Respir. J. 2012, 40, 538–547. [CrossRef]

38. Künzli, N.; Jerrett, M.; Mack, W.J.; Beckerman, B.; LaBree, L.; Gilliland, F.; Thomas, D.; Peters, J.; Hodis, H.N.
Ambient air pollution and atherosclerosis in Los Angeles. Environ. Health Perspect. 2005, 113, 201–206.
[CrossRef]

39. Beelen, R.; Hoek, G.; Van den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.; Schouten, L.J.; Jerrett, M.; Hughes, E.;
Armstrong, B.; Brunekreef, B. Long-term effects of traffic-related air pollution on mortality in a Dutch cohort
(NLCS-AIR study). Environ. Health Perspect. 2008, 116, 196–202. [CrossRef]

40. Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping urban air quality in
near real-time using observations from low-cost sensors and model information. Environ. Int. 2017, 106,
234–247. [CrossRef]

41. Hoek, G.; Beelen, R.; De Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use
regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578.
[CrossRef]

42. De Hoogh, K.; Gulliver, J.; Donkelaar, A.V.; Martin, R.V.; Marshall, J.D.; Bechle, M.J.; Cesaroni, G.; Pradas, M.C.;
Dedele, A.; Eeftens, M.; et al. Development of West-European PM2.5 and NO2 land use regression models
incorporating satellite-derived and chemical transport modelling data. Environ. Res. 2016, 151, 1–10.
[CrossRef] [PubMed]

43. Manders, A.M.M.; Builtjes, P.J.H.; Curier, L.; Denier van der Gon, H.A.C.; Hendriks, C.; Jonkers, S.;
Kranenburg, R.; Kuenen, J.J.P.; Segers, A.J.; Timmermans, R.M.A.; et al. Curriculum vitae of the LOTOS-EUROS
(v2.0) chemistry transport model. Geosci. Model Dev. 2017, 10, 4145–4173. [CrossRef]

44. Hertel, O.; Jensen, S.S.; Ketzel, M.; Becker, T.; Peel, R.G.; Ørby, P.V.; Skjøth, C.A.; Ellermann, T.;
Raaschou-Nielsen, O.; Sørensen, M.; et al. Utilizing monitoring data and spatial analysis tools for exposure
assessment of atmospheric pollutants in Denmark. ACS Symp. Ser. 2013, 1149, 95–122.

45. Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.;
Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure
to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [CrossRef]

46. Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor
and penetration factor. Atmos. Environ. 2011, 45, 275–288. [CrossRef]

47. Massey, D.; Masih, J.; Kulshrestha, A.; Habil, M.; Taneja, A. Indoor/outdoor relationship of fine particles
less than 2.5 µm (PM2.5) in residential homes locations in central Indian region. Build. Environ. 2009, 44,
2037–2045. [CrossRef]

48. Jones, N.C.; Thornton, C.A.; Mark, D.; Harrison, R.M. Indoor/outdoor relationships of particulate matter in
domestic homes with roadside, urban and rural locations. Atmos. Environ. 2000, 34, 2603–2612. [CrossRef]

49. Lee, S.C.; Li, W.M.; Ao, C.H. Investigation of indoor air quality at residential homes in Hong Kong—Case
study. Atmos. Environ. 2002, 36, 225–237. [CrossRef]

50. Chao, C.Y.H.; Tung, T.C.W.; Burnett, J. Influence of different indoor activities on the indoor particulate levels
in residential buildings. Indoor Built Environ. 1998, 7, 110–121. [CrossRef]

51. Krasnov, H.; Katra, I.; Novack, V.; Vodonos, A.; Friger, M.D. Increased indoor PM concentrations controlled
by atmospheric dust events and urban factors. Build. Environ. 2015, 87, 169–176. [CrossRef]

52. Stafoggia, M.; Schwartz, J.; Badaloni, C.; Bellander, T.; Alessandrini, E.; Cattani, G.; De’ Donato, F.; Gaeta, A.;
Leone, G.; Lyapustin, A.; et al. Estimation of daily PM10 concentrations in Italy (2006–2012) using finely
resolved satellite data, land use variables and meteorology. Environ. Int. 2017, 99, 234–244. [CrossRef]
[PubMed]

http://dx.doi.org/10.1097/MOP.0000000000000326
http://www.ncbi.nlm.nih.gov/pubmed/26859287
http://dx.doi.org/10.1016/S0140-6736(02)11280-3
http://dx.doi.org/10.1289/ehp.0901181
http://dx.doi.org/10.1183/09031936.00002611
http://dx.doi.org/10.1289/ehp.7523
http://dx.doi.org/10.1289/ehp.10767
http://dx.doi.org/10.1016/j.envint.2017.05.005
http://dx.doi.org/10.1016/j.atmosenv.2008.05.057
http://dx.doi.org/10.1016/j.envres.2016.07.005
http://www.ncbi.nlm.nih.gov/pubmed/27447442
http://dx.doi.org/10.5194/gmd-10-4145-2017
http://dx.doi.org/10.1038/sj.jea.7500165
http://dx.doi.org/10.1016/j.atmosenv.2010.09.048
http://dx.doi.org/10.1016/j.buildenv.2009.02.010
http://dx.doi.org/10.1016/S1352-2310(99)00489-6
http://dx.doi.org/10.1016/S1352-2310(01)00435-6
http://dx.doi.org/10.1177/1420326X9800700205
http://dx.doi.org/10.1016/j.buildenv.2015.01.035
http://dx.doi.org/10.1016/j.envint.2016.11.024
http://www.ncbi.nlm.nih.gov/pubmed/28017360


Atmosphere 2020, 11, 122 14 of 18

53. De Hoogh, K.; Héritier, H.; Stafoggia, M.; Künzli, N.; Kloog, I. Modelling daily PM2.5 concentrations at high
spatio-temporal resolution across Switzerland. Environ. Pollut. 2018, 233, 1147–1154. [CrossRef] [PubMed]

54. Chudnovsky, A.A.; Koutrakis, P.; Kloog, I.; Melly, S.; Nordio, F.; Lyapustin, A.; Wang, Y.; Schwartz, J. Fine
particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals. Atmos. Environ.
2014, 89, 189–198. [CrossRef]

55. Beckerman, B.S.; Jerrett, M.; Serre, M.; Martin, R.V.; Lee, S.J.; van Donkelaar, A.; Ross, Z.; Su, J.; Burnett, R.T.
A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United
States. Environ. Sci. Technol. 2013, 47, 7233–7241.

56. Lee, M.; Kloog, I.; Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Melly, S.; Coull, B.; Koutrakis, P.; Schwartz, L.
Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern
US 2003-2011. J. Exp. Sci. Environ. Epidemiol. 2016, 26, 377–384. [CrossRef]

57. Kloog, I.; Nordio, F.; Coull, B.A.; Schwartz, J. Incorporating local land use regression and satellite aerosol
optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the mid-atlantic states. Environ. Sci.
Technol. 2012, 46, 11913–11921. [CrossRef]

58. Ma, Z.; Liu, Y.; Zhao, Q.; Liu, M.; Zhou, Y.; Bi, J. Satellite-derived high resolution PM2.5 concentrations in
Yangtze River Delta Region of China using improved linear mixed effects model. Atmos. Environ. 2016, 133,
156–164. [CrossRef]

59. Just, A.C.; Wright, R.O.; Schwartz, J.; Coull, B.A.; Baccarelli, A.A.; Tellez-Rojo, M.M.; Moody, E.; Wang, Y.;
Lyapustin, A.; Kloog, I. Using High-Resolution Satellite Aerosol Optical Depth to Estimate Daily PM2.5

Geographical Distribution in Mexico City. Environ. Sci. Technol. 2015, 49, 8576–8584.
60. Shtein, A.; Karnieli, A.; Katra, I.; Raz, R.; Levy, I.; Lyapustin, A.; Dorman, M.; Broday, D.M.; Kloog, I.

Estimating daily and intra-daily PM10 and PM2.5 in Israel using a spatio-temporal hybrid modeling approach.
Atmos. Environ. 2018, 191, 142–152. [CrossRef]

61. Kloog, I.; Sorek-Hamer, M.; Lyapustin, A.; Coull, B.; Wang, Y.; Just, A.C.; Schwartz, J.; Broday, D.M. Estimating
daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD
data. Atmos. Environ. 2015, 122, 409–416. [CrossRef] [PubMed]

62. Lee, H.J.; Koutrakis, P. Daily ambient NO2 concentration predictions using satellite ozone monitoring
instrument NO2 data and land use regression. Environ. Sci. Technol. 2014, 48, 2305–2311. [PubMed]

63. Anand, J.S.; Monks, P.S. Estimating daily surface NO2 concentrations from satellite data—A case study over
Hong Kong using land use regression models. Atmos. Chem. Phys. 2017, 17, 8211–8230. [CrossRef]

64. De Hoogh, K.; Saucy, A.; Shtein, A.; Schwartz, J.; West, E.A.; Strassmann, A.; Puhan, M.; Röösli, M.;
Stafoggia, M.; Kloog, I. Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data
Across Switzerland. Environ. Sci. Technol. 2019, 53, 10279–10287. [CrossRef] [PubMed]

65. Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.;
et al. An ensemble-based model of PM2.5 concentration across the contiguous United States with high
spatiotemporal resolution. Environ. Int. 2019, 130, 104909. [CrossRef] [PubMed]

66. Murray, N.; Chang, H.H.; Holmes, H.; Liu, Y. Combining Satellite Imagery and Numerical Model Simulation
to Estimate Ambient Air Pollution: An Ensemble Averaging Approach. arXiv 2018, arXiv:1802.03077.
[CrossRef]

67. Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; de Hoogh, K.; De’ Donato, F.; Gariazzo, C.; Lyapustin, A.;
Michelozzi, P.; Renzi, M.; et al. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using
a spatiotemporal land-use random-forest model. Environ. Int. 2019, 124, 170–179. [CrossRef]

68. Shtein, A.; Kloog, I.; Schwartz, J.; Silibello, C.; Michelozzi, P.; Gariazzo, C.; Viegi, G.; Forastiere, F.; Karnieli, A.;
Just, A.C.; et al. Estimating daily PM2.5 and PM10 over Italy using an ensemble model. Environ. Sci. Technol.
2019, 54, 120–128. [CrossRef]

69. Budde, M.; el Masri, R.; Riedel, T.; Beigl, M. Enabling low-cost particulate matter measurement for
participatory sensing scenarios. In Proceedings of the 12th International Conference on Mobile and
Ubiquitous Multimedia, Lulea, Sweden, 2–5 December 2013.

70. Krasnov, H.; Kloog, I.; Friger, M.; Katra, I. The spatio-temporal distribution of particulate matter during
natural dust episodes at an urban scale. PLoS ONE 2016, 11, e0160800. [CrossRef]

71. Li, L.; Zheng, Y.; Zhang, L. Demonstration abstract: PiMi air box—A cost-effective sensor for participatory
indoor quality monitoring. In Proceedings of the 13th International Symposium on Information Processing
in Sensor Networks, Berlin, Germany, 15–17 April 2014; pp. 327–328.

http://dx.doi.org/10.1016/j.envpol.2017.10.025
http://www.ncbi.nlm.nih.gov/pubmed/29037492
http://dx.doi.org/10.1016/j.atmosenv.2014.02.019
http://dx.doi.org/10.1038/jes.2015.41
http://dx.doi.org/10.1021/es302673e
http://dx.doi.org/10.1016/j.atmosenv.2016.03.040
http://dx.doi.org/10.1016/j.atmosenv.2018.08.002
http://dx.doi.org/10.1016/j.atmosenv.2015.10.004
http://www.ncbi.nlm.nih.gov/pubmed/28966551
http://www.ncbi.nlm.nih.gov/pubmed/24437539
http://dx.doi.org/10.5194/acp-17-8211-2017
http://dx.doi.org/10.1021/acs.est.9b03107
http://www.ncbi.nlm.nih.gov/pubmed/31415154
http://dx.doi.org/10.1016/j.envint.2019.104909
http://www.ncbi.nlm.nih.gov/pubmed/31272018
http://dx.doi.org/10.1289/isesisee.2018.O02.04.16
http://dx.doi.org/10.1016/j.envint.2019.01.016
http://dx.doi.org/10.1021/acs.est.9b04279
http://dx.doi.org/10.1371/journal.pone.0160800


Atmosphere 2020, 11, 122 15 of 18

72. Hera, M.R.; Rahman, A.; Afrin, A.; Uddin, M.Y.S.; Venkatasubramanian, N. AQBox: An air quality measuring
box from COTS gas sensors. In Proceedings of the 2017 International Conference on Networking, Systems
and Security, Dhaka, Bangladesh, 5–8 January 2017; pp. 191–194.

73. Budde, M.; Busse, M.; Beigl, M. Investigating the use of commodity dust sensors for the embedded
measurement of particulate matter. In Proceedings of the 9th International Conference on Networked
Sensing Systems, INSS 2012, Antwerp, Belgium, 11–14 June 2012.

74. Chung, W.Y.; Oh, S.J. Remote monitoring system with wireless sensors module for room environment.
Sens. Actuators B Chem. 2006, 113, 64–70. [CrossRef]

75. Warneke, B.A.; Pister, K.S.J. An Ultra-Low Energy Microcontroller for Smart Dust Wireless Sensor Networks.
In Proceedings of the Digest of Technical Papers—IEEE International Solid-State Circuits Conference,
San Francisco, CA, USA, 15 February 2004; p. 47.

76. Mokhloss, V.S.; Khadem, I. Dust Monitoring Systems. In Proceedings of the Sixth International Conference
on Systems and Networks Communications, Barcelona, Spain, 23–28 October 2011.

77. Nath, V.; Nath, A. Environment Monitoring Using Commercial Off-the-Shelf (COTS) Technologies.
In Proceedings of the IFIP World Information Technology Forum, San José, Costa Rica, 12–14 September
2016; pp. 37–44.

78. Chen, L.J.; Ho, Y.H.; Lee, H.C.; Wu, H.C.; Liu, H.M.; Hsieh, H.H.; Huang, Y.T.; Lung, S.C.C. An Open
Framework for Participatory PM2.5 Monitoring in Smart Cities. IEEE Access 2017, 5, 14441–14454. [CrossRef]

79. Gugliermetti, L.; Garcia, D.A. A cheap and third-age-friendly home device for monitoring indoor air quality.
Int. J. Environ. Sci. Technol. 2018, 15, 185–198. [CrossRef]

80. Tse, R.T.; Xiao, Y. A portable Wireless Sensor Network system for real-time environmental monitoring.
In Proceedings of the17th International Symposium on a World of Wireless, Mobile and Multimedia Networks,
WoWMoM 2016, Coimbra, Portugal, 21–24 June 2016.

81. Westerdahl, D.; Fruin, S.; Sax, T.; Fine, P.M.; Sioutas, C. Mobile platform measurements of ultrafine particles
and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos. Environ.
2005, 39, 3597–3610. [CrossRef]

82. Wang, M.; Zhu, T.; Zheng, J.; Zhang, R.Y.; Zhang, S.Q.; Xie, X.X.; Han, Y.Q.; Li, Y. Use of a mobile laboratory
to evaluate changes in on-road air pollutants during the Beijing 2008 summer olympics. Atmos. Chem. Phys.
2009, 9, 8247–8263. [CrossRef]

83. Padró-Martínez, L.T.; Patton, A.P.; Trull, J.B.; Zamore, W.; Brugge, D.; Durant, J.L. Mobile monitoring of
particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over
the course of a year. Atmos. Environ. 2012, 61, 253–264. [CrossRef] [PubMed]

84. Levy, I.; Mihele, C.; Lu, G.; Narayan, J.; Hilker, N.; Brook, J.R. Elucidating multipollutant exposure across
a complex metropolitan area by systematic deployment of a mobile laboratory. Atmos. Chem. Phys. 2014, 14,
7173–7193. [CrossRef]

85. Shi, Y.; Lau, K.K.L.; Ng, E. Developing Street-Level PM 2.5 and PM 10 Land Use Regression Models in
High-Density Hong Kong with Urban Morphological Factors. Environ. Sci. Technol. 2016, 50, 8178–8187.
[CrossRef] [PubMed]

86. Hankey, S.; Marshall, J.D. Land Use Regression Models of On-Road Particulate Air Pollution (Particle
Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring. Environ. Sci. Technol. 2015, 49,
9194–9202. [CrossRef] [PubMed]

87. Thai, A.; McKendry, I.; Brauer, M. Particulate matter exposure ong designated bicycle routes in Vancouver,
British Columbia. Sci. Total Environ. 2008, 405, 26–35. [CrossRef] [PubMed]

88. Dons, E.; Int Panis, L.; Van Poppel, M.; Theunis, J.; Willems, H.; Torfs, R.; Wets, G. Impact of time-activity
patterns on personal exposure to black carbon. Atmos. Environ. 2011, 45, 3594–3602. [CrossRef]

89. Song, C.; Qu, Z.; Blumm, N.; Barabási, A.L. Limits of predictability in human mobility. Science 2010, 327,
1018–1021. [CrossRef] [PubMed]

90. Canfield, M.A.; Ramadhani, T.A.; Langlois, P.H.; Waller, D.K. Residential mobility patterns and exposure
misclassification in epidemiologic studies of birth defects. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 538–543.
[CrossRef] [PubMed]

91. Brokamp, C.; Lemasters, G.K.; Ryan, P.H. Residential mobility impacts exposure assessment and community
socioeconomic characteristics in longitudinal epidemiology studies. J. Expo. Sci. Environ. Epidemiol. 2016, 26,
428–434. [CrossRef]

http://dx.doi.org/10.1016/j.snb.2005.02.023
http://dx.doi.org/10.1109/ACCESS.2017.2723919
http://dx.doi.org/10.1007/s13762-017-1382-3
http://dx.doi.org/10.1016/j.atmosenv.2005.02.034
http://dx.doi.org/10.5194/acp-9-8247-2009
http://dx.doi.org/10.1016/j.atmosenv.2012.06.088
http://www.ncbi.nlm.nih.gov/pubmed/23144586
http://dx.doi.org/10.5194/acp-14-7173-2014
http://dx.doi.org/10.1021/acs.est.6b01807
http://www.ncbi.nlm.nih.gov/pubmed/27381187
http://dx.doi.org/10.1021/acs.est.5b01209
http://www.ncbi.nlm.nih.gov/pubmed/26134458
http://dx.doi.org/10.1016/j.scitotenv.2008.06.035
http://www.ncbi.nlm.nih.gov/pubmed/18701140
http://dx.doi.org/10.1016/j.atmosenv.2011.03.064
http://dx.doi.org/10.1126/science.1177170
http://www.ncbi.nlm.nih.gov/pubmed/20167789
http://dx.doi.org/10.1038/sj.jes.7500501
http://www.ncbi.nlm.nih.gov/pubmed/16736057
http://dx.doi.org/10.1038/jes.2016.10


Atmosphere 2020, 11, 122 16 of 18

92. Ragettli, M.S.; Phuleria, H.C.; Tsai, M.Y.; Schindler, C.; de Nazelle, A.; Ducret-Stich, R.E.; Ineichen, A.;
Perez, L.; Braun-Fahrländer, C.; Probst-Hensch, N.; et al. The relevance of commuter and work/school
exposure in an epidemiological study on traffic-related air pollution. J. Expo. Sci. Environ. Epidemiol. 2015,
25, 474–481. [CrossRef] [PubMed]

93. Wang, D.; Xiang, Z.; Fesenmaier, D.R. Smartphone Use in Everyday Life and Travel. J. Travel Res. 2016, 55,
52–63. [CrossRef]

94. Ericsson. 5G Subscriptions to Reach Half a Billion in 2022: Ericsson Mobility Report. Press Release.
2016. Available online: https://www.ericsson.com/en/press-releases/2016/11/5g-subscriptions-to-reach-half-
a-billion-in-2022-ericsson-mobility-report (accessed on 8 July 2019).

95. Larkin, A.; Hystad, P. Towards Personal Exposures: How Technology Is Changing Air Pollution and Health
Research. Curr. Environ. Health Rep. 2017, 4, 463–471. [CrossRef]

96. Dewulf, B.; Neutens, T.; Lefebvre, W.; Seynaeve, G.; Vanpoucke, C.; Beckx, C.; Van de Weghe, N. Dynamic
assessment of exposure to air pollution using mobile phone data. Int. J. Health Geogr. 2016, 15, 1–14.
[CrossRef]

97. Nyhan, M.; Grauwin, S.; Britter, R.; Misstear, B.; McNabola, A.; Laden, F.; Barrett, S.R.; Ratti, C. “Exposure
Track”. The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air
Pollution. Environ. Sci. Technol. 2016, 50, 9671–9681. [CrossRef]

98. Nyhan, M.M.; Kloog, I.; Britter, R.; Ratti, C.; Koutrakis, P. Quantifying population exposure to air pollution
using individual mobility patterns inferred from mobile phone data. J. Expo. Sci. Environ. Epidemiol. 2019,
29, 238–247. [CrossRef]

99. Steinle, S.; Reis, S.; Sabel, C.E. Quantifying human exposure to air pollution-Moving from static monitoring to
spatio-temporally resolved personal exposure assessment. Sci. Total Environ. 2013, 443, 184–193. [CrossRef]

100. Dias, D.; Tchepel, O. Modelling of human exposure to air pollution in the urban environment: A GPS-based
approach. Environ. Sci. Pollut. Res. 2014, 21, 3558–3571. [CrossRef]

101. Buonanno, G.; Stabile, L.; Morawska, L. Personal exposure to ultrafine particles: The influence of time-activity
patterns. Sci. Total Environ. 2014, 468–469, 903–907. [CrossRef]

102. Morabia, A.; Amstislavski, P.N.; Mirer, F.E.; Amstislavski, T.M.; Eisl, H.; Wolff, M.S.; Markowitz, S.B. Air
Pollution and Activity During Transportation by Car, Subawy, and Walking. Am. J. Prev. Med. 2009, 37,
72–77. [CrossRef]

103. Apparicio, P.; Apparicio, D.; Mathieu, M.-È. Turtle Sport: An Open-Source Software for Communicating
with GPS Sport Watches. J. Open Res. Softw. 2018, 6, 25. [CrossRef]

104. Apparicio, P.; Gelb, J.; Carrier, M.; Mathieu, M.È.; Kingham, S. Exposure to noise and air pollution by mode
of transportation during rush hours in Montreal. J. Transp. Geogr. 2018, 70, 182–192. [CrossRef]

105. Hasenfratz, D.; Saukh, O.; Sturzenegger, S.; Thiele, L. Participatory Air Pollution Monitoring Using
Smartphones. Mob. Sens. 2012, 1, 1–5.

106. Mendez, D.; Pérez, A.J.; Labrador, M.A.; Marron, J.J. P-Sense: A participatory sensing system for air pollution
monitoring and control. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing
and Communications Workshops, PERCOM Workshops, Seattle, WA, USA, 21–25 March 2011; pp. 344–347.

107. Brienza, S.; Galli, A.; Anastasi, G.; Bruschi, P. A low-cost sensing system for cooperative air quality monitoring
in urban areas. Sensors 2015, 15, 12242–12259. [CrossRef] [PubMed]

108. Mendez, D.; Diaz, S.; Kraemer, R. Wireless technologies for pollution monitoring in large cities and rural areas.
In Proceedings of the 24th Telecommunications Forum, TELFOR 2016, Belgrade, Serbia, 22–23 Novomber
2016.

109. Hu, K.; Sivaraman, V.; Luxan, B.G.; Rahman, A. Design and Evaluation of a Metropolitan Air Pollution
Sensing System. IEEE Sens. J. 2016, 16, 1448–1459. [CrossRef]

110. De Nazelle, A.; Seto, E.; Donaire-Gonzalez, D.; Mendez, M.; Matamala, J.; Nieuwenhuijsen, M.J.; Jerrett, M.
Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ. Pollut.
2013, 176, 92–99. [CrossRef]

111. Krenn, P.J.; Titze, S.; Oja, P.; Jones, A.; Ogilvie, D. Use of global positioning systems to study physical activity
and the environment: A systematic review. Am. J. Prev. Med. 2011, 41, 508–515. [CrossRef]

112. Kerr, J.; Duncan, S.; Schipperjin, J. Using global positioning systems in health research: A practical approach
to data collection and processing. Am. J. Prev. Med. 2011, 41, 532–540. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/jes.2014.83
http://www.ncbi.nlm.nih.gov/pubmed/25492241
http://dx.doi.org/10.1177/0047287514535847
https://www.ericsson.com/en/press-releases/2016/11/5g-subscriptions-to-reach-half-a-billion-in-2022-ericsson-mobility-report
https://www.ericsson.com/en/press-releases/2016/11/5g-subscriptions-to-reach-half-a-billion-in-2022-ericsson-mobility-report
http://dx.doi.org/10.1007/s40572-017-0163-y
http://dx.doi.org/10.1186/s12942-016-0042-z
http://dx.doi.org/10.1021/acs.est.6b02385
http://dx.doi.org/10.1038/s41370-018-0038-9
http://dx.doi.org/10.1016/j.scitotenv.2012.10.098
http://dx.doi.org/10.1007/s11356-013-2277-6
http://dx.doi.org/10.1016/j.scitotenv.2013.09.016
http://dx.doi.org/10.1016/j.amepre.2009.03.014
http://dx.doi.org/10.5334/jors.230
http://dx.doi.org/10.1016/j.jtrangeo.2018.06.007
http://dx.doi.org/10.3390/s150612242
http://www.ncbi.nlm.nih.gov/pubmed/26016912
http://dx.doi.org/10.1109/JSEN.2015.2499308
http://dx.doi.org/10.1016/j.envpol.2012.12.032
http://dx.doi.org/10.1016/j.amepre.2011.06.046
http://dx.doi.org/10.1016/j.amepre.2011.07.017
http://www.ncbi.nlm.nih.gov/pubmed/22011426


Atmosphere 2020, 11, 122 17 of 18

113. Feng, T.; Narayanan, S. Imputing Missing Data In Large-Scale Multivariate Biomedical Wearable Recordings
Using Bidirectional Recurrent Neural Networks With Temporal Activation Regularization. In Proceedings of
the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC) 2019, Berlin, Germany, 23–27 July 2019; pp. 2529–2534.

114. Mendez, D.; Labrador, M.; Ramachandran, K. Data interpolation for participatory sensing systems. Pervasive
Mob. Comput. 2013, 9, 132–148. [CrossRef]

115. Hao, Y.; Cheng, F.; Pham, M.; Rein, H.; Patel, D.; Fang, Y.; Feng, Y.; Yan, J.; Song, X.; Yan, H.; et al.
A noninvasive, economical, instant-result method to diagnose and monitor type 2 diabetes using pulse wave:
Case-Control study. J. Med. Internet Res. 2019, 7, e11959. [CrossRef] [PubMed]

116. Årsand, E.; Tatara, N.; Østengen, G.; Hartvigsen, G. Mobile phone-based self-management tools for type 2
diabetes: The few touch application. J. Diabetes Sci. Technol. 2010, 4, 328–336. [CrossRef] [PubMed]

117. Greenwood, D.A.; Blozis, S.A.; Young, H.M.; Nesbitt, T.S.; Quinn, C.C. Overcoming clinical inertia:
A randomized clinical trial of a telehealth remote monitoring intervention using paired glucose testing in
adults with type 2 diabetes. J. Med. Internet Res. 2015, 17, 1–16. [CrossRef] [PubMed]

118. Ding, H.; Karunanithi, M.; Kanagasingam, Y.; Vignarajan, J.; Moodley, Y. A pilot study of a mobile-phone-based
home monitoring system to assist in remote interventions in cases of acute exacerbation of COPD. J. Telemed.
Telecare 2014, 20, 128–134. [CrossRef]

119. Bengtsson, U.; Kjellgren, K.; Hallberg, I.; Lindwall, M.; Taft, C. Improved Blood Pressure Control Using an
Interactive Mobile Phone Support System. J. Clin. Hypertens. 2016, 18, 101–108. [CrossRef]

120. Boriani, G.; Glotzer, T.V.; Ziegler, P.D.; De Melis, M.; Mangoni di S Stefano, L.; Sepsi, M.; Landolina, M.;
Lunati, M.; Lewalter, T.; Camm, A.J. Detection of new atrial fibrillation in patients with cardiac implanted
electronic devices and factors associated with transition to higher device-detected atrial fibrillation burden.
Hear. Rhythm 2018, 15, 376–383. [CrossRef]

121. Gorenek, B.; Bax, J.; Boriani, G.; Chen, S.A.; Dagres, N.; Glotzer, T.V.; Healey, J.S.; Israel, C.W.;
Kudaiberdieva, G.; Levin, L.Å.; et al. Device-detected subclinical atrial tachyarrhythmias: Definition,
implications and management—An European Heart Rhythm Association (EHRA) consensus document,
endorsed by Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS) and Sociedad L.
Europace 2017, 19, 1556–1578. [CrossRef]

122. Wong, J.A.; Conen, D.; Van Gelder, I.C.; McIntyre, W.F.; Crijns, H.J.; Wang, J.; Gold, M.R.; Hohnloser, S.H.;
Lau, C.P.; Capucci, A.; et al. Progression of Device-Detected Subclinical Atrial Fibrillation and the Risk of
Heart Failure. J. Am. Coll. Cardiol. 2018, 71, 2603–2611. [CrossRef]

123. Koshy, A.N.; Sajeev, J.K.; Nerlekar, N.; Brown, A.J.; Rajakariar, K.; Zureik, M.; Wong, M.C.; Roberts, L.;
Street, M.; Cooke, J.; et al. Smart watches for heart rate assessment in atrial arrhythmias. Int. J. Cardiol. 2018,
266, 124–127. [CrossRef] [PubMed]

124. Hochstadt, A.; Chorin, E.; Viskin, S.; Schwartz, A.L.; Lubman, N.; Rosso, R. Continuous heart rate monitoring
for automatic detection of atrial fibrillation with novel bio-sensing technology. J. Electrocardiol. 2019, 52,
23–27. [CrossRef] [PubMed]

125. Turakhia, M.P.; Desai, M.; Hedlin, H.; Rajmane, A.; Talati, N.; Ferris, T.; Desai, S.; Nag, D.; Patel, M.;
Kowey, P.; et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using
a smartwatch: The Apple Heart Study. Am. Heart J. 2019, 207, 66–75. [CrossRef] [PubMed]

126. Mortazavi, B.; Nemati, E.; VanderWall, K.; Flores-Rodriguez, H.G.; Cai, J.Y.; Lucier, J.; Naeim, A.;
Sarrafzadeh, M. Can smartwatches replace smartphones for posture tracking? Sensors 2015, 15, 26783–26800.
[CrossRef] [PubMed]

127. Bang, M.; Solnevik, K.; Eriksson, H. The Nurse Watch: Design and Evaluation of a Smart Watch Application
with Vital Sign Monitoring and Checklist Reminders. In Proceedings of the AMIA Annual Symposium
Proceedings 2015, San Francisco, CA, USA, 14–18 November 2015; Volume 2015, pp. 314–319.

128. Rawassizadeh, R.; Tomitsch, M.; Nourizadeh, M.; Momeni, E.; Peery, A.; Ulanova, L.; Pazzani, M.
Energy-efficient integration of continuous context sensing and prediction into smartwatches. Sensors
2015, 15, 22616–22645. [CrossRef]

129. Banaee, H.; Ahmed, M.U.; Loutfi, A. Data mining for wearable sensors in health monitoring systems:
A review of recent trends and challenges. Sensors 2013, 13, 17472–17500. [CrossRef]

130. De Arriba-Pérez, F.; Caeiro-Rodríguez, M.; Santos-Gago, J.M. Collection and processing of data from wrist
wearable devices in heterogeneous and multiple-user scenarios. Sensors 2016, 16, 1538. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.pmcj.2012.11.001
http://dx.doi.org/10.2196/11959
http://www.ncbi.nlm.nih.gov/pubmed/31012863
http://dx.doi.org/10.1177/193229681000400213
http://www.ncbi.nlm.nih.gov/pubmed/20307393
http://dx.doi.org/10.2196/jmir.4112
http://www.ncbi.nlm.nih.gov/pubmed/26199142
http://dx.doi.org/10.1177/1357633X14527715
http://dx.doi.org/10.1111/jch.12682
http://dx.doi.org/10.1016/j.hrthm.2017.11.007
http://dx.doi.org/10.1093/europace/eux163
http://dx.doi.org/10.1016/j.jacc.2018.03.519
http://dx.doi.org/10.1016/j.ijcard.2018.02.073
http://www.ncbi.nlm.nih.gov/pubmed/29887428
http://dx.doi.org/10.1016/j.jelectrocard.2018.10.096
http://www.ncbi.nlm.nih.gov/pubmed/30476634
http://dx.doi.org/10.1016/j.ahj.2018.09.002
http://www.ncbi.nlm.nih.gov/pubmed/30392584
http://dx.doi.org/10.3390/s151026783
http://www.ncbi.nlm.nih.gov/pubmed/26506354
http://dx.doi.org/10.3390/s150922616
http://dx.doi.org/10.3390/s131217472
http://dx.doi.org/10.3390/s16091538
http://www.ncbi.nlm.nih.gov/pubmed/27657081


Atmosphere 2020, 11, 122 18 of 18

131. Ma, J.; Ovalle, A.; Woodbridge, D.M.K. Medhere: A Smartwatch-based Medication Adherence Monitoring
System using Machine Learning and Distributed Computing. In Proceedings of the 2018 40th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI,
USA, 17–21 July 2018; pp. 4945–4948.

132. Reeder, B.; David, A. Health at hand: A systematic review of smart watch uses for health and wellness.
J. Biomed. Inf. 2016, 63, 269–276. [CrossRef]

133. Apiletti, D.; Baralis, E.; Bruno, G.; Cerquitelli, T. Real-time analysis of physiological data to support medical
applications. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 313–321. [CrossRef]

134. Haescher, M.; Matthies, D.J.; Krause, S.; Bieber, G. Presenting a Data Imputation Concept to Support the
Continuous Assessment of Human Vital Data and Activities. In Proceedings of the 12th ACM International
Conference on PErvasive Technologies Related to Assistive Environments 2019, Island of Rhodes, Greece,
5–7 June 2019; pp. 587–592.

135. Schulte, P.F. Molecular Epidemiology: Principles and Practice; Academic Press: New York, NY, USA, 1993.
136. Crinnion, W.J. The CDC fourth national report on human exposure to environmental chemicals: What it tells

us about our toxic burden and how it assists environmental medicine physicians. Altern. Medi. Rev. 2010, 15,
101–108.

137. Angerer, J.; Gündel, J. Biomonitoring and occupational medicine. Possibilities and limitations. Annali
dell’Istituto Superiore di Sanita 1996, 32, 199–206. [PubMed]

138. Rüdiger, H.W. Biomonitoring in Occupational Medicine. In Toxicology; Elsevier: Amsterdam, The Netherlands,
1999; pp. 1027–1040.

139. Bartolucci, G.B.; de Rosa, E.; Gori, G.P.; Corona, P.C.; Perbellini, L.; Brugnone, F. Biomonitoring of occupational
exposure to styrene. Appl. Ind. Hyg. 1986, 1, 125–131. [CrossRef]

140. Haines, D.A.; Saravanabhavan, G.; Werry, K.; Khoury, C. An overview of human biomonitoring of
environmental chemicals in the Canadian Health Measures Survey: 2007–2019. Int. J. Hyg. Environ. Health
2017, 220, 13–28. [CrossRef] [PubMed]

141. Centers for Disease Control and Prevention. Fourth National Report on Human Exposure to Environmental
Chemicals; updated tables; Department of Health and Human Services: Atlanta, GA, USA, 2012.

142. Hajat, A.; Allison, M.; Diez-Roux, A.V.; Jenny, N.S.; Jorgensen, N.W.; Szpiro, A.A.; Vedal, S.; Kaufman, J.D.
Long-term exposure to air pollution and markers of inflammation, coagulation, and endothelial activation
a repeat-measures analysis in the multi-ethnic study of atherosclerosis (MESA). Epidemiology 2015, 26, 310–320.
[CrossRef]

143. Ernst, E. The role of fibrinogen as a cardiovascular risk factor. Atherosclerosis 1993, 100, 1–12. [CrossRef]
144. Abou-Raya, A.; Abou-Raya, S. Inflammation: A pivotal link between autoimmune diseases and

atherosclerosis. Autoimmun. Rev. 2006, 5, 331–337. [CrossRef]
145. Hwang, S.J.; Ballantyne, C.M.; Sharrett, A.R.; Smith, L.C.; Davis, C.E.; Gotto, A.M.J.; Boerwinkle, E. Circulating

adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary
heart disease cases: The Atherosclerosis Risk In Communities (ARIC) study. Circulation 1997, 96, 4219–4225.
[CrossRef]

146. Galea, S.; Tracy, M. Participation Rates in Epidemiologic Studies. Ann. Epidemiol. 2007, 17, 643–653. [CrossRef]
147. World Health Organization. Human Biomonitoring: Facts and Figures; Regional Office for Europe: Copenhagen,

Denmark, 2015.
148. Pedersen, O.B.; Erikstrup, C.; Kotzé, S.R.; Sørensen, E.; Petersen, M.S.; Grau, K.; Ullum, H. The Danish Blood

Donor Study: A large, prospective cohort and biobank for medical research. Vox Sanguinis 2012, 102, 271.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jbi.2016.09.001
http://dx.doi.org/10.1109/TITB.2008.2010702
http://www.ncbi.nlm.nih.gov/pubmed/8913036
http://dx.doi.org/10.1080/08828032.1986.10390495
http://dx.doi.org/10.1016/j.ijheh.2016.08.002
http://www.ncbi.nlm.nih.gov/pubmed/27601095
http://dx.doi.org/10.1097/EDE.0000000000000267
http://dx.doi.org/10.1016/0021-9150(93)90062-Y
http://dx.doi.org/10.1016/j.autrev.2005.12.006
http://dx.doi.org/10.1161/01.CIR.96.12.4219
http://dx.doi.org/10.1016/j.annepidem.2007.03.013
http://dx.doi.org/10.1111/j.1423-0410.2011.01553.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Exposure Assessment 
	Remote Sensing 
	Low Cost Air Pollution Sensors 
	Real Time Location Activity and the Use of Smart Devices 

	Assessment of Clinical Outcomes 
	Utilization of Smart Devices 
	Human Biomonitoring 

	Conclusions 
	References

