



## Sensitivity of Microphysical Schemes on the Simulation of Post-Monsoon Tropical Cyclones over the North Indian Ocean

## G Venkata Rao<sup>1</sup>, K Venkata Reddy<sup>1</sup> and Venkataramana Sridhar<sup>2,\*</sup>

<sup>1</sup>Department of Civil Engineering, National Institute of Technology Warangal, Telangana-506004, India; gvenkat@student.nitw.ac.in (G.V.R.); kvreddy@nitw.ac.in (K.V.R.)

<sup>2</sup>Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University,

Blacksburg, VA 24061, USA

\*Correspondence: vsri@vt.edu

Received: 11 November 2020; Accepted: 30 November 2020; Published: 30 November 2020



**Figure S1.** Time evolution of area averaged mixing ratios (g/kg) for the cyclone Daye (Qv-Water Vapor, Qc-Cloud Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel).



**Figure S2.** Time evolution of area averaged mixing ratios (g/kg) for the cyclone Gaja (Qv-Water Vapor, Qc-Cloud Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel).



**Figure S3.** Time evolution of area averaged mixing ratios (g/kg) for the cyclone Kyant (Qv-Water Vapor, Qc-Cloud Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel).



**Figure S4.** Time evolution of area averaged mixing ratios (g/kg) for the cyclone Nilofar (Qv-Water Vapor, Qc-Cloud Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel).



**Figure S5.** Time evolution of area averaged mixing ratios (g/kg) for the cyclone Ockhi (Qv-Water Vapor, Qc-Cloud Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel).



**Figure S6.** Time evolution of area averaged mixing ratios (g/kg) for the cyclone Phethai (Qv-Water Vapor, Qc-Cloud Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel).



**Figure S7.** Time evolution of area averaged mixing ratios (g/kg) for the cyclone Titli (Qv-Water Vapor, Qc-Cloud Water, Qr-Rain Water, Qi-Ice, Qs-Snow, Qg-Graupel).