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Abstract: Weather forecasting, especially that of extreme climatic events, has gained considerable
attention among researchers due to their impacts on natural ecosystems and human life.
The applicability of artificial neural networks (ANNSs) in non-linear process forecasting has significantly
contributed to hydro-climatology. The efficiency of neural network functions depends on the network
structure and parameters. This study proposed a new approach to forecasting a one-day-ahead
maximum temperature time series for South Korea to discuss the relationship between network
specifications and performance by employing various scenarios for the number of parameters
and hidden layers in the ANN model. Specifically, a different number of trainable parameters
(i.e., the total number of weights and bias) and distinctive numbers of hidden layers were compared
for system-performance effects. If the parameter sizes were too large, the root mean square error
(RMSE) would be generally increased, and the model’s ability was impaired. Besides, too many
hidden layers would reduce the system prediction if the number of parameters was high. The number
of parameters and hidden layers affected the performance of ANN models for time series forecasting
competitively. The result showed that the five-hidden layer model with 49 parameters produced the
smallest RMSE at most South Korean stations.

Keywords: artificial neural network; neurons; layers; temperature; South Korea; deep learning

1. Introduction

An artificial neural network (ANN) is a system for information processing inspired by biological
neural networks. The key element of this network is the huge amount of highly interconnected
processing nodes (neurons) that work together by a dynamic response to process the information.
A neural network is useful for modeling the non-linear relation between the input and output of a
system [1]. Compared to other machine learning methods such as autoregressive moving averages
(ARMA), autoregressive integrated moving averages (ARIMA), and random forest (RF), the ANN
model showed better performance in regression prediction problems [2—4]. According to Agrawal [5],
the ANN model predicted rainfall events more accurately than the ARIMA model. In another work,
ANNSs have been applied to forecast monthly mean daily global solar radiation [6].

Furthermore, the ANN model has also been employed to forecast climatological and meteorological
variables. Although it is known that the weather forecasting problem is challenging because of its
chaotic and dynamic process, weather forecasting based on ANNs has been employing considerably in
recent years due to the success of the ANN’s ability. From some previous research, artificial neural
networks have been shown as a promising method to forecast weather and time series data due to their
capability of pattern recognition and generalization [7,8]. Smith et al. [9] developed an improved ANN
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to forecast the air temperature from 1 to 12 h ahead by increasing the number of samples in the training,
adding additional seasonal variables, extending the duration of prior observations, and varying the
number of hidden neurons in the network. Six hours of prior data were chosen as the inputs for the
temperature prediction since a network with eight prior observations performed worse than the six
hour network. Moreover, it is demonstrated that the models using one hidden layer with 40 neurons
performed better than other models over repeated instantiations. In another study, the ANN models
for the maximum as well as minimum temperature, and relative humidity forecasting were proposed
by Sanjay Mathur [10] using time series analysis. The multilayer feedforward ANN model with a
back-propagation algorithm was used to predict the weather conditions in the future, and it was found
that the forecasting model could make a highly accurate prediction. The authors in [11] employed the
ANN models to forecast air temperature, relative humidity, and soil temperature in India, showing that
the ANN model was a robust tool to predict meteorological variables as it showed promising results
with 91-96% accuracy for predictions of all cases. In this study, we also aimed to predict the air
temperature one day ahead of past observations using the ANN model.

The effectiveness of a network-based approach depends on the architecture of the network and
its parameters. All of these considerations are complex, and the configuration of a neural network
structure depends on the problem [12]. If unsuitable network architecture and parameters are selected,
the results may be undesirable. On the other hand, a proper design of network architecture and
parameters can produce desirable results [13,14]. However, little investigation has been conducted
on the effect of parameters and architecture on the model’s performance. The selection of ANN
architecture, consisting of input variables, the number of neurons in the hidden layer, and the number
of hidden layers is a difficult task, so the structure of the network is usually determined by a trial and
error approach and based on the experience of the modeler [5]. In another previous study, we compared
one-hidden layer and multi-hidden layer ANN models in maximum temperature prediction at five
stations in South Korea [15]. In addition, the genetic algorithm was applied to find the best architecture
of models. It showed that the ANN with one hidden layer performed the most accurate forecasts.
However, the effect of the number of hidden layers and neurons on the ANN’s performance in the
maximum temperature time series prediction is not sufficient. It may expect that the model performs
worse when the number of parameters decreases. However, what happens if we further increase the
number of tunable parameters? There are two competing effects. On the one hand, more parameters,
which mean more neurons, become available, possibly allowing for better predictions. On the other
hand, the higher the parameter number, the more overfitting the model is. Will the networks be robust
if more trainable parameters than necessary are present? Is a one-hidden layer model always better
than a multi-hidden layer model for maximum temperature forecasting in South Korea? Therefore,
it is also apparently several problems related to the model proper architecture.

This paper proposed a new strategy that applied the ANNs using different learning parameters
and hidden layers to empirically compare the prediction performance of daily maximum temperature
time series. This study aimed to discuss the effect of parameters on the performance of ANN for
temperature time series forecasting.

The rest of the paper is structured as follows. Section 2 describes the data and methodology used
for the experiments. Section 3 describes the results, and the final section provides conclusions and
directions for future work.

2. Data and Methods

In the current study, 55 weather stations that record maximum temperature in South Korea at
the daily timescale were employed. Most stations have a data period of 40 years from 1976 to 2015,
except for Andong station (1983-2015) and Chuncheon station (1988-2015).

Figure 1 presents the locations of the stations at which the data were recorded. The forecasting
model for the maximum temperature was built based on the neural network. There were six neurons
in the input layer, which corresponds to the number of previous days provided to the network for the
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prediction of the next maximum temperature value and one neuron in the output layer, respectively.
The number of hidden layers and the number of hidden neurons are discussed. This study tested
the performance of ANN models for one day ahead of the maximum temperature prediction using
prior observations as inputs corresponding to three different cases of hidden layers; they were one,
three, and five hidden layers, respectively. Besides, the following five levels of numbers of trainable
parameters (i.e., the total number of its weights and biases) were selected for testing: 49, 113, 169, 353,
and 1001. Combining the number of hidden layers and the number of parameters, Table 1 shows
the model architectures. Besides, the configurations of 1-, 3- and 5-hidden layer ANN models with
49 learnable parameters are illustrated in Figure 2. It is noticed that the total number of trainable
parameters was computed by summing the connections between layers and biases in every layer.
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Figure 1. Map of the locations of the stations used in this study.

Table 1. Structure of the ANN models used for the study.

Number of Parameters Number of Hidden Layers Structure
1 6-6-1
6-3-3-3-1
6-5-1-1-1-1-1
6-14-1
6-6-5-5-1
6-4-4-4-4-4-1
6-21-1
6-7-7-7-1
6-6-6-4-4-6-1
6-44-1
6-11-11-11-1
6-8-8-8-8-8-1
6-125-1
6-20-20-20-1
6-18-17-16-9-10-1

49

113

169

353

1001
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Figure 2. Schematic of the artificial neural network (ANN) with the total parameter number of
49 corresponding to (a) 1 hidden layer; (b) 3 hidden layers; and (c) 5 hidden layers.

To evaluate the effectiveness of each network, the root mean square error (RMSE) was used as a
performance index. RMSE is calculated as

RMSE = 1)

where y; is the observed data, i/’; is the predicted data, and n is the number of observations. The RMSE
indicates a discrepancy between the observed and predicted data. The lower the RMSE, the more
accurate the prediction is.

At each station, the data were subdivided into three parts: a training set consisting of 70% of the
total data, a validation set using 20% of the total data, and a testing set containing 10% of the total
data. The first two splits were used to train and examine the training performance, and the test set
was used to evaluate the actual performance of the prediction. All models were trained and validated
with the same training set and validation set, respectively. A popular technique to avoid the effect
of overfitting the network on the training data is the early stopping method presented by Sarle [16].
Model overfitting is understood as the fitness of the model to the signal and noise that are usually
present in the training sample. The possibility of overfitting depends on the size of the network,
the number of training samples, and the data quality.

The maximum epoch for training was set at 1000. An epoch was described as one pass through all
the data in the training set, and the weights of a network were updated after each epoch. The training
was stopped when the error in the validation data reached its lowest value, or the training reached the
maximum epoch, whichever came first. One iteration step during the ANN training usually works
with a subset (call batch or mini-batch) of the available training data. The number of samples per
batch (batch size) is a hyperparameter, defined as 100 in our case. Finally, the networks were evaluated
based on the testing data. The ANN network was implemented using Keras [17], with TensorFlow [18]
as the backend. According to Chen et al. [19], the design of neural networks has several aspects of
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concern. A model should have sufficient width and depth to capture the underlying pattern of the data.
In contrast, a model should also be as simple as possible to avoid overfitting and high computational
costs. However, the general trend of the number of parameters versus RMSE indeed provides some
insights into selecting the proper structure of the model.

Data normalization is a preprocessing technique that transforms time series into a specified range.
The quality of the data is guaranteed when normalized data are fed to a network. The MinMaxscaler
technique was chosen for normalizing the data and making them in a range of [0, 1], which was defined
as follows:

¥ = X — Ximin @)
Xmax — Xmin
where x’ is the normalized data; x is the original data; and X4y, X, are the maximum and minimum
values of the data, respectively. The max and min used for standardization are calculated from the
calibration period only. At the end of each algorithm, the outputs were denormalized into the original
data to receive the final results.

An ANN consists of an input layer, one or more hidden layers of computation nodes, and an
output layer. Each layer uses several neurons, and each neuron in a layer is connected to the neurons
in the next layer with different weights, which change the value when it goes through that connection.
The input layer receives the data one case at a time, and the signal will be transmitted through the
hidden layers before arriving at the output layer, which is interpreted as the prediction or classification.
The network weights are adjusted to minimize the output error based on the difference between the
expected and target outputs. The error at the output layer propagates backward to the hidden layer
until it reaches the input layer. The ANN models are used as an efficient tool to reveal a nonlinear
relationship between the inputs and outputs [8]. Generally, the ANN model with three layers can be
mathematically formulated as Lee et al. [20]:

m n
vk=h Z ijfl(z Wiixi +bj) + by 3)
= p

where x; is the input value to neuron i; y; is the output at neuron k; f; and f, are the activation function
for the hidden layer and output layer, respectively; n and m indicate the number of neurons in the
input and hidden layers. Wj; is the weight between the input node i and hidden node j while Wy; is
the weight between the hidden node j and output node k. b; and by are the bias of the i node in the
hidden layer and the k" node in the output layer, respectively.

The weights in Equation (3) were adjusted to reduce the output error by calculating the difference
between the predicted values and expected values using the back-propagation algorithm. This algorithm
is executed in two specified stages, called forward and backward propagation. In the forward phase,
the inputs were fed into the network and propagated to the hidden nodes at each layer until the
generation of the output. In the backward phase, the difference between the true values and the
estimated values or loss function was calculated by the network. The gradient of the loss function with
respect to each weight can be computed and propagated backward to the hidden layer until it reaches
the input layer [20].

In the current study, the ‘tanh’ or hyperbolic tangent activation function and an unthresholded
linear function were used in the hidden layer and output layer, respectively. The range of the tanh
function is from —1 to 1, and it is defined as follows:

eX—e ™~

tanh(x) = W

4)

It is noteworthy that there is no direct method well established for selecting the number of
hidden nodes for an ANN model for a given problem. Thus, the common trial-and-error approach
remains the most widely used method. Since ANN parameters are estimated by iterative procedures,
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which provide slightly different results each time they are run, we estimated each ANN 5 times and
reported the mean and standard deviation errors in the figure.

The purpose of this study was not to find the best station-specific model, but to investigate
the effects of hidden layers and trainable parameters on the performance of ANNs for maximum
temperature modeling. We think that the sample size of 55 stations is large enough to infer some of the
(average) properties of these factors to the ANN models.

3. Results

To empirically test the effect of the number of learnable parameters and hidden layers, we
assessed and compared the model results obtained at 55 stations for five different parameters: 49, 113,
169, 353, and 1001, respectively. Moreover, we also tested the ANN models with different hidden
layers (1, 3, and 5) having the same number of parameters at each station. Therefore, the mean and
standard deviation were computed for the RMSE to analyze the impact of these factors on the ANN'’s
performance. It is noted that all other modeling conditions, e.g., input data, activation function,
number of epochs, and the batch size, were kept identical. After training and testing the datasets,
the effects of the parameters and hidden layers of models were discussed.

3.1. Effect of the Number of Parameters

We first evaluated the performance of the ANN model by using the testing datasets. For each
studied parameter, the prediction performance values were also presented as a rate of change in RMSE
based on the original RMSE value obtained at 55 stations. This reference RMSE changes depending on
the site used to study the impact of each parameter. Thus, as the results are depicted in Figures 3-5,
the proposed ANN with 49 parameters consistently outperforms the other parameters at almost all
stations in South Korea, since it produces the lowest change in error for different model configurations.
Taking the single-hidden layer ANN as an example, the rate of change of the RMSE slightly increases
with the extension of parameters for most sites (see Figure 3).

However, we can also observe that the increased parameter size of the ANN model made the
error’s change decrease lightly at Buan stations. Moreover, several sites have the lowest change values
of RMSE at the parameter of 1001, such as Daegwallyeong, Gunsan, Hongcheon, and Tongyeong.
These sites have an increasing trend of error when the number of tunable parameters in the network is
raised from 49 to 169 (Hongcheon) or 353 (Daegwallyeong, Gunsan, and Tongyeong) before declining
to the lowest point at 1001. Similarly, Figure 4 illustrates the general relationship between the total
numbers of parameters versus the rate of change of RMSE on testing data in all 55 stations for three
hidden layers. It can be noted from this figure that in the majority of stations, the rise of parameter
numbers makes the performance of the model worse due to the increase in the change of RMSE.
In contrast, few stations have the best results at the parameter of 133 (Pohang), 169 (Haenam), 353 (Buan
and Yeongdeok), and 1001 (Daegwallyeong). Although the fluctuation of the RMSE’s change rate
for the three-hidden layer ANN, corresponding to various parameter sizes, varies from site to site,
the ANN model with a structure of 49 trainable parameters still shows the best solution for predicting
the maximum temperature one day ahead for most stations in South Korea.

In the case of five hidden layers, it can be observed from Figure 5 that the 49-parameter ANN
model continues showing the smallest error in 52 out of the total 55 stations. In most cases, the increase
in the number of parameters deteriorates the performance of the ANN model. However, it should be
noticed that the model achieves the best result at the parameter of 353 in Buan and Gunsan stations
while the smallest RMSE in Mokpo is obtained at the parameter of 119.
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Figure 3. The rate of change of mean root mean square error (RMSE) of the 1-hidden layer ANN
corresponding to 49, 113, 169, 353, and 1001 trainable parameters for the test data for all 55 stations in

South Korea.
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Figure 4. The rate of change of the mean RMSE of the 3-hidden layer ANN corresponding to 49, 113,

169, 353, and 1001 trainable parameters for the test data for all 55 stations in South Korea.
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Figure 5. The rate of change of the mean RMSE of the 5-hidden layer ANN corresponding to 49, 113,

169, 353, and 1001 trainable parameters for the test data for all 55 stations in South Korea.
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Figures S1-54 (see Supplementary Materials) depict the RMSE of the ANN models with three
different hidden layers that vary the number of parameters from 49 to 1001. The learnable parameter
is an important parameter that may affect the ANN’s performance for predicting the maximum
temperature in the future. For a better assessment, the five-run average and standard deviation of the
performances of each considered parameter and associated ANN architecture are depicted in those
figures for each station separately. Generally, in most stations, there is a slight increasing trend of the
RMSE when the number of parameters is increased. Furthermore, it can be seen from those figures that
the ANN with parameters at 49 outperformed the parameters of other models, since it produced the
lowest RMSE compared to others, except for Buan, Daegwallyeong (Figure S1), and Tongyeong stations
(Figure S4), while the models having 1001 parameters yielded the worst results at around 50% of total
stations, in comparison to other numbers of parameters. The difference in performance when the
number of parameters increased from 49 to 1001 was marginal, but the value of 49 still leads to slightly
better results. Thus, it can be noticed from these results that the testing RMSE of lower parameters is
maybe better than higher parameters considering the low amount of neurons, and the models with
49 parameters are sufficient to forecast the maximum temperature variable. Nevertheless, there is an
adaptive amount of parameters in the model in terms of hidden layers in some cases. For example,
at Tongyeong stations (Figure S4), the model having one hidden layer showed the smallest RMSE
at the parameters of 1001, while three and five-hidden layer models produced the best results with
49 parameters. In another case, 49 was the best number parameters for one and five hidden layers;
meanwhile, three hidden layers presented the best performance at 353 parameters at Yangpyeong
station (Figure S4). Besides, it is worth noting that at the same parameter number, the values of the
RMSE for the one-, three-, and five-hidden layer models were comparable in most of the stations.
However, the significant differences among the three configurations of the model can be observed at the
1001 parameters such as Boryeong, Cheongju, Daewallyeong (Figure S1), Mokpo (Figure S3), Wonju,
and Yangpyeong stations (Figure S4) or the 353 parameters such as Ganghwa (Figure S1), Incheon,
Jangheung (Figure S2), Seosan (Figure S3), and Yangpyeong stations (Figure 54). In addition, the RMSE
shows little sensitivity to changes in the number of hidden layers in some stations, especially at high
parameters due to the large fluctuation of standard deviation values. For example, in Tongyeong station
(Figure 54), at the same parameter number of 353 or 1001, the standard deviation values of the RMSE
of three- and five-hidden layer models are considerably larger than that of the one-hidden layer model.
The trend is more evident for predicting the maximum temperature as the total number of parameters
increased and occured in some stations, such as Buan, Daegwallyeong, Chuncheon (Figure S1), Wonju,
or Yangpyeong stations (Figure S4). It can be suspected that the performance of the model may be
significantly affected when the structure of the model becomes more complex. Based on the variation
model performance in terms of hidden layers and parameters, it can be concluded that both the number
of parameters and hidden layers were important to the model’s performance, and the selection of
parameters and hidden layers needs considerable attention because of the fluctuation in error.

3.2. Effect of the Number of Hidden Layers

Figures 6-10 show the spatial distribution of the ANN performances in the test period. Accordingly,
a significant decrease in error is likely to move from the eastern to the western and southern part of
South Korea with 49 learnable parameters (see Figure 6).

Similar spatial distributions of the changes in RMSEs also occur in Figures 7-10 when the number
of parameters is increased to 113, 169, 353, and 1001. It can be concluded that the ANN models perform
better in western and southern Korea (left panels). Moreover, the visualization of the differences in
the RMSE between one hidden layer and three hidden layers (middle panels) as well as between one
hidden layer and five hidden layers (bottom panels) at each station is also shown in Figures 6-10.
It is noticed that with the same number parameters of 49, while one-hidden layer model presented
better results than the three-hidden layer model at over 60% of total stations, the five-hidden layer
model performed slightly greater than the one-hidden layer model at around 79% of stations where
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RMSE differences greater than 0 were found (see Figure 6). However, with the increase in the number
of parameters, the ANN models with one hidden layer produced better results than the three- and
five-hidden layer models in almost all stations.

(a) RMSE of 1-hidden-layer ANN
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Figure 6. Panel (a) shows the RMSE of the test data of the 1-hidden layer model with 49 parameters;
panel (b) shows the difference of the RMSE between the 1-hidden layer and the 3-hidden layer model
(RMSE difference <0 indicates that the 1-hidden layer model performs better than the 3-hidden layer
model and vice versa); and panel (c) shows the RMSE difference between the 1-hidden layer and the
5-hidden layer model (RMSE difference <0 indicates the that the 1-hidden layer model performs better,
RMSE difference >0 shows the opposite).
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Figure 7. Panel (a) shows the RMSE of the test data of the 1-hidden layer model with 113 parameters;
panel (b) shows the difference of the RMSE between the 1-hidden layer and the 3-hidden layer model
(RMSE difference <0 indicates that the 1-hidden layer model performs better than the 3-hidden layer
model and vice versa); and panel (c) shows the RMSE difference between the 1-hidden layer and the
5-hidden layer model (RMSE difference <0 indicates that the 1-hidden layer model performs better,
RMSE difference >0 shows the opposite).
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Figure 8. Panel (a) shows the RMSE of the test data of the 1-hidden layer model with 169 parameters;
panel (b) shows the difference of the RMSE between the 1-hidden layer and the 3-hidden layer model
(RMSE difference <0 indicates that the 1-hidden layer model performs better than the 3-hidden layer
model and vice versa); and panel (c) shows the RMSE difference between the 1-hidden layer and the
5-hidden layer model (RMSE difference <0 indicates the that the 1-hidden layer model performs better,
RMSE difference >0 shows the opposite).
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Figure 9. Panel (a) shows the RMSE of the test data of the 1-hidden layer model with 353 parameters;
panel (b) shows the difference of the RMSE between the 1-hidden layer and the 3-hidden layer model
(RMSE difference <0 indicates that the 1-hidden layer model performs better than the 3-hidden layer
model and vice versa); and panel (c) shows the RMSE difference between the 1-hidden layer and the
5-hidden layer model (RMSE difference <0 indicates the that the 1-hidden layer model performs better,
RMSE difference >0 shows the opposite).
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Figure 10. Panel (a) shows the RMSE of the test data of the 1-hidden layer model with 1001 parameters;
panel (b) shows the difference of the RMSE between 1-hidden layer and the 3-hidden layer model
(RMSE difference <0 indicates that the 1-hidden layer model performs better than the 3-hidden layer
model and vice versa); and panel (c) shows the RMSE difference between the 1-hidden layer and the
5-hidden layer model (RMSE difference <0 indicates the that the 1-hidden layer model performs better,

RMSE difference >0 shows the opposite).

For example, Figure 7 indicates that, based on the RMSE of the testing sets, the one-hidden
layer model achieves a better performances at 42 and 41 stations, respectively, when the number of
parameters is 113, compared to the three- and five-hidden layer models. Similarly, at the parameter
number of 169, and from the histogram of RMSE differences (Figure 8), we can see that the one-hidden
layer structure generally obtained a smaller error than three and five hidden layers for most sites.
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However, it was noted that the multi-hidden layer models improved the performance of temperature
prediction at some stations (17 stations with three hidden layers and 20 stations with five hidden
layers) in comparison to one hidden layer. Moreover, the number of sites that obtained a smaller
RMSE with multiple hidden layers decreased slightly when the number of parameters was increased
to 353 (Figure 9). Out of 55 stations, there were 12 stations with three hidden layers having smaller
errors than one hidden layer, and 18 stations with five hidden layers had better performance than
one hidden layer. Finally, Figure 10 compares the ANN models in the test case in the name of the
RMSE and hidden layer with 1001 trainable parameters. As the results showed, the one-hidden layer
ANN generated a better result at almost every station than the three and five hidden layers. The three-
and five-hidden layer ANNSs had higher RMSE than one hidden layer in five and three stations out
of 55 stations, respectively. The results were worth emphasizing that the deep ANN with various
parameters trained for all stations generated a certain number of basins with lower performance than a
single-hidden layer network, but the stations where this occurred were not always the same.

4. Summary and Conclusions

In this study, different hidden layer ANN models with various interior parameters were employed
to forecast 1 day maximum temperature series over South Korea. This study aimed to explore the
relationship between the size of the ANN model and its predictive capability, revealing that for future
predictions of the time series of maximum temperature. In summary, the major findings of the present
study are as follows.

Firstly, a deep neural network with more parameters does not perform better than a small
neural network with fewer layers and neurons. The structural complexity of the ANN model can be
unnecessary for unraveling the maximum temperature process. Even though the differences between
these models are mostly small, it might be useful to some applications that require a small network
with a lower computational cost because increasing the number of parameters may slow down the
training process without substantially improving the efficiency of the network. Importantly, it can be
observed that a simple network can perform better than a complex one, as also concluded in other
comparisons. The authors in Lee et al. [20] showed that a large number of hidden neurons did not
always lead to better performance. Similarly, in our previous study, the hybrid method of ANN and
the genetic algorithm was applied to forecast multi-day ahead maximum temperature. The results
demonstrated that the neural network with one hidden layer presented a better performance than
the two and three hidden layers [14]. Nevertheless, too many or lesser amounts of parameters in the
model can make the RMSE of the model increase, such as in the Buan station. This could be explained
by an insufficient number of parameters causing difficulties in the learning data, whereas an excessive
number of parameters might lead to unnecessary training time, and there is a possibility of over-fitting
the training data set [21].

Secondly, although the performances of the models corresponding to different hidden layers are
comparable when the number of parameters is the same, it is worth highlighting that five-hidden
layer ANNSs showed relatively better results compared to one and three hidden layers in the case of
49 parameters. However, when the number of parameters was large, the model with one hidden layer
obtained the best solutions for forecasting problems in most stations.

Finally, the model’s parameters and the degree of effectiveness of the hidden layers are
relatively competitive in forecasting the maximum temperature time series due to variations in
errors. Additionally, when the number of parameters is large, the significant difference of model
outputs from various hidden layers can be achieved.

As future work, we are interested in investigating the effect of more parameters such as the learning
rate or momentum on the system’s performance. Moreover, conducting an intensive investigation on
the effect of parameters on other deep learning approaches for weather forecasting, such as a recurrent
neural network (RNN), long short-term memory (LSTM), and convolutional neural network (CNN) is
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a matter of interest for our future research. Besides, the sensitivity analysis or critical dependence of
one parameter on others may be involved for further research.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/10/1072/s1,
Figure S1: RMSE of different parameters ANN corresponding to 1, 3, and 5 hidden layers for test data Andong,
Boeun, Boryeong, Buan, Busan, Buyeo, Cheonan, Cheongju, Chuncheon, Chungju, Chupungryong, Daegu,
Daewallyeong, Daejeon, and Ganghwa stations. The dot and the vertical lines denote the mean and the standard
deviation of 5 repetitions, respectively, Figure S2: RMSE of different parameters ANN corresponding to 1, 3,
and 5 hidden layers for test data at Gangneung, Goheung, Gumi, Gunsan, Gwangju, Haenam, Hapcheon,
Hongcheon, Icheon, Imsil, Incheon, Inje, Jangheung, Jecheon, and Jeju stations. The dot and the vertical lines
denote the mean and the standard deviation of 5 repetitions, respectively, Figure S3: RMSE of different parameters
ANN corresponding to 1, 3, and 5 hidden layers for test data at Jeongeup, Jeonju, Jinju, Miryang, Mokpo,
Mungyeong, Namhae, Namwon, Pohang, Sancheong, Seogwipo, Seongsan, Seosan, Seoul, and Sokcho stations.
The dot and the vertical lines denote the mean and the standard deviation of 5 repetitions, respectively, Figure S4:
RMSE of different parameters ANN corresponding to 1, 3, and 5 hidden layers for test data at Suwon, Tongyeong,
Uiseong, Uljin, Ulsan, Wando, Wonju, Yangpyeong, Yeongchen, and Yeongdeok stations. The dot and the vertical
lines denote the mean and the standard deviation of 5 repetitions, respectively.
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