

Supplementary

Comparing Approaches for Reconstructing Groundwater Levels in the Mountainous Regions of Interior British Columbia, Canada, Using Tree Ring Widths

Stephanie C. Hunter ^{1,*}, Diana M. Allen ¹ and Karen E. Kohfeld ²

- ¹ Department of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6; stephanie_hunter@sfu.ca; dallen@sfu.ca
- ² School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6; kohfeld@sfu.ca
- * Correspondence: stephanie_hunter@sfu.ca

Received: 4 November 2020; Accepted: 16 December 2020; Published: date

Classifying the dominant recharge mechanism

Figure S1. Hysteresis plots for a) OW172, b) OW217, and c) OW47, showing a negative hysteresis loop, indicating the aquifer-stream system is streamflow-driven. The aquifer-stream systems were classifed as streamflow-driven for observation well/streamflow gauge combinations (a) and (b), but as high-elevation recharge-driven for (c). The location of observation well 047 in a high-elevation bedrock helps with this classification, as otherwise the high-elevation recharge-driven systems appear to be very similar to streamflow-driven systems.

Figure S2. Hysteresis plots for a) OW117, b) OW118, c) OW236, and d) OW122, showing a positive hysteresis loops, indicating the aquifer-stream system is recharge-driven at a low elevation. All of these aquifer-stream systems were classified as low-elevation recharge-driven.

Figure S3. Hysteresis plots for a) OW203 with stream gauge 08NL004, b) OW203 with stream gauge 08NL038, and c) OW096. Two plots were created for OW203 because two stream gauges were located nearby; however, both hysteresis plots were extremely messy, and cross correlation analysis (not shown) suggested that OW203 was in a streamflow-driven system, while the hysteresis plots suggest a low-elevation recharge-driven system; therefore, OW203 was not classified into an aquifer-stream system for this study. The hysteresis plot in c) is also not a defined loop structure, although it appears to be part of a negative loop; but the hydrograph of OW096 suggests there may be influence from nearby irrigation; therefore, it was also not classified into an aquifer-stream system.

Figure S4. Groundwater level records for all wells analyzed for relationships to tree ring records. Each graph shows the entire period of records available. Note that measurements are in depth to groundwater, i.e. distance below ground surface.

Figure S5. Groundwater level records for all wells analyzed for relationships to tree ring records. Each graph shows the entire period of records available. Note that measurements are in depth to groundwater, i.e. distance below ground surface.

Figure S6. Groundwater level records for all wells analyzed for relationships to tree ring records. Each graph shows the entire period of records available. Note that measurements are in depth to groundwater, i.e. distance below ground surface.

Figure S7. Groundwater level records for all wells analyzed for relationships to tree ring records. Each graph shows the entire period of records available. Note that measurements are in depth to groundwater, i.e. distance below ground surface.

Groundwater and tree ring data used

Table S1. Observation wells located in the interior of B.C. used for analysis of groundwater-tree ring width relationships.

Observation Well	Lat	Long	Elevation (m.a.s.l.)	Date Range	Aquifer-stream system
OW35	50.388	-120.313	762	1967-2020	Streamflow-driven
OW75	49.208	-119.825	413	1967-2020	Streamflow-driven
OW76	49.203	-119.828	415	1969–2010	Streamflow-driven
OW172	50.112	-119.357	409	1972-2020	Streamflow-driven
OW173	50.107	-119.361	405	1972-2009	Streamflow-driven
OW174	50.103	-119.365	427	1972-2009	Streamflow-driven
OW217	49.023	-118.434	512	1977-2020	Streamflow-driven
OW117	49.473	-115.719	52	1971-2020	Low-elevation recharge-driven
OW118	50.471	-119.130	52	1971-2020	Low-elevation recharge-driven
OW122	50.506	-119.129	52	1971-2020	Low-elevation recharge-driven
OW176	50.086	-119.376	434	1972-2009	Low-elevation recharge-driven
OW177	50.048	-119.398	397	1991-2003	Low-elevation recharge-driven
OW236	49.879	-119.399	398	1979–2020	Low-elevation recharge-driven
OW262	49.86	-119.422	N/A	1980-2020	Low-elevation recharge-driven
OW47	50.367	-119.087	1816	1965-2020	High-elevation recharge-driven
OW53	50.145	-119.4	966	1969-2008	High-elevation recharge-driven
OW54	50.145	-119.400	972	1969-2008	High-elevation recharge-driven
OW78	51.555	-121.203	1151	1972-2008	High-elevation recharge–driven
OW96	49.028	-119.477	306	1969–2020	Unclassified
OW97	49.028	-119.476	306	1969–2008	Unclassified
OW100	49.059	-119.511	317	1969–2008	Unclassified
OW203	49.175	-119.736	417	1975-2020	Unclassified

Table S2. Tree ring sites used to analyze groundwater-tree ring width relationships in the BC Interior.

Site	Lat	Long	Elevation (m.a.s.l.)	BGCZ	Species	Date Range	Authors
Cana 095	51.88	-121.25	810	Sub-Boreal Spruce	Douglas-Fir	1675-2000	Schweingruber, F.H.
Cana 147	50.82	-119.9	1550	Montane Spruce	Engelmann Spruce	1665–1994	Parish, R.
Cana 150	49.87	-118.85	1700	Engelmann Spruce- Subalpine Fir	Engelmann Spruce	1689–1998	Parish, R.; Small, B.
Cana 152	49.87	-118.85	1700	Engelmann Spruce- Subalpine Fir	Subalpine Fir	1712–1998	Parish, R.; Small, B.
Cana 161	51.03	-119.05	1900	Interior Cedar- Hemlock	Engelmann Spruce	1710–1996	Parish, R.
Cana 162	51.03	-119.05	1900	Interior Cedar- Hemlock	Subalpine Fir	1692–1996	Parish, R.
Cana 229	49.15	-117.9	1900	Engelmann Spruce- Subalpine Fir	Engelmann Spruce	1978–2014	Wilson, R.J.S.; Luckman, B.H.
Cana 231	50.56	-118.57	1830	Engelmann Spruce- Subalpine Fir	Engelmann Spruce	1477–1997	Wilson, R.J.S.; Luckman, B.H.
Cana 232	50.37	-119.07	1700	Engelmann Spruce- Subalpine Fir	Engelmann Spruce	1882–1997	Wilson, R.J.S.; Luckman, B.H.
Cana 233	49.9	-118.37	2050	Engelmann Spruce- Subalpine Fir	Engelmann Spruce	1712–1997	Wilson, R.J.S.; Luckman, B.H.
Cana 234	49.73	-118.93	2000	Engelmann Spruce- Subalpine Fir	Engelmann Spruce	1512–1997	Wilson, R.J.S.; Luckman, B.H.
Cana 235	49.17	-119.23	2000	Engelmann Spruce- Subalpine Fir	Engelmann Spruce	1569—1997	Wilson, R.J.S.; Luckman, B.H.

Cana	50.98	-121 72 1950		Engelmann Spruce- Engelmann		1604 1007	Wilson RIS Juckman BH	
237	237 50.98 -121.72 1950		1950	Subalpine Fir	Spruce	1694-1997	Wilson, R.J.S., Euckinan, D.H.	
Cana	50.7	_121.45	1080	Engelmann Spruce-	Engelmann	1554 1007	Wilson BIS Hudeman BH	
238	50.7	-121.45	1980	Subalpine Fir	Spruce	1554-1997	Wilson, R.J.S., Euckinan, D.H.	
Cana	E0 E2	101 50	1200	Engelmann Spruce-	Engelmann	1500 1005	Wilson DIC, Luckman PH	
239	30.33	-121.36	1800	Subalpine Fir	Spruce	1708-1997	Wilson, K.J.S.; Luckman, B.H.	

Figure S8. Standard chronologies of the tree ring records used to assess groundwater-tree ring relationships. Standard chronologies were created in R using the package dplR.

Figure S9. Standard chronologies of the tree ring records used to assess groundwater-tree ring relationships. Standard chronologies were created in R using the package dplR.

Figure S10. Standard chronologies of the tree ring records used to assess groundwater-tree ring relationships. Standard chronologies were created in R using the package dplR.

Figure S11. Standard chronologies of the tree ring records used to assess groundwater-tree ring relationships. Standard chronologies were created in R using the package dplR.

Tree ring width-groundwater level relationships

Table S3. Pairs of observation wells and tree ring sites used to determine months of significant correlations between the depth to groundwater level records and tree ring widths. Both previous-year and current-year relationships were assessed for correlations, but significant correlations were more common in the current year, so the relationships are shown for current year only.

Observation	Tree Ring	Period of	Months with Significant	Significant Correlation
Well	Sites	Overlap	Correlations	Coefficients
	Cana147	1967-1994	March–Oct	0.46-0.74
OW	Cana237	1967-1997	None	N/A
01135	Cana238	1967-1997	None	N/A
	Cana239	1967-1997	May-Oct	0.38-0.44
OW75	Cana235	1967–1997	June	0.32
OW96/97	Cana235	1969–1997	None	N/A
OW100	Cana235	1969–1997	None	N/A
OW203	Cana235	1975–1997	May–June	0.55
OW217	Cana229	1977-1997	July-October	0.40-0.50
	Cana161	1965-1996	July-September	0.44–0.51
OW47	Cana162	1965–1996	August–October	0.40-0.52
	Cana231	1965–1997	August–October	0.38-0.63
	Cana232	1965–1997	July & September	0.40-0.50
	Cana150	1969–1998	None	N/A
OWE2	Cana152	1969–1998	None	N/A
01055	Cana233	1969–1997	May-Oct	0.42-0.63
	Cana234	1969–1997	June-Oct	0.48-0.60
	Cana150	1972–1998	None	N/A
OW172	Cana152	1972-1998	None	N/A
01112	Cana233	1972–1997	February–April	0.42–0.5
	Cana234	1972–1997	None	N/A
	Cana150	1972–1998	None	N/A
OW173	Cana152	1972–1998	March–April	-0.4–0.42
01115	Cana233	1972–1997	July–October	0.36-0.52
	Cana234	1972–1997	July–October	0.43–0.51
	Cana150	1972–1998	April–May	-0.55-0.625
OW174	Cana152	1972–1998	February-April	-0.38-0.48
01114	Cana233	1972–1997	July–October	0.32-0.44
	Cana234	1972–1997	July–August	0.41-0.45

Table S3. cont'd. Pairs of observation wells and tree ring sites used to determine months of significant correlations between the depth to groundwater level records and tree ring widths. Both previous-year and current-year relationships were assessed for correlations, but significant correlations were more common in the current year, so the relationships are shown for current year only.

Observation	Tree Ring	Period of	Months with Significant	Significant Correlation
Well	Sites	Overlap	Correlations	Coefficients
	Cana150	1972-1998	August-September	0.35-0.39
OWIT	Cana152	1972-1998	July–October	0.32-0.63
OW1/6	Cana233	1972-1997	August–October	0.40-0.59
	Cana234	1972-1997	July–October	0.43-0.56
	Cana147	1971–1994	September-October	0.47-0.50
	Cana161	1971-1996	September-October	0.56-0.58
OW117	Cana162	1971-1996	None	N/A
	Cana231	1971–1997	None	N/A
	Cana232	1971-1997	None	N/A
	Cana147	1971–1994	August	0.32
	Cana161	1971-1996	July-September	0.19-0.39
OW118	Cana162	1971-1996	July–August	0.24-0.27
	Cana231	1971–1997	July-September	N/A
	Cana232	1971-1997	July–August	N/A
	Cana150	1979–1998	None	N/A
	Cana152	1979–1998	None	N/A
OW236	Cana232	1979–1997	June-October	0.49-0.70
	Cana233	1979–1997	September	0.42
	Cana234	1979–1997	September	0.375
	Cana150	1980-1998	January–June	-0.5-0.53
	Cana152	1980-1998	January–May	-0.375-0.43
OW262	Cana232	1980-1997	None	N/A
	Cana233	1980-1997	June-October	0.44-0.59
	Cana234	1980-1997	None	N/A
	Cana095	1969-2000	January–November	0.43-0.72
	Cana147	1969–1994	January–November	0.33-0.82
	Cana150	1969–1998	February	-0.43
	Cana152	1969–1998	None	N/A
	Cana161	1969–1996	January–November	0.43-0.71
	Cana162	1969–1996	None	N/A
Average of all	Cana229	1969-2014	June–November	0.36-0.54
Average of all	Cana231	1969–1997	June-September	0.4-0.48
wens	Cana232	1969–1997	June–November	0.49-0.70
	Cana233	1969–1997	January–November	0.31-0.71
	Cana234	1969–1997	June–November	0.43-0.53
	Cana235	1969–1997	None	N/A
	Cana237	1969–1997	None	N/A
	Cana238	1969–1997	None	N/A
	Cana239	1969–1997	June–November	0.42–0.68

Figure S12. Correlation plots between the pairs of observation wells and tree ring records shown in Table S3. Correlation plots were created in the R package "treeclim". Months with significant correlations are shown with a solid line, while non-significant months are identified with a dotted line.

Figure S13. Correlation plots between the pairs of observation wells and tree ring records shown in Table S3. Correlation plots were created in the R package "treeclim". Months with significant correlations are shown with a solid line, while non-significant months are identified with a dotted line.

Figure S14. Correlation plots between the pairs of observation wells and tree ring records shown in Table S3. Correlation plots were created in the R package "treeclim". Months with significant correlations are shown with a solid line, while non-significant months are identified with a dotted line.

Figure S15. Correlation plots between the pairs of observation wells and tree ring records shown in Table S3. Correlation plots were created in the R package "treeclim". Months with significant correlations are shown with a solid line, while non-significant months are identified with a dotted line.

OW118-Cana232

OW172-Cana150

Figure S16. Correlation plots between the pairs of observation wells and tree ring records shown in Table S3. Correlation plots were created in the R package "treeclim". Months with significant correlations are shown with a solid line, while non-significant months are identified with a dotted line.

Figure S17. Correlation plots between the pairs of observation wells and tree ring records shown in Table S3. Correlation plots were created in the R package "treeclim". Months with significant correlations are shown with a solid line, while non-significant months are identified with a dotted line.

Figure S18. Correlation plots between the pairs of observation wells and tree ring records shown in Table S3. Correlation plots were created in the R package "treeclim". Months with significant correlations are shown with a solid line, while non-significant months are identified with a dotted line.

Figure S19. Correlation plots between the pairs of observation wells and tree ring records shown in Table S3. Correlation plots were created in the R package "treeclim". Months with significant correlations are shown with a solid line, while non-significant months are identified with a dotted line.

Figure S20. Correlation plots between the pairs of observation wells and tree ring records shown in Table S3. Correlation plots were created in the R package "treeclim". Months with significant correlations are shown with a solid line, while non-significant months are identified with a dotted line.

Figure S21. Correlation plots between the pairs of observation wells and tree ring records shown in Table S3. Correlation plots were created in the R package "treeclim". Months with significant correlations are shown with a solid line, while non-significant months are identified with a dotted line.

Figure S22. Correlation plots between the pairs of observation wells and tree ring records shown in Table S3. Correlation plots were created in the R package "treeclim". Months with significant correlations are shown with a solid line, while non-significant months are identified with a dotted line.

Figure S23. Correlation plots between the pairs of observation wells and tree ring records shown in Table S3. Correlation plots were created in the R package "treeclim". Months with significant correlations are shown with a solid line, while non-significant months are identified with a dotted line.

Figure S24. Moving correlation plots between the pairs of obersvation wells and tree ring records shown in Table S3. The depth of blue (positive) and red (negative) shading indicates the strength of the correlation, with white asterisks symbolizing windows of significant correlations.

Figure S25. Moving correlation plots between the pairs of obersvation wells and tree ring records shown in Table S3. The depth of blue (positive) and red (negative) shading indicates the strength of the correlation, with white asterisks symbolizing windows of significant correlations.

Figure S26. Moving correlation plots between the pairs of obersvation wells and tree ring records shown in Table S3. The depth of blue (positive) and red (negative) shading indicates the strength of the correlation, with white asterisks symbolizing windows of significant correlations.

Figure S27. Moving correlation plots between the pairs of obersvation wells and tree ring records shown in Table S3. The depth of blue (positive) and red (negative) shading indicates the strength of the correlation, with white asterisks symbolizing windows of significant correlations.

Figure S28. Moving correlation plots between the pairs of obersvation wells and tree ring records shown in Table S3. The depth of blue (positive) and red (negative) shading indicates the strength of the correlation, with white asterisks symbolizing windows of significant correlations.

SFigure 29. Moving correlation plots between the pairs of obersvation wells and tree ring records shown in Table S3. The depth of blue (positive) and red (negative) shading indicates the strength of the correlation, with white asterisks symbolizing windows of significant correlations.

Tree species used

Figure S30. Level 2 North American Ecoregions. The three ecoregions considered for this study (Coast Mountain, Plateau, and Mountain) are shown in opaque blue, pink, and brown.

Table S4. Species of tree ring records which were included as potential predictors in the reconstruction models, listed by the ecoregions each species is present in. The last column indicates if this species was ever used in a reconstruction model using any of the ecoregions to select tree ring records. As the Coast Mountain, Plateau, and Mountain ecoregions are subsets of the climate footprint area used to select tree ring records, the climate footprint contains a combination of these species as well.

Tree Species	Ecoregions	Used in reconstruction models		
Mountain hemlock	Coast Mountain, mountain	Yes- Coast Mountain & Mountain		
Yellow cedar	Coast Mountain	No		
Sitka spruce	Coast Mountain	No		
Western hemlock	Coast Mountain	No		
Subalpine fir	Coast Mountain, Plateau, Mountain	Yes- Coast Mountain & Mountain		
Pacific silver fir	Coast Mountain	No		
Pinyon pine	Plateau, Mountain	Yes- Plateau & Mountain		
Ponderosa pine	Plateau, Mountain	Yes- Plateau & Mountain		
Douglas-fir	Plateau, Mountain	Yes- Plateau & Mountain		
Limber pine	Plateau, Mountain	Yes- Mountain		
Blue Oak	Plateau, Mountain	Yes- Plateau		
Bristlecone pine	Plateau, Mountain	Yes- Plateau		
Jeffrey pine	Plateau, Mountain	No		
Western juniper	Plateau, Mountain	No		
Engelmann spruce	Plateau, Mountain	Yes- Mountain		
Whitebark pine	Mountain	No		
Lodgepole pine	Mountain	No		
Incense cedar	Mountain	No		
White fir	Mountain	No		
Sugar pine	Mountain	No		
California red fir	Mountain	No		
Subalpine larch	Mountain	Yes- Mountain		
White pine	Mountain	Yes- Mountain		
Rocky Mountain juniper	Mountain	No		
Quaking aspen	Mountain	No		
Utah juniper	Mountain	No		
Jack pine	Mountain	No		
White spruce	Mountain	No		
Western larch	Mountain	Yes- Mountain		

Reconstruction models

Table S5. Tree ring records used as	s predictors in the streamflow-	-driven reconstruction model.

Site	Lat	Long	Elevation	Ecoregion	Species	Date Pango	Authors
Cana	49.5833	-	(m.a.s.i.) 2197	Mountain	Subalpine	1200-	Colenutt, M.,
308		116.6833			larch	2005	Colenutt, R.,
							Luckman, B.H.,
							Watson, E.,
							Pederson, G.T.
Cana	49.4361	-	2060	Mountain	Subalpine	1700-	Luckman, B.H.,
424		117.1294			larch	2005	Watson, E.,
							Pederson, G.T.
Cana	50.35	-123.35	N/A	Mountain	Subalpine	1850-	Smith, D.J.,
464					fir	2012	Coulthard, B.L.
Cana	50.35	-122.48	1430	Coast	Mountain	1711-	Smith, D.J.,
468				Mountain	hemlock	2012	Coulthard, B.L.
Cana	52.28	-126.89	1310	Coast	Mountain	1750-	Smith, D.J.,
469				Mountain	hemlock	2010	Coulthard, B.L.,
							Pitman, K.
Cana	50.22	-126.35	1005	Coast	Mountain	1490-	Smith, D.J.,
471				Mountain	hemlock	2008	Coulthard, B.L.,
							Laroque, C.
Cana	52.22	-126.34	N/A	Coast	Mountain	1658-	Smith, D.J.,
476				Mountain	hemlock	2010	Coulthard, B.L.,
							Starheim, C.
Cana	52.07	-126.13	N/A	Coast	Subalpine	1533-	Smith, D.J.,
485				Mountain	fir	2009	Coulthard, B.L.,
							Starheim, C.
Cana	52.28	-126.9	N/A	Coast	Mountain	1623-	Smith, D.J.,
490				Mountain	hemlock	2010	Coulthard, B.L.,
							Pitman, K.
Grouse	48.789	-121.924	1450	Mountain	Mountain	1600-	LaGassey, H.
Ridge,					hemlock	2018	(personal
Mt.							communication)
Baker							
MT 117	48.72	-113.65	2150	Mountain	Subalpine	1850-	Bekker, M.F.,
					fir	2006	Tikalsky, B.P.,
							Fagre, D.B.,
							Billis, S.D.
MT 119	46.0167	-	2700	Mountain	Subalpine	1570-	Littell, J.S.
		113.3667			larch	2005	

Site	Lat	Long	Elevation	Ecoregion	Species	Date	Authors
OD 001	44.01	110.60	(m.a.s.i.)		T A7 /	Kange	T 11' T
OK 091	44.31	-118.68	1915	Mountain	Western	1180-	Laubli, L.,
					larch	2008	Voelker, S.L.
OR 097	44.2167	-121.8667	1454	Mountain	Mountain	1837-	Ratcliff, C.J.,
					hemlock	2013	Voelker, S.L.,
							Nolin, A.W.
OR 098	42.92	-122.05	2198	Mountain	Mountain	1600-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 099	42.97	-122.15	2221	Mountain	Mountain	1620-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
						-	George, S.
OR 100	42.93	-122.17	2186	Mountain	Mountain	1500-	Appleton, S.N.,
011100	12.50	122.17	2100	mountum	hemlock	2012	Smoter F St
					HEIHOCK	2012	Coorgo S
OP 101	42.02	100.00	2252	Mountain	Mountain	1650	Apploton C N
OK 101	42.93	-122.02	2552	Mountain		1650-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 102	42.98	-122.1	2075	Mountain	Mountain	1600-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 103	42.91	-122.07	2198	Mountain	Mountain	1690-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 104	42.97	-122.07	2050	Mountain	Mountain	1690-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
WA	48 87	-121.68	1310	Mountain	Mountain	1650-	Bunn A G
134	10.07	121.00	1010	Woulduit	hemlock	2006	Dunit, M.G.
W/A	18 2667	120.45	2190	Mountain	Subalpipo	1450	Littell IS
125	40.2007	-120.45	2190	Wouldan	Jarah	2005	Litten, J.S.
133	40.0007	101 (050	1207	Manutalia	larch	2005	Manainlananali
WA	48.8607	-121.6850	1297	Mountain	Mountain	1750-	Marcinkowski,
143					hemlock	2011	K., Peterson,
							D.L.
WA	48.5733	-120.8264	1540	Mountain	Mountain	1830-	Marcinkowski,
144					hemlock	2011	K., Peterson,
							D.L.
WA	48.5048	-121.2088	1769	Mountain	Mountain	1690-	Marcinkowski,
145					hemlock	2011	K., Peterson,
							D.L.

Table S5 cont'd. Tree ring records used as predictors in the streamflow-driven reconstruction model.

Site	Lat	Long	Elevation	Ecoregion	Species	Date	Authors
			(m.a.s.l.)			Range	
WA	47.8444	-121.0359	1703	Mountain	Mountain	1800-	Marcinkowski,
146					hemlock	2011	K., Peterson,
							D.L.
WA	48.6798	-121.3227	1473	Mountain	Mountain	1746-	Marcinkowski,
148					hemlock	2011	K., Peterson,
							D.L.
WY 041	42.55	-108.8167	2731	Mountain	Limber	1017-	Gray, S.T.,
					pine	2007	Pederson, G.T.,
					_		Abel, K.
UT 535	40.5667	-111.5833	3000	Mountain	Limber	1350-	Tikalsky, B.P.,
					pine	2006	Bekker, M.F.,
							DeRose, R.J.,
							Kershner, M.,
							Bright, B.C.

Table S5 cont'd. Tree ring records used as predictors in the streamflow-driven reconstruction model.

Table S6. Tree ring records used as predictors in the high-elevation recharge-driven reconstruction model.

Site	Lat	Long	Elevation	Ecoregion	Species	Date	Authors
			(m.a.s.l.)			Range	
Cana	49.5833	-116.6833	2197	Mountain	Subalpine	1200-	Colenutt, M.,
308					larch	2005	Colenutt, R.,
							Luckman,
							B.H., Watson,
							E., Pederson,
							G.T.
Cana	49.4361	-117.1294	2060	Mountain	Subalpine	1700-	Luckman,
424					larch	2005	B.H., Watson,
							E., Pederson,
							G.T.
Cana	50.35	-123.35	N/A	Mountain	Subalpine	1850-	Smith, D.J.,
464					fir	2012	Coulthard,
							B.L.
Cana	50.35	-122.48	1430	Coast	Mountain	1711-	Smith, D.J.,
468				Mountain	hemlock	2012	Coulthard,
							B.L.
Cana	52.28	-126.89	1310	Coast	Mountain	1750-	Smith, D.J.,
469				Mountain	hemlock	2010	Coulthard,
							B.L., Pitman,
							К.
Cana	50.22	-126.35	1005	Coast	Mountain	1490-	Smith, D.J.,
471				Mountain	hemlock	2008	Coulthard,
							B.L., Laroque,
							C.
Cana	52.22	-126.34	N/A	Coast	Mountain	1658-	Smith, D.J.,
476				Mountain	hemlock	2010	Coulthard,
							B.L., Starheim,
							C.

Table	S6	cont'd.	Tree	ring	records	used	as	predictors	in	the	high-elevation	recharge-driven
recons	truc	ction mo	del.									

Site	Lat	Long	Elevation	Ecoregion	Species	Date	Authors
		Ũ	(m.a.s.l.)	Ũ	-	Range	
Cana	52.07	-126.13	N/A	Coast	Subalpine	1533-	Smith, D.J.,
485				Mountain	fir	2009	Coulthard, B.L.,
							Starheim, C.
Cana	52.28	-126.9	N/A	Coast	Mountain	1623-	Smith, D.J.,
490				Mountain	hemlock	2010	Coulthard, B.L.,
							Pitman, K.
Grouse	48.789	-121.924	1450	Mountain	Mountain	1600-	LaGassey, H.
Ridge,					hemlock	2018	(personal
Mt.							communication)
Baker							
MT 117	48.72	-113.65	2150	Mountain	Subalpine	1850-	Bekker, M.F.,
					fir	2006	Tikalsky, B.P.,
							Fagre, D.B.,
							Billis, S.D.
MT 119	46.0167	-	2700	Mountain	Subalpine	1570-	Littell, J.S.
		113.3667			larch	2005	
OR 091	44.31	-118.68	1915	Mountain	Western	1180-	Laubli, L.,
					larch	2008	Voelker, S.L.
OR 097	44.2167	-	1454	Mountain	Mountain	1837-	Ratcliff, C.J.,
		121.8667			hemlock	2013	Voelker, S.L.,
							Nolin, A.W.
OR 098	42.92	-122.05	2198	Mountain	Mountain	1600-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 099	42.97	-122.15	2221	Mountain	Mountain	1620-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 100	42.93	-122.17	2186	Mountain	Mountain	1500-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 101	42.93	-122.02	2352	Mountain	Mountain	1650-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 102	42.98	-122.1	2075	Mountain	Mountain	1600-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 103	42.91	-122.07	2198	Mountain	Mountain	1690-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.

Site	Lat	Long	Elevation	Ecoregion	Species	Date	Authors
			(m.a.s.l.)			Range	
OR 104	42.97	-122.07	2050	Mountain	Mountain	1690-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
WA	48.87	-121.68	1310	Mountain	Mountain	1650-	Bunn, A.G.
134					hemlock	2006	
WA	48.8607	-	1297	Mountain	Mountain	1750-	Marcinkowski,
143		121.6850			hemlock	2011	K., Peterson,
							D.L.
WA	48.5733	-	1540	Mountain	Mountain	1830-	Marcinkowski,
144		120.8264			hemlock	2011	K., Peterson,
							D.L.
WA	48.5048	-	1769	Mountain	Mountain	1690-	Marcinkowski,
145		121.2088			hemlock	2011	K., Peterson,
							D.L.
WA	47.8444	-	1703	Mountain	Mountain	1800-	Marcinkowski,
146		121.0359			hemlock	2011	K., Peterson,
							D.L.
WA	48.6798	-	1473	Mountain	Mountain	1746-	Marcinkowski,
148		121.3227			hemlock	2011	K., Peterson,
							D.L.
WY	44.7333	-109.9	2961	Mountain	Engelmann	1730-	King, J.C.
046					spruce	2012	_

Table S6 cont'd. Tree ring records used as predictors in the high-elevation recharge-driven reconstruction model.

Table S7. Tree ring records used as predictors in the low-elevation recharge-driven reconstruction model.

Site	Lat	Long	Elevation	Ecoregion	Species	Date	Authors
			(m.a.s.l.)			Range	
Cana	49.5833	-116.6833	2197	Mountain	Subalpine	1200-	Colenutt, M.,
308					larch	2005	Colenutt, R.,
							Luckman,
							B.H., Watson,
							E., Pederson,
							G.T.
Cana	49.4361	-117.1294	2060	Mountain	Subalpine	1700-	Luckman,
424					larch	2005	B.H., Watson,
							E., Pederson,
							G.T.
Cana	50.35	-123.35	N/A	Mountain	Subalpine	1850-	Smith, D.J.,
464					fir	2012	Coulthard,
							B.L.

Table	S7	cont'd.	Tree	ring	records	used	as	predictors	in	the	low-elevation	recharge-driven
recons	truc	ction mo	del.									

Site	Lat	Long	Elevation	Ecoregion	Species	Date	Authors
		-	(m.a.s.l.)	-	-	Range	
Cana	50.35	-122.48	1430	Coast	Mountain	1711-	Smith, D.J.,
468				Mountain	hemlock	2012	Coulthard, B.L.
Cana	52.28	-126.89	1310	Coast	Mountain	1750-	Smith, D.J.,
469				Mountain	hemlock	2010	Coulthard, B.L.,
							Pitman, K.
Cana	50.22	-126.35	1005	Coast	Mountain	1490-	Smith, D.J.,
471				Mountain	hemlock	2008	Coulthard, B.L.,
							Laroque, C.
Cana	52.22	-126.34	N/A	Coast	Mountain	1658-	Smith, D.J.,
476				Mountain	hemlock	2010	Coulthard, B.L.,
							Starheim, C.
Cana	52.07	-126.13	N/A	Coast	Subalpine	1533-	Smith, D.J.,
485				Mountain	fir	2009	Coulthard, B.L.,
							Starheim, C.
Cana	52.28	-126.9	N/A	Coast	Mountain	1623-	Smith, D.J.,
490				Mountain	hemlock	2010	Coulthard, B.L.,
							Pitman, K.
Grouse	48.789	-121.924	1450	Mountain	Mountain	1600-	LaGassey, H.
Ridge,					hemlock	2018	(personal
Mt.							communication)
Baker							
MT 117	48.72	-113.65	2150	Mountain	Subalpine	1850-	Bekker, M.F.,
					fir	2006	Tikalsky, B.P.,
							Fagre, D.B.,
							Billis, S.D.
MT 119	46.0167	-	2700	Mountain	Subalpine	1570-	Littell, J.S.
		113.3667			larch	2005	
MT120	46.0167	-	2750	Mountain	Subalpine	1450-	Littell, J.S.
		113.3833			larch	2006	
OR 097	44.2167	-	1454	Mountain	Mountain	1837-	Ratcliff, C.J.,
		121.8667			hemlock	2013	Voelker, S.L.,
							Nolin, A.W.
OR 098	42.92	-122.05	2198	Mountain	Mountain	1600-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 099	42.97	-122.15	2221	Mountain	Mountain	1620-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.

Table S7 cont'd. Tree ring records used as predictors in the low-elevation recharge-driven reconstruction model.

Site	Lat	Long	Elevation	Ecoregion	Species	Date	Authors
			(m.a.s.l.)			Range	
OR 100	42.93	-122.17	2186	Mountain	Mountain	1500-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 101	42.93	-122.02	2352	Mountain	Mountain	1650-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 102	42.98	-122.1	2075	Mountain	Mountain	1600-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 103	42.91	-122.07	2198	Mountain	Mountain	1690-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
OR 104	42.97	-122.07	2050	Mountain	Mountain	1690-	Appleton, S.N.,
					hemlock	2012	Smoter, E., St.
							George, S.
WA	48.87	-121.68	1310	Mountain	Mountain	1650-	Bunn, A.G.
134					hemlock	2006	
WA	48.2667	-120.45	2190	Mountain	Subalpine	1450-	Littell, J.S.
135					larch	2005	
WA	48.8607	-121.6850	1297	Mountain	Mountain	1750-	Marcinkowski,
143					hemlock	2011	K., Peterson,
							D.L.
WA	48.5733	-120.8264	1540	Mountain	Mountain	1830-	Marcinkowski,
144					hemlock	2011	K., Peterson,
							D.L.
WA	48.5048	-121.2088	1769	Mountain	Mountain	1690-	Marcinkowski,
145					hemlock	2011	K., Peterson,
							D.L.
WA	47.8444	-121.0359	1703	Mountain	Mountain	1800-	Marcinkowski,
146					hemlock	2011	K., Peterson,
							D.L.
WA	48.6798	-121.3227	1473	Mountain	Mountain	1746-	Marcinkowski,
148					hemlock	2011	K., Peterson,
							D.L.

Figure S31. Calibration and verification statistics for extended reconstructions for a) streamflowdriven and b) high-elevation recharge-driven models using the climate footprint, and the c) all-wells and d) high-elevation recharge-driven models created using the Coast Mountain Ecoregions to select tree ring records.