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Abstract: Fine-scale nitrogen oxide (NOx) concentrations over South Korea are examined using
surface observations, satellite data and high-resolution model simulations based on the latest
emission inventory. While accurate information on NOx emissions in South Korea is crucial to
understanding regional air quality in the region, consensus on the validation of NOx emissions is
lacking. We investigate the spatial and temporal variation in fine-scale NOx emission sources over
South Korea. Surface observations and newly available fine-scale satellite data (TROPOspheric
Monitoring Instrument; TROPOMI; 3.5 × 7 km2) are compared with the community multiscale air
quality (CMAQ) model based on the clean air policy support system (CAPSS) 2016 emission inventory.
The results show that the TROPOMI NO2 column densities agree well with the CMAQ simulations
based on CAPSS emissions (e.g., R = 0.96 for June 2018). The surface observations, satellite data
and model are consistent in terms of their spatial distribution, the overestimation over the Seoul
Metropolitan Area and major point sources; however, the model tends to underestimate the surface
concentrations during the cold season.
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1. Introduction

Nitrogen oxides (NOx = NO + NO2) play an important role in tropospheric chemistry as well
as in the formation of surface ozone and secondary aerosol formation for particulate matter. Most
NOx emissions are released in the form of NO, but they react quickly and are transformed into NO2.
Thus, NO2 is a good indicator of NOx emissions, and using NO2 concentration as a proxy of NOx

emissions has been accepted for practical purposes [1–5]. Similarly, the observed concentration of
surface NO2 concentration or vertically integrated column density has been used to estimate the
amount of NOx emissions, especially in highly industrialized and urbanized areas such as East Asian
cities. As providing accurate information on the intensity and location of emission sources is crucial to
improving a chemical transport model, numerous studies have used observational data from surface
and space-borne measurements to evaluate a model’s performance and update emission inventory
information [6,7].
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The space-borne monitoring of NO2 plumes, especially from anthropogenic sources, can provide
information on the source of NOx emissions. Since the late 1990s, several instruments on board
various platforms have been used to monitor changes in anthropogenic NOx emissions. Indeed,
measuring NO2 vertical column density has been an effective way of monitoring changes in surface
anthropogenic NOx emissions globally, including over North America [8–11], Europe [12–14] and
Asia [15–20]. Recently, comparing satellite-observed NO2 content with modeled constituents using
regional chemistry transport models has become common for evaluating information on the amount of
NOx emissions released from anthropogenic sources [15,21–25].

On the contrary, using satellite products to monitor NOx emission sources has a clear limitation
due to their coarse spatial resolution. Typically, urban and industrial NO2 plumes have a fine-scale
spatial structure. In particular, the plumes of industrial stacks, a major source of NOx emissions, are
from several hundred meters to a few kilometers in size. Therefore, to assess the source location
accurately, we need to detect emission sources at a finer scale. Previous space-borne monitoring devices
such as GOME, SCHIAMACHY, OMI and GOME-2 adopted a coarse spatial resolution that was
not enough to fully detect the fine-scale spatial structure that we usually expect from anthropogenic
sources. Considering satellite footprint resolution has garnered rising interest, with new instruments
such as TROPOMI emerging, which have better spatial resolution [26,27], we expect the fine-scale
structure of emission sources to be resolved.

In South Korea, NOx emissions are a key driver behind air quality degradation, both in surface
ozone and particulate matter. Bae et al. (2019) demonstrated the responses of surface ozone
concentrations to the recent change of NOx emissions [28]. Kim et al. (2018) demonstrated that the
level of nitrate concentration seriously adds to surface particulate matter concentration when severe
haze cases are monitored [29]. Kim et al. (2017) also showed that the balance of inorganic aerosols
is the main reason for high particulate matter concentration by analyzing the evolution of high haze
events during February 2014 in South Korea [30]. While several researchers have presented approaches
to assess the reliability of NOx emissions from South Korean sources [31–36], consensus on the validity
of NOx emission inventories and air quality model performance is lacking. Due to the rapid changes in
anthropogenic emissions in this region, some emission inventories are already outdated, while others
use an overly coarse resolution to fully resolve the scale of NOx emissions in South Korea. Hence,
NOx emission inventories as well as their trends [37–39] and chemical characteristics (e.g., chemical
regimes) [28,40] are not fully understood.

NOx emissions in South Korea have been provided as multiple bottom-up emission inventories
including the clean air policy support system (CAPSS) [41]. While CAPSS emissions generally
agree with the observations made through modeling studies, they also show a considerable range of
uncertainties depending on their locations and time. Moreover, validations of estimated NOx emissions
are lacking. For instance, using the OMI and Weather Research and Forecasting (WRF)-Chem model,
Goldberg et al. (2019) suggested an underestimation of NOx emissions by analyzing observations
from the 2016 KORUS-AQ campaign [35]. By assimilating multiple satellite retrievals, Miyazaki et al.
(2019) estimated 1.38 Tg/year NOx emissions from South Korea, 40% higher than an a priori bottom-up
inventory [18].

In this study, we test the current state of NOx concentrations using multiple sources of observations
from surface monitoring and space-borne monitoring data to review our knowledge and understanding
of NOx emissions in South Korea. The goals of this study include (1) to test the spatial consistency
of small-scale NOx emission sources, especially from satellites and emission inventories; (2) to
understand if the model biases of satellite and surface observations are consistent, spatially and
temporally; and (3) to examine the sectoral and chemical characteristics of measurements and models.
The remainder of the paper is organized as follows. Section 2 describes the data and methodology.
The results of the models, satellites, surface observations and emission inventories are compared in
Section 3. Section 4 concludes.
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2. Data and Method

2.1. Surface Observations

Hourly observations of surface NO and NO2 concentrations during 2018 were obtained from
the National Institute of Environmental Research (NIER). Data from 305 surface monitoring sites,
including 251 urban monitoring sites (urban), 38 roadside sites (roadside) and 17 background sites
(rural), were selected after screening data quality and availability. These measurements were taken
from chemiluminescence monitors with a molybdenum converter that often overestimated the NO2

concentration caused by interference from other nitrogen species (NOz) [42,43]. These interferences
were greatest on a relative basis during the afternoon on high-O3 days when surface NOx concentrations
were lowest overall, usually due to high mixing height and/or shortened NOx lifetime by photochemical
losses. We did not correct any potential bias caused by such interference in this study.

2.2. TROPOMI

TROPOMI, onboard Sentinel-5P satellite, is one of the most recently available instruments
used to monitor NOx emissions from many anthropogenic sources in the troposphere. TROPOMI
is a hyperspectral spectrometer with a nadir-viewing 108 degree field-of-view, with wavelength
coverage over ultraviolet-visible (270 nm to 495 nm), near infrared (675–775 nm) and shortwave
infrared (2305–2385 nm) [44,45]. Compared with its precedents (i.e., SCHIAMACHY and OMI),
TROPOMI has a superior spatial resolution, with a 7 × 3.5 km resolution at the nadir and more
coverage of clear-sky observations thanks to a high signal-to-noise ratio. We used a level 2 product
(S5P_L2__NO2) from NASA GES DISC, which is based on the DOMINO algorithm, a differential optical
absorption spectroscopy method, a pre-calculated air-mass factor look-up table and a stratospheric and
tropospheric contribution separation method based on a data-assimilated chemistry transport model.
A quality band, qa_value, was also provided for each pixel (ranging from 0 (poor) to 1 (excellent)), and
we filtered out all the pixels with a qa_value less than 0.75 to remove cloud interference and ensure
retrieval quality.

2.3. Model

Our modeling framework uses the WRF [46] model v3.3 and community multiscale air quality
(CMAQ) [47] model v4.7.1 to simulate the meteorology and chemistry. The meteorology–chemistry
interface processor (MCIP) [48] v3.6 and sparse matrix operator kernel emission (SMOKE) are used as
a preprocessor and as an emission processing model, respectively. The AERO5 module and statewide
air pollution research center version 99 (SAPRC99) [49] are used as the aerosol module and chemical
mechanism, based on anthropogenic emissions, from CREATE 2015 (Asia) and [50] CAPSS 2016
(South Korea) [41], and biogenic emissions (Model of Emissions of Gases and Aerosols from Nature;
MEGAN) [51]. Natural emissions from dust and fire are not included in the simulations due to their
high uncertainty. Although dust and fire emissions do not significantly add to NOx concentration in
South Korea, the impact through the boundary condition (e.g., NOx emissions from Siberian fires)
could make a partial contribution. Multiscale modeling has been conducted over East Asia in 27-km
domain, and over South Korea in 9-km domain. Comparisons with satellite and observations in this
study were managed within the 9-km domain. Model configurations are described in Table 1.
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Table 1. Model option configurations for the Weather Research and Forecasting (WRF) and community
multiscale air quality (CMAQ) simulations.

Model Configuration Reference

WRF v3.3

Initial field
Microphysics

Cumulus scheme
LSM scheme
PBL scheme

FNL [52]
WSM3 [53]

Kain-Fritsch [54]
NOAH [55]

YSU [56]

CMAQ v4.7.1

Chemical mechanism
Chemical solver
Aerosol module

Advection scheme
Horizontal diffusion

Vertical diffusion
Cloud scheme

SAPRC99 [49]
EBI [57]

AERO5 [58]
YAMO [59]

Multiscale [60]
Eddy [60]

RADM [61]

2.4. CAPSS Emissions

CAPSS, developed by the National Institute of Environmental Research, is an integrated air quality
management system designed to support pollutant emission control and air quality management policy
in South Korea. CAPSS provides emission information from South Korean emission sources, including
point, area, on-road and non-road emission sectors. It uses a multilevel classification of the sources of
emissions, with 12 upper-level, 54 intermediate-level, 312 lower-level and 527 detailed-level categories.
CO, NOx, SOx, PM10 and VOCs emissions are available for each upper-level category except for fugitive
dust emissions [41]. “Nonindustrial combustion plants”, “combustion in manufacturing industries”
and “production processes, storage and distribution of fuels” are common in the point and area emission
sectors. The point sector also includes “combustion in energy industries” and “waste treatment and
disposal”, while the area sector includes “other sources and sinks” and “fugitive dust”. “Solvent use”,
“other mobile sources and machinery” and “fugitive dust” belong to the mobile sector. Point source
emissions are estimated using both the direct method, based on the real-time measurement of pollutant
emissions, and the indirect method, based on emission factors and activity data. Emissions from area
sources are estimated using the indirect method.

Table 2 summarizes the major source classification code categories and their amount in NOx

emissions from CAPSS 2007, 2010, 2013 and 2016. The sector with the highest NOx emissions is road
transport. Total mobile sources (which also include additional non-road mobile sources) account for
around two-thirds of NOx emissions in South Korea. NOx emissions from South Korean sources were
estimated to increase by 13.7% from CAPSS 2013 to CAPSS 2016. While several studies have tried to
evaluate the reliability of NOx emissions using satellite measurements, few have fully assessed the
CAPSS emission inventory, especially the latest version.
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Table 2. Amount of nitrogen oxide (NOx) emissions from the major source classification codes in
CAPSS 2007, 2010, 2013 and 2016.

Source Classification Code
CAPSS

2007 2010 2013 2016

Combustion in energy industries 156,304 153,441 177,219 145,445
Nonindustrial combustion plants 82,396 96,480 88,769 85,824

Combustion in manufacturing industries 155,053 164,942 178,034 175,332
Production processes 48,725 49,022 55,151 55,932

Road transport 495,084 382,226 335,721 452,995
Other mobile sources and machinery 237,101 208,878 246,027 309,986

Waste treatment and disposal 13,097 6,062 9,529 13,570
Other sources and sinks 163 158 165 167

Combustion total 393,753 414,863 444,022 406,601

Mobile total 732,185 591,104 581,748 762,981

Total 1,187,923 1,061,210 1,090,614 1,239,251

2.5. Spatial and Vertical Data Processing

To compare satellite models, conducting a fair comparison by matching spatial resolution and
vertical sensitivity is crucial [62–64]. In this study, we processed satellite data using oversampling
based on the conservative spatial regridding method and applied the average kernel to the modeled
layers before integrating into the column density. Oversampling can enhance weak signals of pollution
by increasing the frequency of spatial sampling as well as generate high definition data with less
noise [65,66]. This method has been used widely to detect signals of anthropogenic emission sources
of NO2 and SO2, which usually have a smaller spatial structure than model grid sizes.

For the data processing, we extended the concept of oversampling. Unlike previous approaches
that simply increase the spatial sampling frequency, we included the concept of conservative regridding
in which all the satellite footprint pixels are treated as polygons that have coverage areas instead of a
simple center point. The conservative regridding method reconstructs satellite data pixels into a target
domain grid cell by calculating the fractional coverage of raw data pixels within the target grid cell, as
described by Kim et al. (2016) [62,63]

The concentration of grid cell Cj can be calculated as

fi, j =
Area

(
Pi ∩ C j

)
Area

(
C j

) (1)

C j =

∑
Pi· fi, j∑

fi, j
(2)

where i and j are the indices of P (data pixel) and C (grid cell), respectively. fi, j is the overlapping
fraction, which sums to 1 (i.e.,

∑
fi, j= 1 for each grid cell).

For all comparisons between model, satellite and surface observations, data were processed to
properly match their spatiotemporal characteristics. Satellite data were regridded conservatively, and
surface observations were averaged over those points within a domain cell. Temporal coverage is also
matched consistently.

3. Results

3.1. Base Model Performance

Before the full analysis, we evaluated the performance of the basic model to demonstrate the
capability of the modeling system (i.e., can it reproduce the general features of tropospheric chemistry
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in the targeted region). Figure S1 presents the time series comparisons of surface PM2.5, ozone and
NO2 concentrations over approximately 300 surface monitoring sites in South Korea. The comparisons
clearly demonstrate that the model can reproduce the general features of regional and local air quality
from both meteorological and chemical perspectives.

3.2. Spatial Distribution

We then investigated the spatial distribution of NOx emission sources. Figure 1 compares
the geographical distributions of the NO2 vertical column densities from TROPOMI with the NOx

emissions from the CAPSS 2016 emission inventory. The TROPOMI data were oversampled onto 3-km
resolution grids using the conservative spatial regridding method and the NOx emission data were
obtained from the 9-km simulation data for the CMAQ simulation. As noted earlier, oversampling has
been used to detect emission flux signals from a variety of anthropogenic emission sources and CAPSS
2016 captures most potential NOx emission sources well.Atmosphere 2020, 10, x FOR PEER REVIEW 6 of 20 
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Figure 1. Spatial distribution of (A) NO2 vertical column densities from TROPOMI and (B) NOx

emissions from CAPSS 2016 during June 2018. TROPOMI level 2 pixels are oversampled onto a 3-km
grid using the conservative spatial regridding method and CAPSS NOx emissions are gridded onto a
9-km domain grid.

As expected, the fine resolution of the satellite and the model provide the details of the fine-scale
structures of the emission sources. In particular, the highest NO2 column densities are shown in the
Seoul metropolitan area (SMA) region (C1) where almost half of South Koreans reside. Mostly due to
the high NOx emissions from transportation, the SMA shows high concentrations. In general, both
TROPOMI and OMI (not shown) show similar spatial patterns representing the major NOx emission
sources over South Korea. Urban cities and industrial facilities are other clear sources of NOx emissions.
Busan (C2), Daegu (C3) and Gwangju (C4) are major cities that can be recognized from space-borne
observations. Incheon (C5) also has a high concentration of NO2 column density, but is not isolated
from emissions from Seoul due to its proximity to the capital. Gwangyang (P1), Ulsan (P2) and Pohang
(P3) are other cities with large industrial facilities that are well recognized by TROPOMI. Other cities,
including Daejeon (C6) and Sejong (C7), are also highly populated. Several point sources are also



Atmosphere 2020, 11, 101 7 of 19

noticeable, including Dangjing (P4), Boryung (P5) and Saemangeum (P6). Comparisons of the location
of known point sources in South Korea are discussed further in Section 3.4. North Korea also has
a noticeable signal at Pyongyang (C8), likely the signals from the two fossil fuel power plants in
Pyongyang and East Pyongyang. We confirm that the spatial patterns detected by TROPOMI and
those reported in CAPSS 2016 agree to a large degree, implying the high quality of both data sets.
Clearly, TROPOMI can detect all the small emission signals we expect from the CAPSS inventory. On
the contrary, most CAPSS information is presented as real measurements.

A more complete comparison of emission intensity can be achieved using the satellite observations
and model simulations of the NO2 vertical column densities. Figure 2 shows the spatial comparisons
of the NO2 column densities between CMAQ and TROPOMI during June 2018. The comparisons for
the other months are shown in Figure S2. While there are slight differences by month, there is a clear
overestimation in the modeled NO2 column densities over major cities and industrialized locations.
The only location with an underestimation is the area near the boundary of Chungbuk, Gangwon
and Gyeongbuk, where several cement industries are located (P7 and P8). The potential impact of
emissions from the cement industry in this region will be explored in a future study.
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Figure 2. NO2 vertical column densities from TROPOMI (upper left) and CMAQ (upper right) and
their differences (i.e., CMAQ–TROPOMI) (bottom) during June 2018.

Figure 3 also compares the surface observations with the model. For this comparison, our main
interest was confirming if both the satellite products (Figure 2) and the surface observations (Figure 3)
have consistent bias patterns. Clearly, both bias patterns are consistent. To further confirm the
spatial patterns, we compare the surface observations and the corresponding model output at the
monitoring sites with the spatial distribution by converting the point data into a spatial distribution
using Krig spatial interpolation (Figure 3B,D). The patterns of model biases are consistent from these
site comparisons as well as the interpolated two-dimensional field comparisons. We see a considerable
overestimation over the SMA region, especially over the western SMA. This comparison changes when
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we compare seasons. However, even for the cold season, we still see a strong overestimation from the
major cities, especially in the western SMA, and other cities. Further, we see overestimations for the
industries. To summarize, the model tends to overestimate at locations with high NOx emissions as
well as in major cities and industries. Most of the underestimation of NO2 concentration is seen in
suburban and rural locations. The lack of natural NOx emissions from soil in the model may account
for these underestimations. While the similarity in the model biases from TROPOMI and the surface
observations is also confirmed from the scatterplot in Figure 4, it shows slightly different patterns for
the other months (Figure S3). For all the months, the NO2 column density bias shows an overprediction,
whereas the surface model biases are much weaker or show an underprediction, especially during the
cold season. Additional plots are also available in Figures S4 and S5.Atmosphere 2020, 10, x FOR PEER REVIEW 8 of 20 
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(A) surface observations, (B) interpolated concentration using Krig, (C) model biases (CMAQ-OBS)
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Figure 4. Comparisons of the surface and columnar NO2 concentrations. Scatterplots between the
surface observations and CMAQ model (left) and column densities from TROPOMI and CMAQ (right)
during June 2018 are shown. For a fair comparison, TROPOMI and CMAQ NO2 column density pixels
collocated with the surface monitoring sites are selected. Comparisons for other months are available
in Figure S3.

While the absolute value of NO2 concentration, both in surface and in columnar, is subject to
errors from a variety of sources, the consistency of the model biases from the surface and columnar
comparisons sheds light on CMAQ’s ability to simulate the tropospheric NOx chemistry. Any
inconsistency in this comparison would preclude us from concluding that the discrepancy is due to the
retrieval of the satellite data. The model could suffer issues, especially in the simulations of the planetary
boundary layer, which seriously affects the ratios between the surface and columnar concentrations.

3.3. Temporal Comparison

The seasonal variation in daily mean NO2 concentration over the 300 surface monitoring sites
is shown in Figure 5. Both the observed and the modeled surface NO2 concentration show typical
seasonal variation (i.e., high during the cold season and low during the summer season) due to the
longer lifetime and increased emissions from anthropogenic sources during the cold season. However,
this variation is much higher in the observed than in the modeled outputs. As a result, the modeled
concentration shows a slight overestimation during the summer season and general underestimations
during the other seasons. The scatterplots in Figure 5b also confirm the same pattern. While they
show good statistics in terms of the annual mean (mean bias 20.95 − 21.79 = −0.84, i.e., −3.9%) and
correlation coefficient (R = 0.83), there is a clear underestimation at a high concentration with a line
fitting slope of 0.81.

Figure 6 compares the diurnal variation in NO2 concentration from the surface monitoring
sites and model simulations. These comparisons were conducted by the type of monitoring site
(urban, roadside and rural). The measurements at rural sites indicate the background concentration.
Interestingly, the diurnal variation in NO2 concentration shows varying patterns by monitoring site
type and season. The modeled diurnal variations show better agreement for urban sites than roadside
sites, which show a clear underestimation during the daytime. The discrepancy at roadside sites might
be partially attributed to the model grid resolution, since the spatial distribution of NO2 concentration
near strong sources may have a sharp gradient.
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3.4. Point Sources

In this section, we summarize the comparison of the model and TROPOMI at the locations of
point sources. Figure 7 shows the spatial distribution of NOx emissions from the point sources in
CAPSS 2016. The point source NOx emissions in each 9-km modeling cell are summed and grid cells
with more than 2000 ton/year NOx emissions are marked with blue circles. The number shown next
to each circle is an identifying number (in Figure 8), which is sorted by the order of model biases.
Zoom-in plots for congested areas (e.g., Chungnam, Gwangyang and Pohang) are shown in Figure S6.
Figure 8 compares the TROPOMI with the CMAQ NO2 vertical column densities over the major point
source emission locations. The NO2 column densities from CMAQ and TROPOMI (lower) and biases
(i.e., CMAQ-TROPOMI) (upper), sorted by bias size, are shown. The point source indices on the x-axis
indicate the cells with point sources more than 2000 ton/year NOx emissions.Atmosphere 2020, 10, x FOR PEER REVIEW 12 of 20 
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Figure 7. Spatial distribution of NOx emissions from point sources in CAPSS 2016. Point source NOx
emissions in each 9-km modeling cell are summed and grid cells with more than 2000 ton/year are
marked with a blue circle. The numbers shown next to each circle are the IDs (in Figure 8), which
are sorted by the order of the model biases. Zoom-in plots for congested areas (e.g., Chungnam,
Kwangyang and Pohang) are available in the Supplementary Information.
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Figure 8. Comparison of TROPOMI and CMAQ NO2 vertical column densities over major point
source emission locations. NO2 column densities from CMAQ and TROPOMI (lower) and biases
(i.e., CMAQ-TROPOMI) (upper), sorted by bias size, are shown. Point source indices on the x-axis
indicate the cells with point sources more than 2,000 ton/year NOx emissions.

Several point sources are noticeable in this point source comparison. We see the overestimation
of NO2 concentration at Dangjin (ID25) near a steel factory that has received special attention as a
potential emission source owing to highly concentrated aerosols. The point source at Pohang (ID29) is
where another steel company is located; this facility has the most overestimated NO2 emission sources
compared with the TROPOMI column density. Since it is located in a coastal area, further research
focusing on fine-scale models is warranted. In addition, a few point sources show the underestimation
of NOx emissions, including the cement factories in Danyang, Yongwol and Jecheon (ID1, −2, −3
and −7).

While the comparison of the modeled column density with satellite retrieval data aimed to
evaluate the reliability of emission inventories, this information can be used as guidance on the
emission inventory but not as evidence to judge it. While we cannot conclude that these model biases
are an absolute measure of the overestimated NOx emissions in the CAPSS 2016 emission inventory, we
confirm that the Pohang cell is the most overestimated emission inventory information compared with
the other point source cells in South Korea. In particular, considering its geographical features (i.e., this
Pohang cell does not have nearby area emission sources unlike the point sources in Chungnam), its
uncertainty in the overestimated emission assumption is not high.

3.5. Nitric Oxide Comparison

In addition, the ratio between NO and NO2 from emission sources is a major barrier to
understanding the characteristics of NOx emissions [67–73]. The ambient NO2:NOx concentration
ratio is often used as an important proxy for NO to NO2 chemistry in air quality models, and most
existing models use a simple assumption of the NO to NO2 emission ratio without fully characterizing
the important atmospheric chemical and mechanical processes. The model in this study also used a
fixed NO:NO2 emission ratio, 9 to 1, to allocate total NOx emissions.

Figure 9 summarizes the diurnal variations of the NO2 to NOx concentration ratio for the different
locations and seasons. In general, the diurnal variation in the observed NO2:NOx ratio is consistent
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with previous in situ studies, with the ratios varying from 0.4 to 0.8 and the lowest ratio around
morning rush hour [63]. The model also represents diurnal variation well. In all the locations, the
model shows a higher NO2:NOx concentration ratio, especially from roadside sites. This suggests
important implications on the limitation in modeling NO:NO2 emissions and chemistry. On one hand,
the proportions of NO emissions could be higher from actual mobile emission sources. On the other
hand, the conversion chemistry from NO to NO2 could have been inaccurate. In addition, modeling
resolution also affects the result if the emitted NO emission at nighttime is measured before fully
reacting with O3 to form NO2. Indeed, further studies including in situ measurements and fine-scale
modeling studies are warranted. Additional plots for NO comparison are also available in Figures S7
and S8.
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3.6. Discussion on Uncertainties

While comparing modeled concentration to observation is the most common and practical way of
evaluating emissions inventory, this comparison also should be done with caution because it can give
misleading guidance on pollution control policy [74]. Potential sources of uncertainty, including the
measuring interference of commercial instrument [74], satellite retrieval error [75], model resolution,
changed NO:NO2 ratios due to diesel vehicle emission control equipment [73], and modeled boundary
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layer should be carefully considered in the interpretation of NOx emissions inventory. This is an
important issue in urban chemistry, because the magnitude and trend of NOx emissions are still
controversial in scientific community [76–80].

4. Conclusions

Over South Korea, NOx emission sources were examined using fine-scale satellite products,
surface observations and a fine-scale modeling system with the latest emission inventory information.
Here are the findings of this study:

(1) The current South Korean emission inventory, CAPSS 2016, represents the geographical
distributions of the NOx emission sources over the country well. It shows good agreement
(e.g., R = 0.96 for June 2018) with the TROPOMI NO2 column density distribution;

(2) The model biases compared with the satellite and surface observations are generally consistent
in their spatial patterns, showing overestimations over the SMA and major point sources and
underestimations in other locations;

(3) The modeled column densities overestimate all year, whereas the modeled surface concentrations
mostly underestimate, especially during the cold season;

(4) The diurnal variation agrees better in urban monitoring sites than in roadside monitoring sites.
Prominent underestimations of daytime concentrations at roadside monitors are observed;

(5) The modeled NO2:NOx ratio is higher than that of observations in all cases, and the largest
differences are observed at roadside sites.

From these findings, we conclude that most power plants and industrial facilities were well
detected by TROPOMI, implying that it can play a critical role in monitoring emission sources in
urban areas. We also confirm that the spatial distribution of TROPOMI is consistent with the surface
observations, suggesting that the newly available TROPOMI data can be a useful tool for monitoring
fine-scale emission sources. TROPOMI has excellent spatial resolution, and it resolves and detects
signals from known point sources in South Korea. We also find that the model usually overestimates
both columnar and surface NO2 concentrations over the SMA and major point sources, especially
during the warm season. One notable exception is the underestimation for cement industries, implying
that further investigations are required for emissions from those facilities.

While the interpretation of the model comparison is used to evaluate emission inventories, the
comparisons shown in this study suggest a complicated interpretation to decide if the CAPSS 2016
NOx emission inventory is accurately estimated. Using such a simple comparison, both NO and
NO2 concentrations are widely underestimated in CAPSS 2016. However, the model overestimates
compared with the surface observations in a large number of sites. The key point is that those sites
are near the core of strong NOx emission sources, at the center of the SMA and in major industrial
point sources. Hence, this mixed result from the NOx concentration comparison fails to provide
clear evidence of a NOx emission underestimation or overestimation. It might thus be a premature
conclusion to directly link the overestimation of the concentration to the overestimation of emissions,
and uncertainty due to the model’s limitations should be considered when interpreting the results of
our study.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/1/101/s1.
Figure S1: Model performance evaluations for PM2.5, O3 and NO2 concentration over South Korea. Black circles
indicate surface observations, and blue lines indicate modeled concentrations; Figure S2: NO2 column density
distributions of TROPOMI, CMAQ and model biases (CMAQ-TROPOMI); Figure S3: Comparisons of surface
and columnar NO2 concentration during May-December 2018; Figure S4: Comparison of modeled and observed
surface NO2 concentration during January to March, April to June, July to September, and October to December,
2018; Figure S5:Comparison of modeled and observed surface NO concentration during January to March, April
to June, July to September, and October to December, 2018; Figure S6: Zoom-in of major points sources in Figure 7.
Numbers indices point source IDs used in Figure 7; Figure S7: Seasonal variation of NO concentrations from
AirKorea surface monitoring sites and CMAQ simulations; Figure S8: Diurnal variations of NO concentrations
over urban, roadside and rural sites.
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