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Abstract: The current work presents the operational implementation and evaluation of a rapid
response fire spread forecasting system, named IRIS, that was developed to provide support to
the tactical wildfire suppression activities of the Hellenic Fire Corps. The system was operationally
employed during the 2019 fire season in Greece, providing on-demand wildfire spread predictions
for 17 incidents. Satellite remote sensing data were employed for quantitatively assessing IRIS’s
predictions for eight selected events. Our results suggest an overall satisfactory model performance.
More importantly, this study demonstrates that, as coupled fire-atmosphere modeling becomes an
increasingly popular approach, the respective models have great potential to support operational
agencies and wildfire managers during the incident phase.
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1. Introduction

Wildfires are an integral component of many terrestrial biomes [1], including Mediterranean
ecosystems [2]. It is estimated that every year, an average ~45,000 wildfires occur in the Mediterranean [3],
generating approximately 85% of the total burnt area (BA) of Europe [4]. A proportion of these wildfires
are associated with an increased risk of direct damages to humans and properties [5], and adverse
primary and secondary environmental impacts (e.g., soil erosion) [6]. Such catastrophic wildfires
have repeatedly affected the Mediterranean countries in recent decades [7]. For instance, the wildfires
that broke out in Portugal in 2003, caused the death of 21 people and induced damages estimated
at over 1 billion Euro [8], while most recently, in 2018, 103 people lost their lives in the deadliest
wildfire in the modern history of Greece [9]. The growing concern about wildfires and their adverse
consequences is further supported by the increasing trends in both their frequency of occurrence and
spatial extent, as a result of climate change [10] and other anthropogenic factors, such as the expansion
of the wildland-urban interface [11].

To contain the socio-economic impacts of wildfires, policymakers, land managers, and operational
firefighting agencies must rely on information related to wildfire spread and behavior [12].
Such information is critically important for wildfire management, particularly with respect to
evaluating the most effective tactical wildfire suppression options during the incident support
phase [13]. Numerical models, able to simulate the perimeter growth and behavior of wildfires, are
thus considered to be a highly valuable tool.

The numerical modeling of wildfire spread and behavior dates back to the early 1970s when the
first models were developed to understand observed incidents, predict wildfire spread, and evaluate
the influence of varying environmental conditions on wildfire behavior [14]. Today, the wide array of
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available models ranges from advanced 3D computational fluid dynamics and combustion models
such as FIRETEC [15] and WFDS (Wildland-Urban Interface Fire Dynamics Simulator) [16] to empirical
models such as FARSITE [17] and BehavePlus [18]. Each model is characterized by certain advantages
and disadvantages, all related to computational demands, data requirements, accuracy, robustness,
and transferability [19].

From an operational point of view, the fundamental requirement is to achieve a balance
between the physics and the overall complexity of a wildfire simulator, which ultimately affects
its accuracy and computational cost. Purely physical models [15,16] are considered to be among the
most accurate, operating at very fine spatial resolutions and resolving the combustion processes.
However, these models are also the most inappropriate for operational applications, as they demand a
large computational effort that limits their implementation to small simulation domains or/and coarse
representations of the landscape characteristics [20]. Even if computational restrictions did not exist,
the full exploitation of the capabilities of such models would require the availability of extremely
high-resolution input data (e.g., fuel type and condition, topography), which are rarely available for
real-time applications. On the other extreme, empirical and semi-empirical models [17,18] are the most
computationally efficient and have been shown to provide accurate wildfire spread predictions, even
outside of the limits of their training datasets [21]. In between, there exists the approach of coupling a
numerical weather prediction (NWP) model with a 2D wildfire spread model. Coupled fire-atmosphere
models are considered as an intermediate trade-off, providing the necessary balance between the
realism of the represented physical processes and the computational demands for performing real-time
predictions [22–24].

While adapted to a real-time response, coupled fire-atmosphere models have been proven to be
able to reproduce wildfire spread [22–30] and smoke dispersion [31–33], and even anticipate several
dynamic, transient phenomena, such as convective plumes, fire-induced winds, and horizontal
roll vortices [34–37]. Nevertheless, such models are still not widely used in wildfire incident
management. Instead, the common practice is to use an empirical model driven by external
meteorological forcing [13,38–40]. Although this is an efficient approach, it presents several limitations.
For instance, the wind field driving wildfire spread is provided by an external meteorological model
that typically operates at a spatial resolution that is insufficient for resolving local effects of topography.
Finer resolution wind fields could be obtained by employing a diagnostic model based on mass
conservation [41,42], but this approach would not increase the temporal resolution of the primary
meteorological forcing (typically 1 h). Most importantly, the use of the external meteorological forcing
does not allow for considering the significant two-way interactions between the fire and the atmosphere
(i.e., “the fire creates its own weather”).

In this work, we present the operational implementation of a rapid response fire spread forecasting
system. Named IRIS, after a messenger goddess in Greek mythology, the forecasting system was
developed to provide operational support to the Hellenic Fire Corps (HFC) and is currently, to the best
of our knowledge, the first of its kind in the European Union (EU). The system was developed under the
framework of the DISARM (Drought and fIre obServatory and eArly waRning systeM) project which
used state-of-the-art observational and modeling techniques for building a common prevention and
mitigation framework for the vulnerable region of the southeast Mediterranean [43]. IRIS is based on the
coupled fire-atmosphere WRF-Fire model [44], properly adapted to account for the pyric environment
of Greece [24]. IRIS was operationally deployed in Greece during the 2019 fire season, providing
real-time, on-demand wildfire spread predictions for 17 incidents in total. Satellite-based remote
sensing data were employed for assessing the accuracy of the system’s predictions and evaluating
its overall performance. Our overarching goal is to demonstrate that IRIS, a coupled fire-atmosphere
modeling system, has great potential to effectively support tactical wildfire suppression planning
through the provision of added-value forecast guidance. Compared to previous studies that employed
coupled fire-atmosphere models, our work differs in the sense that it considers several events for
providing a quantitative and qualitative performance evaluation of the model. Therefore, we believe
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that this study is one of the first, if not the first, to introduce a detailed accuracy assessment of an
operational fire spread forecasting system that is based on coupled fire-atmosphere modeling.

2. Methodology and Data

2.1. Study Area, Selected Wildfires and Data

IRIS was designed and developed to operationally support wildfire suppression activities of the
HFC in Greece. The country is located between 34◦ and 42◦ northern latitude, and 19◦ and 28◦ eastern
longitude in southeast Europe, covering an area of approximately 132,000 km2. Although Greece has
one of the longest coastlines in the world, due to the numerous islands and highly indented coastline,
mountains and hills represent about 80% of its total surface. The dominant vegetation types affected
by wildfires include phryganic ecosystems, Pinus halepensis and Pinus brutia forests, Quercus coccifera
shrublands, and Mediterranean grasslands, which collectively cover up to ~39% of the country’s
surface [45].

During the 2019 fire season (1 May–31 October), IRIS was operationally deployed by the HFC on
17 occasions in total. The locations of the wildfires for which the forecasting system was activated are
shown in Figure 1. The vast majority of the incidents took place in southern Greece, as expected given
the wildfire climatology of Greece [46]. Out of the 17 wildfires, 11 occurred in mainland Greece and 6
burned across islands of the Ionian, Myrtoan, and Aegean Sea. August was the busiest month for IRIS
(11 incidents), followed by July (3 incidents) and September (3 incidents).
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Figure 1. Locations of the 17 wildfires for which IRIS was activated during the 2019 fire season
in Greece.

Table 1 summarizes key information about the eight most significant wildfires of the 2019 fire
season, for which IRIS was activated and provided spread predictions, and for which satellite remote
sensing data were available for carrying out the predictions’ evaluation. According to the official
records of the HFC [47], the cumulative BA of the selected events (5767 ha) accounted for approximately
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56% of the 2019 fire season total BA in Greece (~10,338 ha). The largest incident was inarguably the
Kontodespoti wildfire (WF07), which burned more than 2500 ha in about 39 h, followed by the Lithakia
(WF16), Prodromos (WF08), and Elafonissos (WF04) wildfires, which burned more than 500 ha. On
the other hand, the two smallest events were those that took place in Mesokampos (WF11) and Kastri
(WF01), burning less than 100 ha. The remaining two events, in Hymettus (WF06) and Loutraki (WF15),
were important mostly due to their proximity to populated residential areas. All incidents, except
WF04 and WF07, lasted for less than 24 h. The reported events’ durations do not include the time spent
for mop-up operations, thus considering only the time of active wildfire spread. This information was
either provided by HFC officers or retrieved from news reports.

Table 1. Summary of the eight most significant wildfires of the 2019 fire season in Greece, for which
IRIS was activated by the Hellenic Fire Corps (HFC) and provided spread predictions. The “Date and
Time (UTC)” column reports the actual time of wildfire ignition according to the official records of the
HFC [47]. The “IRIS activation (UTC)” column reports the time of system activation by HFC officers
(Section 2.2).

ID Region
Date and

Time
(UTC)

IRIS
Activation

(UTC)

Location
(◦N, ◦E)

Duration
(hh: mm)

BA
(ha)

Perimeter
Acquisition

Date

WF01 Kastri 8 July 2019
11:37

8 July 2019
12:40

38.94925,
22.20243 09:23 98 8 July 2019

WF04 Elafonissos
10 August

2019
02:40

10 August
2019
06:56

36.48591,
22.97353 38:20 535 11 August

2019

WF06 Hymettus
12 August

2019
00:19

12 August
2019
01:20

37.97047,
23.83132 06:41 180 12 August

2019

WF07 Kontodespoti
13 August

2019
00:10

13 August
2019
01:25

38.62776,
23.65245 38:50 2889 15 August

2019

WF08 Prodromos
13 August

2019
02:35

13 August
2019
03:40

38.24905,
22.91353 12:25 735 13 August

2019

WF11 Mesokampos
24 August

2019
14:09

24 August
2019
14:48

37.70667,
26.96484 14:51 59 26 August

2019

WF15 Loutraki

14
September

2019
12:36

14
September

2019
13:27

37.98038,
22.98734 20:24 352

16
September

2019

WF16 Lithakia

15
September

2019
08:00

15
September

2019
08:32

37.70666,
20.82235 22:30 919

16
September

2019

For the evaluation of IRIS’s predictions, wildfire perimeter data were retrieved from the
European Forest Fire Information System (EFFIS) [48]. These data have a spatial resolution of about
250 × 250 m2 and are based on measurements taken from the MODIS (Moderate Resolution Imaging
Spectroradiometer) instrument onboard the Terra and Aqua satellites. In addition, wind speed and
direction observations were used for evaluating IRIS’s wind forecasts. These data were retrieved
from the network of automatic weather stations (AWSs) that the National Observatory of Athens
(NOA) has operated in Greece since 2007 [49]. Depending on the ignition location of each wildfire,
we obtained wind speed and direction measurements from the nearest AWS with data availability
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(Table 2). Unfortunately, the selected AWS may not always be representative of the meteorological
conditions prevailing in the vicinity of the wildfires. However, their observations are considered to be
useful for evaluating the overall model performance with respect to wind forecasting.

Table 2. Summary of the automatic weather stations (AWSs) used for the evaluation of IRIS’s
wind predictions.

ID Station Latitude
(◦N)

Longitude
(◦E)

Verification Period
(UTC) Comments

WF01 Makrakomi 38.9375 22.1168 8 July 2019 13:00–
8 July 2019 21:00

7.5 km WSW of
ignition location

WF04 Kavomalias 36.4758 23.1012 10 August 2019 07:00–
11 August 2019 06:00

11 km ESE of
ignition location

WF06 Palini 37.9978 23.8928 12 August 2019 02:00–
12 August 2019 07:00

6 km NE of
ignition location

WF07 Psachna 38.5694 23.6492 13 August 2019 02:00–
14 August 2019 03:00

6.4 km S of
ignition location

WF08 Kapareli 38.2433 23.2117 13 August 2019 04:00–
13 August 2019 15:00

26.5 km E of
ignition location

WF11 Samos 37.7937 26.6820 24 August 2019 15:00–
25 August 2019 05:00

26 km NW of
ignition location

WF15 Loutraki 37.9696 22.9799 14 September 2019 14:00–
15 September 2019 09:00

1.4 km SSW of
ignition location

WF16 Zakynthos 37.7810 20.8450 15 September 2019 09:00–
16 September 2019 07:00

8.4 km NNE of
ignition location

2.2. IRIS—Rapid Response Fire Spread Forecasting System

Figure 2 presents the flow chart of the IRIS rapid response fire spread forecasting system, as it was
operationally implemented in Greece during the 2019 fire season. The on-demand deployment of the
system is exclusively controlled by officers of the HFC through a password-protected web application.
This application allows HFC officers to navigate through the map of Greece and request the activation
of IRIS by simply clicking on the map, providing the coordinates and time of ignition. As soon as a
wildfire is registered on the web application, a daemon running on NOA’s computational infrastructure
triggers the execution of WRF-Fire, launching a shell script that takes the ignition coordinates and
time as arguments. The latter is employed for automatically setting up the simulation domains
and initializing the coupled fire-atmosphere modeling system (Section 2.2.1). To ensure the timely
delivery of the wildfire spread forecasts, WRF-Fire is currently implemented on 5 Intel Xeon Gold 6148
computing nodes, interconnected with FDR InfiniBand. Each node has two 20-core CPUs, resulting in
total computing power of 200 cores. Forecasts are communicated to the HFC through email, in Google
Earth KMZ and ESRI Shapefile formats. The 24 h wildfire spread prediction is provided in about
1 h following the activation of IRIS, while the first 6 h of the forecast are provided in approximately
15–20 min. It is worth noticing that the entire execution chain of IRIS is fully automated, requiring no
human intervention at any point.
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2.2.1. The WRF-Fire Coupled Fire-Atmosphere Modeling System

The 2019 version of IRIS, presented herein, is an update of the previous version that Giannaros et
al. [24] presented in detail. Compared to its predecessor, the new system is based on the WRF-Fire
coupled fire-atmosphere modeling system version 4.0.2 [44], a quasi-physical wildfire simulator that
resolves the physics of the fire and fire-atmosphere interactions but does not consider the chemistry
of combustion. Wildfire spread is simulated with the semi-empirical algorithm of Rothermel [50],
applied within the computational framework of a high-order level-set method that uses a fifth-order
WENO (Weighted Essentially Non-Oscillatory) method for the discretization of spatial derivatives,
and a third-order Runge-Kutta temporal integration [44]. For the computation of the rate of spread
(ROS), the properties of the burning fuels, and meteorological and terrain (slope) data are used. The
coupling between the fire and the atmosphere takes place through the sensible and latent heat fluxes
released by the wildfire. Simply put, the atmosphere of WRF-Fire “feels” the fire and responds by
adjusting air temperature and humidity, pressure, density, and wind. For a more detailed description
of WRF-Fire, the interested reader is advised to refer to [44,51].

Within IRIS, WRF-Fire is configured to run on 3 two-way nested modeling domains with horizontal
grid spacings of 25 km (DO1; mesh size of 120 × 120), 5 km (DO2; mesh size of 121 × 121), and 1
km (DO3; mesh size of 151 × 151). All domains are telescopically nested with the location of the
wildfire ignition found at their center. In the vertical, 41 unevenly spaced, hybrid, terrain-following
sigma-pressure levels are defined, with the model top set to 50 hPa. The default terrestrial datasets
distributed with the WRF model [52] are used for the representation of land use, topography, and soil
type. Shortwave and longwave radiation are parameterized with the RRTMG (Rapid Radiative Transfer
Model) scheme [53], and microphysics are represented with the Thompson parameterization [54]. The
planetary boundary-layer is parameterized with the Yonsei University (YSU) scheme [55], coupled with
the revised MM5 scheme [56] for parameterizing surface-layer processes. Land-surface processes are
represented with the Unified NOAH land-surface model [57], and the Grell-Freitas ensemble scheme [58]
is used for parameterizing convection in DO1 and DO2 (convection is resolved explicitly in DO3).

The simulation of the wildfire spread is carried out on an ultra-high-resolution modeling domain,
embedded as a sub-grid in DO3. A grid refinement ratio of 10:1 is adopted, resulting in a fire domain
with a horizontal grid spacing of 100 m (mesh size of 1501 × 1501). This particular spatial resolution
was chosen based on the resolution of the terrestrial datasets that are available for its initialization.
Specifically, these include terrain elevation data, which is used for deriving slope, and fuels’ data. For
topography, the 90 m resolution SRTM (Shuttle Radar Topography Mission) data [59] are used. For the
representation of fuels, the 100 m resolution prototype fuel map of Greece, constructed by Giannaros et
al. [24], was employed. More details on the latter are available in [24].
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For the initialization of WRF-Fire, the 0.25◦ × 0.25◦ spatial resolution and 3 h temporal resolution
operational surface and upper-air analysis and forecast data of the Global Forecasting System (GFS),
provided by the National Center for Environmental Predictions (NCEP), were used. Depending on the
ignition time, the latest available GFS forecast cycle was employed. At this point, it is worth noting
that the operational NCEP GFS data were used instead of the corresponding ECMWF (European
Center for Medium-range Weather Forecasts) data since the latter are not publicly available. This is
true even for member-state users like Greece, except for national meteorological services and users
with special contracts.

A spatially and temporally constant value of 10% was used for initializing and representing fuel
moisture. This approach was adopted based on the options offered by the version of WRF-Fire that
was employed for the development and implementation of IRIS. Specifically, a fuel moisture model,
which would allow for the spatially explicit specification of fuel moisture and its coupling with the
atmosphere, was not included in version 4.0.2 of WRF-Fire. The value of 10% was chosen by taking
into account the expert knowledge of the HFC officers, based on experience from previous fire seasons.

2.3. Evaluation Methods

The accuracy assessment of IRIS’s wildfire spread predictions was carried out with the methods
described in Salis et al. [40]. In brief, error matrices were first constructed between the actual and
predicted BAs, and the frequency of each case (presence/absence of BA) was computed. We then
calculated three statistical measures of accuracy, namely the Cohen’s Kappa Coefficient (KC) [60],
the Sorensen Coefficient (SC) [61], and the Overestimation Index (OI) [40]. KC is a non-parametric
measure used for quantifying the overall agreement between predicted and actual BAs after agreements
by chance are removed. SC is an asymmetric statistical measure used for assessing the portion of
similarity between two samples, thus indicating the exclusive association between predicted and
actual BAs. Both KC and SC range from 0 to 1; (0, 0.2] values indicate slight agreement, (0.2, 0.4]
values indicate fair agreement, (0.4, 0.6] values indicate moderate agreement, (0.6, 0.8] values indicate
substantial agreement, and (0.8, 1] values indicate near-perfect agreement between the predicted and
actual BAs. Last, OI is a statistical measure that quantifies the model’s tendency to overestimate
or underestimate BAs. Its values range from −1 to +1, with positive (negative) values indicating
overestimation (underestimation).

At this point, it must be noted that for the wildfires that lasted more than 24 h (WF04 and WF07;
Table 1), which is the integration period of WRF-Fire (Section 2.2.1), the evaluation of the predicted
wildfire perimeters was carried out at the last model time step. This may penalize model performance
by not considering additional hours of active wildfire spread. However, we decided to follow this
approach to provide a strict evaluation of the operational forecasts provided to the HFC during the
2019 fire season. For the rest of the events, the evaluation was carried out at the model time step nearest
to the ending time of active wildfire spread (Table 1).

With respect to the evaluation of the wind forecasts, this was carried out by comparing model
results from the DO3 domain against concurrent observations (Section 2.1). Two statistical measures
were computed, namely, the mean error (ME) and the root mean squared error (RMSE). A wind speed
threshold of 2 m s−1 was adopted to avoid penalizing model performance since, under light wind
conditions, measurements and forecasts of wind speed and direction are somehow poorly represented
and may yield large deviations between actual and modeled data [24].

3. Results

3.1. Wind Forecasts

Table 3 presents the results of the statistical evaluation of wind speed and direction forecasts. In
all wildfires, positive ME values were computed, ranging from 0.5 m s−1 (WF01 and WF04) to 2.6 m
s−1 (WF08). This indicates that wind speed was overestimated. RMSE values were found not to exceed
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3 m s−1, ranging from 0.7 m s−1 (WF01) to 3.0 m s−1 (WF15). With respect to wind direction, model
performance varied largely among the examined wildfires. For instance, it can be seen that RMSE
ranges from 18.9◦ (WF01) to 136.6◦ (WF06). For all events, except WF06, positive ME values were
computed, indicating that the simulated wind was shifted clockwise with respect to the observed wind.

Table 3. Statistical evaluation of IRIS’s wind speed and direction forecasts during the 2019 fire season.
Note that for WF11, the evaluation could not be conducted due to the unavailability of valid observed
data (i.e., all wind measurements failed to pass the threshold value of 2 m s−1; Section 2.3).

Wind Speed (m s−1) Wind Direction (◦)

ID ME RMSE ME RMSE

WF01 0.5 0.7 2.4 18.9
WF04 0.5 1.7 29.1 36.8
WF06 1.7 2.3 −52.9 136.6
WF07 1.0 2.5 19.4 61.5
WF08 2.6 2.7 41.5 52.1
WF11 n/a n/a n/a n/a
WF15 1.6 3.0 30.2 103.7
WF16 1.6 1.7 44.7 49.8

3.2. Wildfire Spread Forecasts

During the 2019 fire season, IRIS showed consistent performance in terms of reproducing wildfire
spread. As summarized in Table 4, the model was able to predict the spatial extent of BAs better than
random chance (p ≤ 0.10) in all examined events. KC and SC were computed to exceed the threshold
value of 0.40, which indicates at least moderate agreement between the actual and predicted wildfire
perimeters. The model performed best in the case of WF01, whereas the worst performance was seen
in the case of WF15. The accuracy in wind simulation must have played a role in shaping this feature
in the model’s performance since WF01 and WF15 are also the cases for which the model provided the
overall best and worst wind forecasts, respectively (Table 3). Not surprisingly, BAs were overestimated
(OI > 0) in all simulated wildfires. This can be attributed, at least to some extent, to the fact that tactical
wildfire suppression activities are not taken into account.

Table 4. Statistical evaluation of IRIS’ wildfire spread forecasts during the 2019 fire season in Greece.
Values of KC followed by * denote statistical significance (Z-test) at p ≤ 0.10.

ID KC SC OI BAA (ha) 1 BAO (ha) 2 BAU (ha) 3

WF01 0.63 * 0.68 0.44 75 52 20
WF04 0.45 * 0.49 0.06 268 298 266
WF06 0.45 * 0.48 0.45 114 180 68
WF07 0.52 * 0.57 0.32 1899 1908 989
WF08 0.57 * 0.60 0.93 702 909 35
WF11 0.49 * 0.52 0.96 57 104 2
WF15 0.42 * 0.46 0.79 283 604 71
WF16 0.52 * 0.55 0.84 814 1217 103

1 Burnt area agreement 2 Burnt area overestimation 3 Burnt area underestimation.

Complementarily to the statistical evaluation (Table 2), the visual comparison between the actual
and predicted wildfire perimeters (Figure 3) revealed interesting aspects of IRIS’s performance during
the 2019 fire season. In all events, the actual and predicted BAs were found to overlap to a significant
spatial extent. However, notable differences did exist. For instance, it could be clearly seen that IRIS
was not able to capture the spatial extent of the southwest propagation of the wildfire front in WF04
(Figure 3b), which led to a BAU (220 ha) about half the size of the observed BA (535 ha). This BA
underprediction, which was the largest in 2019, appears to coincide with the largest lag (~4 h) between
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the actual time of ignition and the activation time of IRIS (Table 1). Hence, it could be speculated
that at least a part of this large underprediction could be attributed to neglecting a long period of
active wildfire spread. Nevertheless, it should be noted that the wildfire spread was overpredicted to
the southeast, indicating that the representation of wind conditions should have also played a role
(Table 3). Poor representation of wind may also be the reason for the large unburnt areas seen in IRIS’s
predictions for WF06 (Figure 3c), WF07 (Figure 3d), and WF15 (Figure 3g), for which the largest errors
in wind direction were computed (Table 3).Atmosphere 2020, 11, x FOR PEER REVIEW 9 of 17 
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3.3. The Kontodespoti Wildfire (WF07)

The most significant and largest event of the 2019 fire season in Greece was the Kontodespoti
wildfire (WF07; Table 1) in central Euboea. According to the HFC records, the wildfire broke out late
in the night on 13 August, about 2 km east of the Kontodespoti village and 6 km north of the city of
Psachna (Figure 3d), within a dense pine forest. The severity of the event was revealed early in the
morning, when a convective plume could be clearly seen (Figure 4), indicating a plume-dominated
wildfire. Such wildfires exhibit the increased role of the convective force generated by the heating
of the burning fuels and tend to significantly influence the wind field in their vicinity. As a result,
plume-dominated wildfires are commonly characterized by unpredictable behavior and are thus
extremely difficult to contain.
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Figure 4. Aspects of the convective plume of the Kontodespoti wildfire at 05:43 UTC on 13 August
2019, as seen from onboard a commercial flight. (Photographs courtesy of Fotis Fillipopoulos, Twitter:
@F_Fillipopoulos).

The Kontodespoti wildfire was active for approximately 39 h, burning a total surface of nearly
3000 ha. However, according to the HFC, more than 2400 ha of land had already been burnt by the
first 19 h of active wildfire spread. Figure 5a presents a visual comparison between the approximate
location of the wildfire’s fronts and the corresponding IRIS prediction at 19:00 UTC on 13 August.
Clearly, IRIS was able to predict most of the southward and eastward propagation of the wildfire.
The overprediction of the BA to the south could be attributed to neglecting wildfire suppression
activities and overestimating wind speed (Table 3). Indeed, the southward movement of the wildfire
forced authorities and the HFC to set up emergency wildfire break zones in order to prevent further
propagation of the wildfire towards the city of Psachna. On the other hand, it could also be seen that
IRIS failed to capture the extent of wildfire spread to the northwest of the ignition location. Part of
this underestimation could be attributed to the ~1 h time lag between the actual ignition time and the
system’s activation time (Table 1). Other possible explanations could be associated with the uncertainty
in defining the ignition location, the representation of fuels, the simulation of meteorological conditions,
and the negligence of fire spotting. In particular, it must be noted that ignition coordinates are currently



Atmosphere 2020, 11, 1264 11 of 17

provided through the location of the firefighting crew that arrives first on-site. On certain occasions,
this could lead to important differences between the real ignition location and the one provided during
the activation of IRIS.Atmosphere 2020, 11, x FOR PEER REVIEW 11 of 17 
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location. White contours denote the actual final wildfire perimeter. (a) Operational wildfire spread
prediction based on IRIS’s activation time, and (b) Retrospective wildfire spread prediction based on
actual ignition time.

To investigate further the above-noted discrepancies and associated speculations, we conducted
an additional, retrospective simulation of the Kontodespoti wildfire. Compared to its operational
counterpart, the retrospective simulation was carried out using the actual ignition time of the wildfire
instead of IRIS’s activation time (Table 1). Results suggest a slight improvement in model performance.
As seen in Figure 5b, the consideration of the actual ignition time allowed for a more accurate prediction
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of the northeast propagation of the wildfire. However, it was not possible to resolve the major
underestimation of BA to the northwest. This inadequacy of IRIS is still evident when examining the
final observed and predicted wildfire perimeters (Figure 6). Indeed, while the retrospective prediction
reproduced better the northeast propagation of the wildfire, it lacked the ability to predict propagation
to the northwest. Further, it is worth noting that the consideration of the actual ignition time did not
result in significant improvements in IRIS’s verification statistics (Table 5).

Atmosphere 2020, 11, x FOR PEER REVIEW 12 of 17 

 

the actual ignition time did not result in significant improvements in IRIS’s verification statistics 
(Table 5). 

 

 

Figure 6. Visual comparison between actual (white contour) and predicted (red shades) wildfire 
perimeters for the Kontdespoti wildfire (WF07). (a) Operational wildfire spread prediction based on 
IRIS’s activation time, and (b) Retrospective wildfire spread prediction based on actual ignition time. 

In considering the above results, it becomes quite clear that for the Kontodespoti wildfire, the 
highlighted underprediction of BA did not result from the difference between the actual ignition time 
and IRIS’s activation time. Moreover, the examination of both the operational and retrospective 
meteorological forecast (not shown) indicated minor differences in the model performance with 
respect to wind simulation. Additional numerical experiments (not shown), initializing the model 
with the ECMWF (European Center for Medium-range Weather Forecasts) operational surface and 
upper-air analysis and forecast data, did not improve IRIS’s wildfire spread prediction. Therefore, 
from an operational point of view, it can be claimed that it would be impossible to obtain a better 
prediction by only changing the initialization data of the model. One could argue that a better 

Figure 6. Visual comparison between actual (white contour) and predicted (red shades) wildfire
perimeters for the Kontdespoti wildfire (WF07). (a) Operational wildfire spread prediction based on
IRIS’s activation time, and (b) Retrospective wildfire spread prediction based on actual ignition time.

In considering the above results, it becomes quite clear that for the Kontodespoti wildfire,
the highlighted underprediction of BA did not result from the difference between the actual ignition
time and IRIS’s activation time. Moreover, the examination of both the operational and retrospective
meteorological forecast (not shown) indicated minor differences in the model performance with respect
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to wind simulation. Additional numerical experiments (not shown), initializing the model with the
ECMWF (European Center for Medium-range Weather Forecasts) operational surface and upper-air
analysis and forecast data, did not improve IRIS’s wildfire spread prediction. Therefore, from an
operational point of view, it can be claimed that it would be impossible to obtain a better prediction by
only changing the initialization data of the model. One could argue that a better prediction could have
been obtained by adopting a different model physics and/or domain setup. Such a claim is plausible,
but its evaluation lies beyond the scope of our work.

Table 5. Statistical evaluation of IRIS’s operational and retrospective wildfire spread predictions for the
Kontodespoti wildfire (WF07). Values of KC followed by * denote statistical significance (Z-test) at
p ≤ 0.10.

ID KC SC OI BAA (ha) 1 BAO (ha) 2 BAU (ha) 3

Operational Prediction

WF07 0.52 * 0.57 0.32 1899 1908 989

Retrospective Prediction

WF07 0.52 * 0.57 0.49 2101 2288 787
1 Burnt area agreement 2 Burnt area overestimation 3 Burnt area underestimation.

4. Discussion and Conclusions

Coupled fire-atmosphere modeling systems are still not widely used in wildfire incident
management. Instead, operational agencies and wildfire managers tend to rely on empirical
and semi-empirical models that have proven to be able to provide reliable wildfire spread
predictions [13,38–40]. However, such models neglect fire-atmosphere feedbacks that can be of
great importance for the accurate simulation of wildfire spread. In this work, we aim to demonstrate
that coupled fire-atmosphere modeling systems have great potential to be operationally employed in
wildfire incident management. For this, we present the operational implementation and evaluation of
such a forecasting system, which was specifically developed and used for providing rapid response
support to the tactical wildfire suppression activities of the HFC in Greece.

Named IRIS, the presented forecasting system is based on the coupled fire-atmosphere WRF-Fire
model [44]. The latter has been used in several past studies that focused primarily on simulating
selected large wildfires [23,62–64]. While providing useful insights into the model performance,
previous studies hardly included any quantitative assessment. More importantly, the consideration
of single events does not allow for drawing a wider picture in terms of the capacity of the model to
support operational activities. Our work differs significantly from such an approach, presenting and
evaluating, both quantitatively and qualitatively, wildfire spread predictions that have been produced
and used operationally during the 2019 fire season in Greece. To the best of our knowledge, this should
be one of the first, if not the first, studies that introduce the performance evaluation of an operational
rapid response fire spread forecasting system based on a coupled fire-atmosphere modeling system.

In a previous study, Giannaros et al. [24] showed that with proper adaptation, IRIS could be
exploited for operationally supporting wildfire incident management. The present study confirms
this preliminary conclusion. Our results, obtained through a quantitative verification of operational
wildfire spread predictions for eight events, clearly highlight that IRIS is able to provide forecast
guidance that is meaningful and useful to wildfire incident managers. In particular, the conducted
accuracy assessment of the system’s predictions revealed an overall satisfactory performance (Table 2).
Actual and predicted wildfire perimeters were found to be characterized by moderate agreement, with
the model overestimating BAs in all examined events (Figure 3). As previously noted, this tendency of
IRIS to overestimate BAs is not that surprising, considering that firefighting activities are neglected.
Focusing on the largest event of the 2019 fire season, we also showed that IRIS was able to predict well
enough the propagation of the wildfire (Figure 5).
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Besides the positives of IRIS’s operational performance in 2019, one should also notice and discuss
the negatives, in particular with respect to the further development and improvement of the system.
Focusing on the largest event of the 2019 fire season, it was found that the consideration of the actual
ignition time instead of IRIS’s activation time does improve wildfire spread prediction (Figures 5 and 6).
While this improvement may not always compensate for BA underprediction, it is important to be
taken into account. IRIS was implemented operationally for the first time in 2019 and officers of the
HFC needed time to familiarize themselves with its use and build experience on when to request its
activation. Indeed, the time difference between the system’s activation and the actual ignition time
was gradually reduced towards the end of the fire season (Table 1). Accounting for this, and based on
the results of this work, it was decided that for the operational implementation of IRIS in 2020, the
system’s activation time will be adjusted by 30 min; i.e., 30 min will be subtracted by the time of IRIS’s
activation to better estimate the actual ignition time.

Other sources of uncertainty in IRIS’s predictions are related to the simulation of meteorological
conditions and the representation of fuels and fuel moisture. Considering the former, our work
has shown that special attention should be paid to properly simulate wind conditions. As for the
representation of fuels, the prototype fuel map used by IRIS [24] is currently being updated and
upgraded; new fuel models are being added and the horizontal resolution is being increased, so as to
better represent spatial variability. Last but not least, the development of IRIS is continued by examining
the inclusion of fire spotting and the online computation of fuel moisture, as well as by increasing the
system’s spatial resolution in order to better capture the dynamic fire-atmosphere interactions.

In conclusion, the operational implementation of IRIS during the 2019 fire season in Greece and
its subsequent performance evaluation revealed that coupled fire-atmosphere modeling systems do
have great potential to support wildfire incident management. Our statement is not only supported by
the results of this study, but also by the fact that IRIS’s activations almost doubled in 2020. IRIS was
activated 17 times by the HFC in 2019, and 31 times during the ongoing 2020 fire season. As far as
we can be aware, IRIS is currently the sole coupled fire-atmosphere modeling system implemented
operationally within the European Union, and certainly one of the very few such operational systems
implemented worldwide [23,28].
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