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Abstract: Paleoclimate research, which involves the study of climate and environmental changes in
historical and geological periods, is typically conducted using high-resolution paleoclimatic proxies,
such as tree rings, historical documentations, stalagmite, and ice core. Although each paleoclimate
proxy has its own merits in paleoclimatic research, reconstructions based on a single proxy may
suffer from shortcomings, including insufficient reliability and low coverage of the representative
area. It may be possible to overcome these shortcomings by combining multi-paleoclimatic proxies
to understand paleoclimatic changes. In this study, we attempt to combine tree-ring stable oxygen
isotope ratio (δ18O), tree-ring width, and stalagmite thickness data as well as historical records to
establish a 320-year (1675–1994) time series using principal component analysis in the water-scarce
North China Plain (NCP). The results show that the first principal component (PC1) series is closely
related to regional precipitation and the maximum temperature in summer. The spatial correlation
pattern indicates that the PC1 series can represent the regional hydroclimate variation not only in the
NCP but also in all of northern China. The significant (p < 0.001) correlations between the PC1 series
and several East Asian summer monsoon (EASM) indices prove that the PC1 reflects the intensity of
the EASM. The PC1 series is consistent with the interannual variations of two reconstructed solar
activity correlation indexes (r = 0.48 and 0.46, n = 320, and p < 0.001). The results indicate that the
hydroclimate variation in the NCP is affected by large-scale atmospheric circulations, such as EASM
and solar activity, and shows the potential of combining multiple paleoclimate proxies for analyzing
regional climate change.

Keywords: North China Plain; tree rings; paleoclimate proxies; EASM; ENSO; solar irradiance

Atmosphere 2020, 11, 1180; doi:10.3390/atmos11111180 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0001-7763-8115
http://dx.doi.org/10.3390/atmos11111180
http://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/2073-4433/11/11/1180?type=check_update&version=2


Atmosphere 2020, 11, 1180 2 of 15

1. Introduction

In the past century, the global climate has experienced warming-based changes, which have
affected nature in various ways [1]. The number of climate disasters in the 1990s was five times higher
than that in the 1950s in certain regions [2]. Climate change is causing huge adverse impacts on human
activities, including production, thereby restricting social and economic development. In order to
predict climate change trends, it is necessary to understand climate variations that occurred in the
past. Most of the existing meteorological data concerning Asia is of short-term nature and cannot meet
the requirements for long-term climate research of the past. In order to overcome the obstacle posed
by short timescale meteorological records, it is necessary to employ high-resolution paleoclimatic
proxies. For example, Liu [3] reconstructed the average temperature of Arxan, Inner Mongolia,
from May to September during 1822–2008 based on the tree-ring width chronology of Larix gmelinii
collected from the region. Lei [4] established the tree-ring width chronology of Pinus tabulaeformis in
the Yishan area of Shandong Province and reconstructed the regional wetness index during 1755–2007.
The reconstruction showed an increasing trend after the late 1960s and the reconstructed wetness index
series was compared with the dryness/wetness index (DWI) and the area of land affected by drought
and flood in China. Wang [5] analyzed the microlayer thickness and δ18O of stalagmites from Kaiyuan
Cave located in the western part of the Shandong Peninsula, China, and found that the microlayer
thickness was not only related to the changes in climatic factors, but also the degree of climate stability.
Xu [6] analyzed lake sediment changes since 15 ka in the Gonghai lake of Shanxi Province, China,
and found that the climate was the wettest during the 8 ka BP–15 ka BP period.

The paleoclimatic proxies have significantly deepened our understanding of climate change before
instrumental periods. However, a single paleoclimatic proxy for climate reconstruction may suffer
from shortcomings or cause uncertainties in the results. For example, stalagmite samples are easy to
obtain and the stalagmite data over a large period are sensitive to climate events. Thus, these data serve
as an additional indicator for paleoclimate research. However, the growth conditions of stalagmites
are complex, thereby affecting the accuracy of microlayer dating [7]. Given their accurate dating,
high resolution, a large number of copies, strong continuity, and wide distribution, tree rings have
become an important substitute indicator for high-resolution paleoclimate research [8–11]. The growth
of trees is closely related to the surrounding environment; however, the scale of research using these
data is limited to hundreds to thousands of years. In other words, it is difficult to obtain samples over
a longer period. Moreover, a divergence problem exists between tree-ring width and temperature at
high latitudes. There is a wealth of climate change information preserved in historical documents
in China. The efforts of many scholars have helped in extracting climate-related information from
these documents. However, due to problems with digitization, series can only be graded according to
the degree of the disaster, which is expressed as the DWI. It is undeniable that the DWI plays an
irreplaceable role in indicating historical extreme events.

The North China Plain (NCP), which includes Beijing, Tianjin, Shanxi, Hebei, and Inner Mongolia,
has a high population density and is an important agricultural and industrial base for China. Due to
global warming, the temperature in this region accelerated by 1.5 ◦C between 1951 and 2009 [12].
Precipitation has shown a downward trend since 1965 [13]. Moreover, climate change has caused
a dry and hot climate in this region [14]. The high temperature has accelerated the surface water
evaporation rate, resulting in the depletion of water resources in the NCP. The amount of water
resources per capita in this region is 526 m3, which is much lower than the internationally recognized
“poor waterline” of 1000 m3 per capita [15]. To compound matters, the frequency of extreme drought
has increased over the years, recording a growth rate of 0.21 times per 10 years [16]. In order to
understand the characteristics of historical climate change and the factors affecting them in the region,
it is necessary to conduct a multi-proxy comprehensive climate change survey. This study uses the
principal component analysis method in combination with the following data: representative tree-ring
δ18O, tree-ring width, stalagmite thickness, and dryness/wetness index extracted from historical
documents literature. We intend to extract a principal component series that can accurately represent
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climate change in the NCP, as well as analyze its main meteorological indicators and the large-scale
climatic dynamics and external stress factors that affect this change.

2. Data and Methods

2.1. Climatological Data of the Study Area

The climatic data used in this study were sourced from the Climatic Research Unit (CRU;
www.cru.uea.ac.uk/) grid data. The grid range of the meteorological data was selected according to
the spatial correlation range of the principal component series, and the monthly meteorological data
were represented as averages. According to the results, we extracted the regional (35.5◦ N–44◦ N,
105◦ E–119◦ E) temperature and regional (36◦ N–46◦ N, 113◦ E–120◦ E) precipitation to carry out further
analysis. The sampling sites were shown in Figure 1. Although the CRU grid data records are available
from 1901, the instrumental data collection began in 1955. Thus, we chose 1955 as the start of the target
period for this work. According to the final correlation, the principal component series exhibited the
most significant correlation with mean precipitation and maximum temperature within the range
of grid data. Thus, we extracted the data of these two parameters. According to the calculation,
the highest annual average temperature in the NCP was 13.758 ◦C and the highest temperature in July
was 28.170 ◦C. The average annual rainfall in the NCP was 37.486 mm and the maximum rainfall in
July was 134.881 mm. Thus, the climate of the NCP showed a seasonal cycle of rain and heat in the
same period (Figure 2).

2.2. Principal Component Analysis

Principal component analysis is a commonly used statistical method, which employs the idea of
dimension reduction and allows the use of multiple relevant variables after linear transformation as a
set of uncorrelated variables. As most of these variables are representatives of multiple related original
signals [17], this method not only ensures the integrity of the original variables, but also achieves
dimension reduction, concentrates information [18], and overcomes the one-sidedness of research
that uses single variables. At present, principal component analysis is widely used in agriculture,
water conservancy, meteorology, and resource research.

Assuming that the dataset is an M-dimensional vector with n numbers, the intent of the
principal component is to reduce the n numbers from M dimensions to P dimensions (i.e., P < M).
The larger the variance of the random variable, the larger the amount of information it contains [19].
Therefore, only a few variables with large variance after the dimension reduction need to be retained.
Principal components are extracted in the following steps: (1) Standardize the original time series and
transform each original vector into an orthogonal vector X. (2) Calculate the normalized covariance
matrix S. Then, calculate the eigenvalue and eigenvector according to the covariance. (3) Apply the
formula Pi = I/σ to calculate the variance contribution rate. Then, calculate the cumulative variance
contribution rate, which should be greater than 85%, to determine the number of principal components.
(4) Calculate the weight coefficient of each principal component with the maximum variance method.
(5) Find the weighted sum of each principal component and the normalized weight coefficient to obtain
the equation for the principal component calculations.

www.cru.uea.ac.uk/
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Figure 2. Mean monthly precipitation (P) and monthly maximum temperature (Tmax) in the North
China Plain (NCP) during 1955–1994.

2.3. Multiple Paleoclimate Proxies and Their Principal Component Analysis

The following four time series were used in this study (Figure 3): The first time series involved
the width chronology of Pinus bungeana in Yulin area of Shandong Province, as established by
Liu [20]. The second time series comprised the δ18O series of tree-ring width in Luya Mountain of
Shanxi Province, as established by Li [21]. The third time series comprised the layer thickness of
stalagmites in Beijing’s Shihua cave, as reported by Tan [22]. The last time series contained the DWI of
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the NCP region, as reported by Shen [23] based on historical literature and geographic information
system. These four time series represent large time scales, and their climatic significance is relatively
clear. After conducting the first principal component (PC1), they were used to generate a main series
that retains the majority of the signals of the original series. The equation for calculating the first
principal component (PC1) is as follows:

Principal component = 0.38 × δ18O − 0.39 × DWI + 1.52 × LTC − 0.66 × STD (1)

In the above equation, δ18O denotes the tree-ring δ18O chronology of Luya Mountain of Shanxi Province,
as reported by Li [21], DWI is the dryness–wetness index of the NCP, as extracted by Shen [23], LTC is
the stalagmite thickness chronology, as established by Tan [22], and STD is the standard chronology
of tree-ring width in Yulin area of Shandong Province, as reported by Liu [20]. Taking the common
interval of the four series, the first principal component during 1675–1994 was extracted according to
Equation (1) (Figure 4). The first principal component could explain 83.8% of the total variance in the
original four records.Atmosphere 2020, 11, x FOR PEER REVIEW 5 of 15 
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To investigate coefficient of association between different time series, the Pearson’s correlation
coefficient was employed in this study. It is generally expected that time series may have autocorrelation;
the effective degrees of freedom (EDOF) was calculated between two time series by following equation
suggested by Bretherton et al. [24]:

EDOF = N × [(1 − r1 × r2)/(1 + r1 × r2)] (2)

where r1 and r2 are the first-order autocorrelations of individual time series; N is the overlapping
length of two time series.

3. Results and Discussion

3.1. Spatial Representation of the Principal Component Analysis Series

In order to judge whether the PC1 series can represent hydroclimatic changes over long time
periods, the extracted PC1 series and CRU grid climate data were analyzed via online spatial correlation
analysis [25] (Figure 5). The results show that the PC1 series has a significant negative correlation
with precipitation from May to June, and the highest absolute correlation coefficient is 0.7. Except for
Shandong, the coastal areas of Hebei, eastern Inner Mongolia, and other NCP regions, the representative
regions also include Liaoning, Jilin, and other regions in the northeast, thus representing a wide range
and a higher correlation coefficient. In addition, the PC1 series exhibits a positive correlation with the
highest temperature grid data from June to August, and the highest spatial correlation coefficient is
0.5, which is mainly distributed in Shanxi, Hebei, and Inner Mongolia, thereby representing a wide
range of temperature changes in the NCP. As precipitation and temperature play important roles
in regional dry and wet changes, the PC1 series extracted by this study shows a good correlation
with precipitation and temperature in the NCP. The PC1 series can, thus, represent the hydroclimatic
changes in the NCP and even in northern China. A warming/drying trend is shown in PC1 from 1650
to 1960s, which was also observed by Liu [26] and Sun [27]. The trend since 1950s is similar with that
during 1820–1860, implying climate background of two durations may be caused by similar reasons.
As reported by Man [28] and Zhuo [29], large volcanic eruptions have been contributed to East Asian
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Monsoon precipitation during early to middle 19th century, while Liu [26] indicated that the recently
weakening of Asian Summer Monsoon may be caused by anthropogenic aerosols.
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3.2. Variation in the East Asian Summer Monsoon Reflected by the Principal Component Analysis Series

The NCP is subjected to the East Asian monsoon, and the precipitation in summer largely
depends on the strength of the monsoon [30]. In order to examine the relationship between the PC1
and the East Asian summer monsoon (EASM), we compared the PC1 series with several definitions of
the EASM index and found a good correlation between the PC1 series and three summer monsoon
series (Figures 6 and 7).

Compared with the EASM index during 1851–1994 in Wang [31], we found that the time period
showing the best correlation is from May–June, and the correlation coefficient is 0.41 (n = 144 and
p < 0.001). Compared with the EASM index series during 1948–1994 in Guo [32], we observed that the
time period with the best correlation is June–July, and the correlation coefficient is −0.54 (n = 47 and
p < 0.001). Compared with the EASM index series during 1958–1994 in Lau [33], we noted that the
correlation between April and September is the best, and the corresponding correlation coefficient is
0.41 (n = 37 and p < 0.01). The correlation coefficients of the PC1 series for the above three monsoon
series are higher than those of the compared series, and the variation trend is consistent (Figure 7;
the thick lines denote 10-year low-pass filtering curves), indicating that climate change in the NCP
was strongly influenced by the EASM.
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3.3. Relationship between the Principal Component Analysis Series and the El Nino–Southern Oscillation

The term ENSO depicts the El Nino–Southern oscillation that occurs in the equatorial central and
eastern Pacific Ocean. ENSO is a large-scale air–sea oscillatory phenomenon [34]. The ENSO cycle
includes two different cold and warm phases of La Nina and El Nino. When El Nino occurs, a wide
range of sea surface temperature (SST) anomalies occurs in the East equator Pacific region, such as a
typical increase in SST, leading to a decrease in the air pressure. La Nina events, contrary to El Nino,
are characterized by a decrease in the SST and an increase in air pressure in the eastern equatorial
Pacific region. Many studies have shown that a long-distance teleconnection exists between ENSO and
the East Asian climate (e.g., [21]).

When an ENSO event occurs, it causes the subtropical high to strengthen in the western Pacific,
making it difficult for the water vapor in the air to precipitate. The westward movement of the
subtropical high primarily increases the intensity of the monsoon in China, leading to droughts and
flood disasters in the monsoon area [35]. The study area, the NCP, is located in the monsoon area,
and thus the extracted PC1 series and ENSO index were analyzed. As per our calculations with
NINO3 (ERSST v5), March to April shows the best correlation with a correlation coefficient of 0.18
(n = 141 and p < 0.05) (Figures 8a and 9a). The NINO3.4 region is the birthplace of the El Nino
phenomenon. Correlation analysis with NINO3.4 (ERSST v5) showed that the month with the best
correlation ranges from March to April, and the correlation coefficient is 0.2 (n = 141 and p < 0.02)
(Figures 8b and 9b). The correlation analysis with NINO4 (ERSST v5) showed that the month with the
best correlation ranges between May and June, and the correlation coefficient is 0.193 (n = 141 and
p < 0.05) (Figures 8c and 9c).

In order to further explore the relationship between the PC1 series and large temporal-scale SST
variation, spatial correlation analysis was carried out between the PC1 series and the ERSST and
HadISST global grid data [25]. The results show a positive correlation between the PC1 series and SST
(Figure 10). The correlation is strong, and the highest correlation coefficient is 0.5. Based on the above
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analysis, the principal component series was extracted, and it exhibits a good correlation with ENSO
and a significant spatial teleconnection with SST, indicating that the hydroclimatic changes in the NCP
may be affected by ENSO. Pascolini-Campbell [36] indicated that ENSO should be distinguished as
Central Pacific (CP) and Eastern Pacific types, Figure 10 shows that climate over the NCP is probably
affected by CP El Nino. In fact, Liu [37] and Li [38] also found CP El Nino impacts on hydroclimate
variations in Northwest China and Southeast China, respectively.
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3.4. Relationship between the Principal Component Analysis Series and Solar Activity

In order to understand the relationship between the PC1 series and solar activity, the series
was compared with solar activity correlation indexes, such as sunspots, solar radiation, total solar
irradiance, and solar flux. The results show a good correlation between the PC1 series and the annual
solar flux (Figures 11b and 12b; the thick lines represent 10-year moving averages), as reconstructed by
Lockwood [39]. A good correlation is also observed with solar radiation (Figures 11a and 12a; the thick
lines are 10-year low-pass filtering curves), as reported by Mann [40]. The correlation coefficients are
0.48 (n = 320 and p < 0.001) and 0.46 (n = 320 and p < 0.001), respectively.

The sun is the closest star to Earth. Nuclear fusion occurs incessantly, and the heat generated
by fusion continues to reach Earth. Therefore, solar energy is the primary energy source of all living
activities on Earth. The study of the influence of solar activity on Earth’s climate began in the 17th
century. Research has shown that the interannual variation in solar activity is closely related to the
interannual variation in Earth’s climate [41]. Abnormal solar activity also exerts a great impact on Earth.
For example, trough year, active year, and sunspot cycle are related to precipitation in different regions
of Earth; solar flare activity is known to disturb Earth’s electromagnetic field, sometimes severely.

The NCP is located in the East Asian monsoon region. In summer, the northern hemisphere
experiences high solar radiation intensity. A large temperature difference arises due to the difference in
heat absorption capacity between the sea and the land, increasing the intensity of the summer monsoon.
Thus, the water vapor formation over the ocean increases, leading to summer precipitation accounting
for a large proportion of annual precipitation in eastern China. Given the complex mechanisms of
climate change and limited research on the sun, the relationship between solar activity and climate
change should continue to be explored carefully in future climate research.
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4. Conclusions

The NCP is a core area in North China. It has been experiencing an increasingly serious regional
water shortage, which has negatively impacted people’s daily lives and regional economic development.
Therefore, an urgent investigation on the background of this regional climate change is required
to identify its possible control factors. As using single paleoclimatic proxies for long-term climate
reconstruction poses many shortcomings, this study used four separate data sources relevant to the NCP,
namely stalagmite thickness, tree-ring width, tree-ring oxygen isotope ratio, and historical documents
based dry/wet index, to conduct the first-ever PC1 in the literature on this topic. The obtained long-term
PC1 series spanned 320 years. The results of the correlation analysis showed that the first PC1 series
represented summer precipitation and maximum temperature changes in the NCP, thus exhibiting
climatic significance. In order to explore the influencing factors of climate change in the NCP and
determine whether an external driving mechanism exists, correlation analysis was conducted between
the PC1 series and large-scale atmospheric circulation factors. The results showed that the PC1 was not
only influenced by the EASM but was also externally driven by solar activity. In addition, as suggested
by Zhuo [29] and Man [28], volcanic activity may be potentially important for East Asian climates,
we need more and long high-resolution paleoclimate proxies to explore possible connection between
volcanic activity and climate variation over the NCP in the future.
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