
atmosphere

Article

Observed Multi-Timescale Differences between
Summertime Near-Surface Equivalent Temperature
and Temperature for China and Their Linkage with
Global Sea Surface Temperatures

Jingping Li 1, Xiao Li 2, Xing Li 3,* , Lian Chen 4 and Likun Jin 5

1 Heilongjiang Meteorological Service, Heilongjiang Weather Modification Office, Harbin 150030, China
2 Shanghai Meteorological Service, Shanghai Center for Meteorological Disaster Prevention Technology,

Shanghai 200030, China
3 Shanghai Meteorological Service, Shanghai Ecological Forecasting and Remote Sensing Center,

Shanghai 200030, China
4 Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University,

Shanghai 200433, China
5 Department of Natural Resources of Heilongjiang Province, Heilongjiang Land Use Monitoring and

Comprehensive Management Center, Harbin 150030, China
* Correspondence: lx_sms@163.com

Received: 3 July 2019; Accepted: 31 July 2019; Published: 3 August 2019
����������
�������

Abstract: Based on the ensemble empirical mode decomposition method, this study explores the
differences and similarities in multiple time-scale characteristics of summer air temperature (T) and
equivalent temperature (Te) over China during 1961–2017, using daily meteorological observations
collected at 412 stations in China. Their relationships to global sea surface temperature variations is
also discussed. Results show that both T and Te can be decomposed into five components, which
includes multiple timescales, from interannual to long-term trends. The spatial patterns of each
timescale’s leading mode show that the variations of Te are generally larger than that of T. Meanwhile,
both T and Te are dominated by their inter-annual, multi-decadal variations and the non-linear
trend. High correlations of T and Te can also be found in these major scales. The related sea surface
temperature variations in these major scales also show consistent patterns, which correspond to El
Niño–Southern Oscillation, Atlantic Multidecadal Oscillation and the global warming trend in the
sea, respectively. In other scales, both spatial patterns of T and Te and the corresponding correlation
patterns with sea surface temperature are distinguishable. The current results explore the compound
changes of surface temperature-humidity during the past five decades from a new perspective, which
provides some insights for a better understanding of the possible causes of climate change over China.
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1. Introduction

Global warming during the past century is an unequivocal fact [1,2]. Based on the assessment of
the latest report by the Intergovernmental Panel on Climate Change (IPCC) on the global warming by
1.5 ◦C, human-induced warming has exceeded 1 ◦C in 2017 above the preindustrial period (1750–1850)
at a warming rate of approximately 0.2 ◦C/10a [3]. Many studies have indicated that the acceleration
of global warming will lead to more hot extremes and fewer cold extremes [4,5], presenting human
society and economic development with unprecedented challenges.
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Currently, most studies use a single climatic factor to characterize or define climate change, global
warming or extreme events. For instance, surface air temperature (T) is the most common-used
straightforward temperature metric that represents climate change, variability and trend. However,
climate change or the occurrence of extreme events may not be appropriately presented by a change
in T alone, and it is likely to be a compound change of multiple variables (e.g., the joint change of
temperature and humidity) [6–13]. Furthermore, the changes and causes of joint changes in multiple
variables are more complicated than a single variable, and the compound extreme changes of multiple
variables can amplify the impact of independent events, resulting in more severe consequences [14,15].
In particular, for heatwaves (or heat extremes), a growing number of studies in recent years have
highlighted the advantages and importance of using the multi-variable-based temperature metric
(e.g., equivalent temperature) [6,8,12]. For example, Pal and Elthair [12] stated that the warmings
of wet-bulb temperature (an index that represents the joint temperature-humidity variations) over
southwest Asia in future scenarios (i.e., RCP 4.5 and RCP 8.5) are likely to exceed the critical threshold
of the human capacity to adapt to climate change, which will possibly bring deadly threats to
human health. Pielke et al. [6] found that there are large differences between T and moist enthalpy
(ME)-based equivalent temperature (Te) for 2002, especially when the absolute humidity is high.
Hence, he noted that a more comprehensive multivariable heat metric (i.e., ME-based Te) should be
used to comprehensively measure global surface heat content change. Fall et al. [8] revealed that the
moisture component of Te induces larger trends and variability relative to T during 1979–2005 over the
United States. Furthermore, their work also shows that Te can be used as a complementary variable
to assess the land–atmosphere interaction processes. In recent years, Te is becoming more and more
widely used in climate research due to it being easy-to-compute, having clear physical meanings and
the significance of its representation (e.g., Pielke et al. [6], Fall et al. [8], Kang and Eltahir [16] and
Younger et al. [17]). However, the characteristics of Te during recent decades, especially the differences
between T and Te, remain to be investigated and fully understood.

In recent decades, heat waves in summer have become increasingly frequent in China [18].
Numerous studies have investigated the characteristics and causes of variations in air temperature
(T) during summer. For example, Sun et al. [19] indicate that since the early 1950s, greenhouse gas
emissions caused by human activities have led to an increase in extreme high-temperature events
during summer in China. Taking the 2013 extreme summer heatwave as an example, the possibility
of that has increased more than 60-fold due to anthropogenic influences [19]. Some researchers have
also found that urbanization could contribute to over 20% of the total warming trend in summer air
temperature and lead to significant increases (decreases) in the related hot (cold) extremes during
the past half-century [20,21]. On multidecadal scales, Qian et al. [22] noted that both the frequency
of extreme heat events and the evolution of T in summer over Shanghai had clear multidecadal
variability for a 60- to 80-year period, which was probably linked with the Atlantic Multidecadal
Oscillation (AMO). On the interdecadal scale, Wu et al. [23] found that the first empirical orthogonal
function (EOF) mode of the heat waves in summer in China is closely related to the snow cover in the
western part of the Tibetan Plateau. Hu et al. [24] demonstrated that on an interannual scale, the sea
surface temperature (SST) anomalies in the Indian Ocean Basin affected the summer T in southern and
northeastern China. Wu et al. [25] illustrated that the variation in T in northeastern China is related
to the El Niño–Southern Oscillation (ENSO). Despite these pre-existing studies, for the compound
temperature-humidity changes, their multiple timescales characteristics and differences from those of
the mean air temperature remain unclear. Therefore, based on the above considerations, the primary
scientific questions discussed in this paper are as follows: (1) What are the similarities and differences
in the characteristics between T and Te at multiple timescales in China in recent decades? (2) What is
the relationship between the multiple timescale changes of the two temperatures (i.e., T and Te) and
the global SSTs?
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2. Data and Methods

2.1. Observational and Reanalysis Datasets

Daily surface air temperature, relative humidity and pressure data from 824 meteorological stations
of China’s surface climatological dataset (Version 3.0) (http://data.cma.cn/data/cdcdetail/dataCode/

SURF_CLI_CHN_MUL_DAY_V3.0.html) were used to calculate Te. This dataset has been released by
the National Meteorological Information Center (NMIC) after performing complete quality control
processes (e.g., unusually large values check, spatial and temporal consistency check). The quality and
completeness of the data for each variable were significantly improved compared to the previously
published surface data of the same type. To minimize any inhomogeneity of the data caused by
nonclimatic factors (e.g., relocation of stations, replacement of equipment) and missing data, screening
of the 824 stations was conducted based on two criteria:

(1) Following Chen and Zhai [26], we chose 20 km and 50 m as the relocation distance thresholds
in the horizontal and vertical direction, respectively. The station relocation distance that exceeded
either threshold was marked as a significantly relocated station, and then we excluded those marked
stations to avoid the inhomogeneity due to the significant station relocations.

(2) For each variable, the exclusion of stations that had missing data for more than 5% of summer
days (i.e., June–August, 92 days in total) in any year during 1961–2017.

Ultimately, 412 meteorological stations were retained in the study.
To further reduce the possible uncertainties that were introduced by the inhomogeneity of the

stations’ geographic distribution, we followed Zhang et al. [27] and Chai et al. [28] to conduct a
redistribution algorithm after the screening of the stations. In detail, this process redistributed the
station data onto a 0.5◦ × 0.5◦ equal longitude–latitude grid, and each grid box only contained one
station (if any grid contained more than one station, the station data that was last processed would
represent the final value of that grid). The advantage of this method is to make sure that the density
(or weight) of each grid cell is homogeneous. Finally, 408 equal-weighted grid boxes were retained for
further analyses (Figure 1b).
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Figure 1. Locations of the homogenized 412 meteorological stations (a) and 408 station-redistributed
grid boxes (b) over China. Note that BR and MLRYR in (a) means Bohai Rim area (115–124◦ E; 36–43◦ N)
and the middle and low reaches of the Yangtze River (102.5–123◦ E; 26.5–34.5◦ N), respectively. The two
blue curves in the figure represent the Yellow River (north) and the Yangtze River (south), respectively.

The monthly mean global SST data from the Hadley Center sea ice and SST dataset (HadISST,
can be downloaded from https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html) were
used to analyze the key SST regions that are possibly linked to T and Te. The horizontal resolution of the
data was 1◦ × 1◦. SST indices, including the AMO, Niño 3.4 index and the Pacific Decadal Oscillation
(PDO), were obtained from the United States’ National Oceanic and Atmospheric Administration
(NOAA), which can be downloaded from https://www.esrl.noaa.gov/psd/data/climateindices/list.

http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
https://www.esrl.noaa.gov/psd/data/climateindices/list
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North Atlantic SST tripole (NAT) index can be downloaded from https://cmdp.ncc-cma.net/download/

precipitation/diagnosis/NAT/NAT-mon-nor.tms.
In this study, we focused on the period from 1961 to 2017, and all the above-mentioned data

covers this study period. For the seasonality analyses, SST data were averaged into seasonal values:
Winter (January, February, and December of the preceding year), spring (March–May), and summer
(June–August). The two temperatures (i.e., T and Te) were averaged into summer (June–August) values.

2.2. Calculation of Equivalent Temperature

Pielke et al. [6] proposed that because a single temperature variable does not contain
humidity-related heat, it cannot fully represent the near-surface heat content. For example, the change
in heat characterized by an increase of 1 ◦C in dew-point temperature is comparable to that characterized
by a direct increase of 2.5 ◦C in air temperature [29]. Therefore, Te, defined based on the ME of
moist air, can comprehensively characterize the joint variations of near-surface temperature-humidity.
The detailed definition is as follows:

ME = CpT + Lvq, (1)

In Equation (1), Cp represents the specific heat capacity of dry air, which is approximately
equal to 1.1013 × 10−3 MJ kg−1 ◦C−1; T represents the air temperature (unit: ◦C); Lv represents the
latent heat of vaporization, which is a function of T (calculated using the equation provided by
Henderson–Sellers [30]); and q represents the specific humidity (unit: g/kg), obtained from the station
air temperature, relative humidity and pressure. Equation (1) can be further transformed to calculate
the Te:

Te =
ME
Cp

= T +
Lvq
Cp

, (2)

Equation (2) indicates that Te is composed of two parts: One part is air temperature (T) and the
other part is the “temperature” component related to latent heat ( Lvq

Cp
, short for “LH term” hereafter).

In particular, for the LH term, it represents the coupled nonlinear variations of T and q. Therefore, using
Te can comprehensively characterize the magnitude of surface heat content (or enthalpy) when joint
temperature-humidity change is considered. Physically, it represents the potential “air temperature”
if all of the latent heat of moist air is isobarically converted into sensible heat. In addition, Te is similar
to the heat index, humiture and apparent temperature in physical terms, and all of those indices can
characterize the comprehensive variations of surface meteorological conditions (such as temperature,
humidity and wind).

2.3. Ensemble Empirical Mode Decomposition

To comprehensively understand the similarities and differences of T and Te from the perspective
of multiple timescales, we introduce a widely used time-frequency decomposition method for
studying climate change, namely, the ensemble empirical mode decomposition (EEMD) method [31].
The EEMD method was developed from the empirical mode decomposition (EMD) method [32]
to overcome the mode mixing problem of the original method by adding random white noise into
the original time series in a large number of trials. The EEMD method has been widely applied
in the research of meteorology, hydrology and climatology (e.g., Qian et al. [33], Franzke [34] and
Kim et al. [35]). Detailed information on the EEMD can be found in the study of Wu and Huang [31].
To minimize the impact of noise, 10,000 simulations were selected, and the commonly-used number
of decomposed modes was determined using the algorithm log2(N)−1 (detailed information can
be found in Wu and Huang [36]), where N was the sample length. In our case, considering the
situation of all stations, five modes (calculated by log2(N)-1) were finally selected, i.e., all the stations
were decomposed into four (1–4) intrinsic mode functions (IMFs) and a residual. The original
MATLAB code of EEMD and the corresponding introductions and tutorial can be found on https:
//in.ncu.edu.tw/~{}ncu34951/research1.htm.

https://cmdp.ncc-cma.net/download/precipitation/diagnosis/NAT/NAT-mon-nor.tms
https://cmdp.ncc-cma.net/download/precipitation/diagnosis/NAT/NAT-mon-nor.tms
https://in.ncu.edu.tw/~{}ncu34951/research1.htm
https://in.ncu.edu.tw/~{}ncu34951/research1.htm
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In addition to the aforementioned methods, some common climatological statistical methods were
also used (i.e., rotated EOF analysis, correlation analysis and power spectrum analysis). For studying
the multi-timescale differences between T and Te, we first performed the EEMD method on all the grids
of T and Te to get their five IMFs components (i.e., IMFs 1–4 and the residual component), respectively.
EOF analysis was then conducted for each IMF from the EEMD results, and the first ten modes were
obtained. Moreover, according to Wilks [37], we further performed rotation to the original 10 EOF
modes to enhance the physical meanings of the leading modes of each IMF. Ultimately, the first mode
of the rotated EOF (REOF) result represented the most important variability of each IMF. In addition,
the mean periods of REOF time series of each IMF scale were calculated using the fast Fourier transform
method. Moreover, we had also calculated the proportion of variance explained of each IMF modes to
the total variance of the original temperatures (i.e., T and Te). The results show that the variations of
both T and Te are predominantly controlled by the interannual variability (i.e., IMF1; Figure S1 and S2).

It should be noted that to better interpret and present the physical meanings of the REOF loadings
of each timescale, we had conducted the “scaling conventions” following Wilks [37] beyond the
original EOF/REOF results. For the following REOF results, the eigenvector (principal component)
was multiplied (divided) by (λ)1/2, where λ is the eigenvalue of the corresponding REOF mode.
Wilks [37] revealed that the rescaled eigenvector elements are more directly interpretable in terms of
the relationship between the principal components and the original data when using this rescaling.
The advantage of this rescaling procedure is that the rescaled principal component has been standardized
and nondimensionalized (because (λ)1/2 is equal to the standard deviation of the corresponding principal
component), which in turn means the rescaled eigenvector has the same unit (i.e., ◦C) and physical
meanings (i.e., temperature variation) as the original data has. Therefore, the REOF loadings in our
results show not only the strength of the connection of the respective station to each EOF, but also
the amplitude of the changes in related temperatures (i.e., T and Te) when the corresponding rescaled
principal component increased by 1.

In addition, the decomposed IMFs using EEMD will result in changes in the effective degree of
freedom of the data. Hence, to avoid the statistical artificial significance from the above-mentioned
circumstance, we used the method in reference [38] to calculate the effective degree of freedom
before testing the correlation coefficient and then used the two-tailed Student’s t-test to perform the
significance test.

3. Results

3.1. Leading Modes of T and Te at Different Timescales

To discuss the differences and similarities between the characteristics of T and Te, we first show
the EEMD-REOF results for T and Te at multiple timescales in China. Generally, both T and Te

can be decomposed into five frequency bands: IMFs 1–4 (3- to 4-year period, quasi-6-year period,
quasi-19-year period and quasi-57-year period, respectively) (Figures 2–5) and the residual (nonlinear
trend, Figure 6). First inspections show that both the spatial distribution and magnitude of T (Te) are
different among timescales; at a specific scale, the spatial distribution and magnitude between T and
Te are also different. Despite these differences, there was also a high correlation between temporal
variations in T and Te at certain frequencies. Since the signs of REOF spatial–temporal results are
arbitrary, and hence we take one condition as an example (i.e., shown in Figures 2–6) in the following
text to describe the related EEMD-REOF results. Based on the rescaling procedure (which has been
introduced in the previous section), the magnitudes and signs of REOF loadings hereafter refer to
temperature changes when the corresponding principal component (PC; or time series) increased
by 1. It should be noted that the REOF spatial–temporal results under the exact opposite condition are
also true.
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Specifically, the first REOF mode of the IMF 1 of T primarily shows a high-frequency time variation
at the interannual scale (period of 3.2–3.6 years; Figure 2c), and the spatial pattern exhibits consistent
changes throughout China (except for parts of South China and regions to the north of 45 ◦N in
China; Figure 2a). Evident variations are detected in the Yangtze River basin, with an increase in T
of more than 0.4 ◦C. For the first REOF mode of IMF 1 of Te, the spatial feature of Te also exhibits
a consistent distribution pattern across the country, the PC of T and Te are significantly positively
correlated (the correlation coefficient is 0.90, p < 0.01). However, unlike the T distribution, where the
large values are distributed solely in the Yangtze River basin, the large values of Te are located in both
the Yangtze River basin and most regions in northern China. In addition, the amplitude of change in Te

is significantly greater than that in T, specifically in northern China, where the amplitude of variation
in Te is approximately twice than that in T (Figure 2a vs. Figure 2b).
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between T and Te; Black (Red) line represents the principal component of T (Te).

In the first REOF mode of IMF 2 of T with a quasi-6-year period (Figure 3c), the spatial pattern
shows a “negative–positive” anti-phase relationship between northern and southern China, with a
boundary of approximately 35◦N, i.e., the temperature variations between southern and northern China
are opposites (Figure 3a). The amplitude of the temperature variation of IMF 2 in the Yangtze-Huaihe
region (approximately 0.4 ◦C) is significantly larger than that in the North China (smaller than
−0.15 ◦C), which suggest that IMF 2 is probably dominated by the temperature variations in the
quasi-6-year period in the Yangtze-Huaihe region. On the IMF 2 scale of Te, in terms of both the
spatial distribution and time series, there are considerable differences between T and Te (Figure 3a vs.
Figure 3b). Specifically, although Te also exhibits opposite distributions in the south and north regions,
the variations of Te in northern China (especially in North China and Northeast China) are much
stronger than that of T, and the largest warming amplitude is greater than 0.6 ◦C. Different from the
IMF 2 leading mode of T that reflects the variations in the Yangtze-Huaihe region, the IMF 2 leading
mode of Te primarily reflects the significant anti-variations between the middle and low reaches of the
Yangtze River (MLRYR) and northern China. In addition, there is no significant correlation between
the time series corresponding to T and Te (the correlation coefficient is only 0.22).
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On the decadal scale (IMF 3 of a quasi-19-year period), the first REOF mode of IMF 3 of T also
exhibits an anti-phase distribution in both northern and southern China (but with the Yangtze River
as the boundary; Figure 4a). In contrast to IMF 2, the IMF 3′s REOF leading mode of T generally
represents the variation in the Bohai Rim region (with the largest cooling of more than −0.6 ◦C), and
the T variations in southern China are very slight (slight warming of no more than 0.2 ◦C). For Te,
although the correlation of the PCs corresponding to T and Te is high (0.76, p < 0.01; Figure 4c), their
spatial fields are distinguishable. In contrast to the spatial distribution of T exhibiting anti-variations in
southern and northern China, the spatial feature of Te exhibits cooling in most regions of China (except
for slight warming occurs in some areas of MLRYR; Figure 4b), and the amplitude of Te variation is
significantly larger than that of T (more than −0.4 ◦C; Figure 4a vs. Figure 4b).
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In the quasi-57-year cycle (IMF 4), overall, the variation in T is also generally consistent nationwide
(Figure 5a); the large temperature variations primarily located in North China, the eastern part
of Northwest China and East China (where the temperature increases approximately 0.3–0.4 ◦C).
In other regions, the temperature variations of T are weak (approximately ± 0.15 ◦C; Figure 5a). Similar
to the spatial distribution of T, Te also shows consistent warming in most regions of China (Figure 5b),
and their PCs are highly positively correlated (0.95, p < 0.01; Figure 5c). However, the primary
difference between them is the amplitude of variations. In detail, the variation amplitude of Te in
North China, Northwest China and East China is significantly larger than that of T (Figure 5b).
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For the residual component (which exhibited a nonlinear trend), the temperature variation is
dominated by warming in the northern region, and the amplitude of such warming is higher than 0.5 ◦C
in most northern regions. In the southern region, the temperature variation is relatively weak, and
there is a slight cooling in the Yangtze River basin, where the temperature variation is approximately
within ± 0.2 ◦C (Figure 6a). Furthermore, T and Te are consistent in that warming occurs in northern
regions, and they are different in that the cooling is more prominent for Te than for T in some southern
regions (less than −0.4 ◦C in most regions; Figure 6b). It is noted that the REOF spatial–temporal
variations of the residual mode are consistent with the warming trend in China during the recent
decades [39].

In addition, based on the percent variances of all the leading mode of T and Te at multiple
timescales, REOF leading mode of both T and Te at interannual scale (IMF 1), multidecadal scale (IMF 4)
and especially the nonlinear trend scale (the residual component), can all well represent the actual
temperature variation of the corresponding scale. In conclusion, similarities of T and Te in both spatial
and temporal variations are detected in three leading modes at IMF 1, IMF 4 and residual component
scales, while differences between two temperatures (i.e., T and Te) are detected in the other two scales
(i.e., IMF 2 and IMF 3). It should be noted that although we have used a station redistribution algorithm
to unify the station density in each grid, the inhomogeneity of the spatial distribution in still remains,
which might introduce some uncertainties to the current results. For enhancing the confidence of the
REOF results, we have tested the sensitivity of the EOF/REOF results to the station selection from
the perspective of bootstrap resampling, details can be found in the supporting information (Text S1
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and Figure S3). The results of random sampling show that the REOF1 spatial–temporal patterns at
each timescale shown in our manuscript are generally not sensitive to the number and distribution of
the stations.Atmosphere 2019, 10, x FOR PEER REVIEW 9 of 17 
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3.2. The Role of T and LH Terms in Determining the Variations of Te

In the previous section, we have comprehensively demonstrated the major differences between T
and Te at different timescales. The differences between these two temperatures theoretically suggest the
role of introducing a latent heat term on the variations of Te. Hence, in this section, further exploration
and discussion will be conducted to show the relative role of T and LH terms in determining the
variations of Te.

Generally, according to the formula of Te, firstly, if the variations of T and Te are similar, there are
two possibilities: (1) The variability of T (VT) is far greater than that of LH term (VLH), i.e., VT >> VLH,
which makes Te dominating by T; and (2) VT and VLH are comparable or VLH >> VT, and the variations
of T and LH term must be similar at the same time (i.e., the correlation between T and LH term are
positive and high), which would result in the enhancement of Te by the superposition effect of T
and LH. Secondly, if the variations of T and Te are distinguishable, then VT and VLH are comparable
or VLH >> VT, and the variations between T and LH term should be negatively or lowly correlated.
Thus, Te would be dominated by the variation of LH and/or the joint variation of T and LH. In order
to verify the above-mentioned conjectures and further our understanding of the possible causes of
similarities and differences between T and Te, we first additionally calculated the EEMD results of
LH term (Lvq/Cp) to get the five EEMD modes of each grid. Furthermore, we calculate the correlation
coefficients between EEMD-decomposed T and LH terms and the ratio of the standard deviations
(STDR) between those two terms at different timescales. The correlation and STDR results are shown in
Figure 7. Here, we define that STDR < 0.5, 0.5 ≤ STDR ≤ 2 and STDR > 2 represent that VLH dominated
the variability of Te (VTe), VT and VLH are comparable and T dominated VTe, respectively.
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In detail, for IMF 1, the correlations between T and LH terms exhibit high values (more than
0.6) over the Yangtze river basin ((a1) in Figure 7a), meanwhile, STDR between T and LH terms are
comparable over the same region ((b1) in Figure 7b). However, the correlations of T and LH terms
are weak in northern China (no more than ±0.2), and the STDR results in northern China indicate
that VLH is much larger than VT. Those pieces of evidence suggest that the warming/cooling of Te in
northern China are dominated by VLH, while T and LH probably increase or decrease simultaneously
in the Yangtze River basin, which finally leads to a warm-humid or a cold-dry state in the summer
climate of Yangtze River basin. For IMF 2, both the spatial and temporal results of REOF 1 are
distinguishable between T and Te (Figure 3). Unlike IMF 1, there is no evident correlation between VT
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and VLH (no more than ±0.4 over most of China; (a2) in Figure 7a), and the STDR results show that
the anti-variation pattern in the REOF leading mode of Te is probably influenced by the joint VT-VLH
((b2) in Figure 7b). Those results highlight that the variation of Te is not a simple composition of T
and LH, but can represent a unique complex nonlinear variation of coupled temperature-humidity. At
the IMF 3 scale, the correlation pattern between T and LH resemble that of IMF 2, which also show
sporadic correlations nationwide ((a3) in Figure 7a). From the STDR results of IMF 3, it is noted that
VLH is much greater than VT over the regions with the strong variations of Te (Figure 4b and (b3) in
Figure 7b), which indicates that VLH at the decadal scale is more important for surface heat content
than VT. For the multi-decadal scale (IMF 4), the REOF 1 spatial and temporal patterns between T
and Te are very similar, despite Te with larger variations. The correlations between T and LH terms
exhibit high values (more than 0.6) for regions with strong variations in both T and Te (i.e., north of
Yangtze River basin), which suggests that the multi-decadal variabilities of T and LH are similar ((a4) in
Figure 7a). It is worth noting that STDR between T and LH terms in the previous three modes display
either VLH-dominated VTe or a comparable situation, while at the multi-decadal timescale, VT seems to
be stronger than previous modes, specifically for some regions, dominant features of VT are detected
(i.e., some regions over MLRYR and northern China; (b4) in Figure 7b). Moreover, for the residual
component, there are also high correlations (more than 0.6) all over the country, despite some evident
negative correlations in North China ((a5) in Figure 7a). Interestingly, the role of VT in determining
VTe further grows at the long-term trend scale from the STDR results. In detail, the STDR of T and
LH show that VT and VLH are comparable over most of China, while VT is much larger than VLH in
northern China, indicating that the nonlinear warming trend of Te over northern China is dominated
by VT ((b5) in Figure 7b). In addition, from the REOF 1, correlations and STDR results of IMF 4 and the
residual component, the relationships between T and LH on these two scales generally resemble that
for IMF 1, i.e., the superposition effect of highly correlated T and LH (i.e., warm-humid or cold-dry)
dominates the variation of Te.

In addition, the above-mentioned results are completely consistent with our conjectures about the
role of VT and VLH in determining the similarities and differences between T and Te. In conclusion,
VLH plays an equivalent or more important role than VT on VTe at interannual to decadal scales
(i.e., IMF 1–IMF 3), while VT is being pronounced at multi-decadal and the long-term scales (i.e., IMF 4
and the residual component). These results also imply that the influencing factors and physical
mechanisms leading to the changes in these two elements are likely to be different among timescales.

3.3. Similarities and Differences in the Linkage between SST and the Leading Mode of T and Te

Previous studies have demonstrated that there is a close relationship between temperature
variation in summer in China and SST variation in many key regions around the world (Pacific,
North Atlantic and Indian Oceans) [24,25,40], especially on interdecadal and multidecadal scales
(e.g., Wang et al. [41]). In the previous section, we have determined that except for the residual time
series (which exhibits a nonlinear trend), the four main IMFs of T and Te are interannual-to-multidecadal
oscillations, and their similarities and differences are distinct at different timescales. Hence, what are
the potential factors that cause a high correlation between the two temperatures (i.e., T and Te) at the
interannual, interdecadal and multidecadal scales (IMFs 1, 3 and 4)? What are the possible reasons for
the low correlation between the two temperatures (i.e., T and Te) at the interannual-to-interdecadal
transition scale (IMF 2)? In this section, the possible linkage between the multi-timescale changes of
the two temperatures (i.e., T and Te) and the global SST is discussed. Note that we mainly focus on the
first four IMF modes of T and Te in this section; therefore, the detrending process is firstly done on the
SST before calculating its correlation with the two temperatures.

Figure 8 presents the distribution of the correlation coefficients between the PCs of the first REOF
modes of T and Te and the SST in summer on each timescale, meanwhile, Table 1 lists the correlation
coefficients between the PCs and multiple SST indices. In general, for the IMF 1 (Figure 8a,b) and
IMF 4 scales (Figure 8g,h), the corresponding SST patterns that are significantly correlated with T
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resemble that with Te, indicating that for these scales, the key SST patterns are associated with both
VT and VLH. This also implies that the changes in SST in these key regions may not only affect the
temperature variation in summer in China but also cause the coupled T-LH to increase or decrease
simultaneously, i.e., warming (cooling) corresponds to high humidity (low humidity), which further
causes the spatial distribution of Te to be similar to that of T. However, in IMF 2 (Figure 7c,d) and
IMF 3 (Figure 7e,f) modes, the corresponding SST patterns are different, indicating that the dominant
key SST regions affecting T and Te as well as the possible mechanisms are distinguishable for these two
scales. This further suggests that for these two timescales, the differences in the corresponding SST
patterns between T and Te potentially highlight the possible relationship between SST and VLH.
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The SST fields associated with T and Te of IMF 1 all exhibit significant reverse-phase changes in
eastern and the western Pacific (i.e., positive and negative correlations over the western and eastern
Pacific, respectively), which is obviously the typical El Niño–Southern Oscillation (ENSO)-type pattern
(Figure 8a, 8b). The correlation coefficient between the PCs of T and Te and the Niño 3.4 index is
−0.30 (p < 0.05) and −0.43 (p < 0.05), respectively (Table 1), indicating that when the central and
eastern equatorial Pacific SST is abnormally low in summer, T and Te is high over the whole country.
In addition, T and Te are not only closely associated with ENSO-like SST anomalies (SSTA) in summer,
but also positively correlated with the central and eastern equatorial Pacific SST in the preceding winter
(Figure S4). This implies that the variations of T and Te in summer may be modulated by the phase
transition from El Nño (La Niña) in the preceding winter to La Niña (El Nño) in summer. Numerous



Atmosphere 2019, 10, 447 13 of 17

studies have revealed that such transition, e.g., from El Nño to La Niña, typically results in a significant
strengthening of the western Pacific subtropical high in summer, leading to clear skies (i.e., fewer
clouds) with high temperatures in China (e.g., Wang et al. [42]). Moreover, it is noted that although
the correlation coefficient patterns of T and Te with SST is relatively consistent, Te is detected to have
a higher correlation with more significant signals than T. This indicates that the central and eastern
equatorial Pacific SST not only affects the temperature but also causes the humidity to change at the
same time, leading to the warm and wet (or cold and dry) climate in summer in China. In IMF 4,
the SST field is positively correlated with T and Te in the whole region of the North Atlantic (especially
in the eastern part with significant positive correlations; Figure 8g,h). This correlation pattern is similar
to the AMO. The correlation coefficient between the AMO index and T and Te reached 0.67 (p < 0.05)
and 0.59 (p < 0.05), respectively (Table 1), indicating that the variations of T and Te are probably related
to AMO in this mode. In addition, significant but sporadic correlations of T and Te with SST are also
detected in some regions of Indian and Pacific Oceans (Figure 8g,h).

Table 1. Correlation coefficients between summer SST indices and principal components of the first
REOF mode of each IMF.

EEMD-REOF Principal Components

SST
Indices T-IMF1 Te-IMF1 T-IMF2 Te-IMF2 T-IMF3 Te-IMF3 T-IMF4 Te-IMF4

Niño 3.4 −0.30 * −0.43 * 0.06 −0.31 * 0.02 −0.11 −0.01 0.01
NAT −0.03 −0.10 −0.03 −0.23 −0.03 −0.20 −0.37 −0.33
PDO −0.17 −0.28 −0.04 −0.19 −0.13 −0.21 −0.08 0.05
AMO 0.06 0.12 0.01 0.09 0.17 0.01 0.67 * 0.59 *

* Asterisks in the table indicate that the correlation coefficients are statistically significant at 5% level.

On the remaining two scales that T and Te are evidently different (see Figures 3 and 4), their
correlations with SST are also distinguishable (Figure 8c–f). In detail, at the IMF 2 scale, the SSTA
that are significantly correlated with T manifest only as the low-latitude and mid-latitude dipole-type
distributions in the North Atlantic (Figure 8c). But for Te, it is shown that broadly significant
positive correlations are detected in the central and eastern equatorial Pacific, the northeast Pacific
and Indian Oceans, whereas the correlations over North Atlantic show an insignificant NAT pattern.
The correlations of T and Te with the SST indices are approximately consistent with the aforementioned
spatial distribution (Table 1). These results also imply that although the relationship between T and
the equatorial Pacific, North Pacific and Indian Oceans’ SSTs is relatively weak in the quasi-6-year
period, the abnormal change in SST in these key regions may be an important factor for the variations
of surface heat content. In addition, based on the SST signals from the preceding winter and spring
(Figure S5), T is shown to correspond to the La Niña (El Niño) event, which has a weak development
from the preceding winter to spring and decays to a non-significant signal during summer, whereas Te

corresponds to the La Niña (El Niño) event that continuously developed from the preceding winter into
the current summer. This indicates that whether the development of ENSO events can be maintained
into the current summer is a possible cause of the differences in T and Te. From another perspective,
continuously intensifying La Niña (El Niño) events may significantly affect the variation of humidity
(precipitation) in summer in China, which in turn reflects in the variations of surface heat content.
On the IMF 3 scale (Figure 8e,f), the T-related SST field does not feature a significantly correlated signal;
however, the Te-related SST field has negative correlations in the central, east and north equatorial
Pacific Ocean, indicating that this type of SST is more closely related with VLH. Furthermore, although
the PCs of T and Te have a high correlation, the corresponding SST patterns are inconsistent. This may
be because the correlation between the PCs of T and Te is relatively low before the 1990s (0.60 in the
period 1961–1985, compared with 0.90 in the period 1986–2010).
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Except for the above four modes, the PCs of the residual component of T and Te are consistent
with the trend of global warming (Figure 6c), and both correspond to the global-scale increase of SST
(Figure S6). The change of the two temperatures is probably due to increased CO2 concentrations
caused by human activities [2].

4. Conclusions and Discussion

Based on the EEMD method and the observational data (i.e., surface air temperature, relative
humidity, pressure and global SST), this study analyzed the similarities and differences of the surface air
temperature (T) and equivalent temperature (Te) defined by the ME in summer at multiple timescales
for the period 1961–2017, and their relationship with global SST. The conclusions are as follows:

(1) The similarity between T and Te is that both can be decomposed into five timescales: IMFs 1–4
(3.2–3.6-year period, quasi-6-year period, quasi-19-year period and quasi-57-year period, respectively)
and a residual component (nonlinear trend). In terms of the results of all timescales, the variation of the
leading modes (i.e., the first REOF modes) of T and Te is dominated by the high-frequency interannual
(3.2–3.6-year) and multidecadal (quasi-57-year) variations and the nonlinear warming trend. Moreover,
except for the interannual-to-interdecadal transitional scale (quasi-6-year), there are significant positive
correlations between the PCs of the first REOF modes of T and Te.

(2) The differences between T and Te can be mainly concluded as follows: Seen from all the REOF
leading modes of T and Te at multiple timescales, the magnitude of Te variation is always greater than
that of T, indicating that the variation of multi-variable-defined surface heat content is larger than that
of single temperature-defined. For IMF 1, IMF 4 and the residual component scales, the REOF 1 spatial
patterns are generally similar, except for the large discrepancies in the amplitude of between T and
Te variations. Further explorations suggest that VT and VLH are generally positively correlated and
both changes of them tend to enhance the variability of surface heat content simultaneously, and in
turn, leading to a warm-humid (or cold-dry) state in summer. However, at IMF 2 and IMF 3 scales,
the differences between T and Te are evident, not only in the amplitude of variability but in the spatial
pattern as well. For IMF 2 scale, although VT and VLH are comparable, their correlations are relatively
weak, which in turn exert a unique coupled effect on the surface heat content. For IMF 3 scale, VLH
are much larger than VT, and there are low correlations between them, which ultimately make VLH
dominate the variation of the surface heat content (Te).

(3) From the correlations of SST with T and Te, similarities are also found in IMF 1, IMF 4 and the
residual component scales, which both T and Te show the ENSO phase transitions (e.g., El Niño phase
to La Niña phase; IMF 1), AMO-like (IMF 4) and the global warming-like SSTA patterns (the residual
component), respectively. In terms of quasi-6-year (IMF 2) and quasi-19-year periods (IMF 3), the SST
fields associated with T and Te are different: The ENSO events that developed during the preceding
winter and persisted until summer for the quasi-6-year period possibly caused the difference between
T and Te. For the quasi-19-year period, the SSTA in the key regions of the central, east, and the north
equatorial Pacific Ocean was closely related to Te but not significantly correlated with T.

From the current results, this paper primarily emphasizes the similarities and differences of T and
Te at multiple timescales over China and shows some linkage between SST and T/Te. Additionally, there
are some limitations in this study, primarily in the following aspects. First, in terms of SST, this article
only explored its relationship with T and Te from the perspective of correlation, and the corresponding
physical processes and mechanisms require further study. Second, in addition to the SST, there are
many factors affecting T and Te. For example, the results of Findell et al. [13] revealed that the land-use
change in the historical period made parts of northern China significantly warmer and drier and made
some parts of southern China warmer and more humid. The effects of other factors on T and Te at
different timescales require comprehensive investigation. Third, based on the main results of this paper,
for the interannual-to-interdecadal scale (6 to 19-year period), there are very robust differences between
T and Te. The specific physical mechanism for the difference also deserves comprehensive discussion.
In addition, we only show the results of the differences between T and Te over China, however, the
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differences between T and Te may be a global phenomenon (e.g., Li et al. [43]), since the reason for
their differences is possibly due to the large-scale external forcings (e.g., anthropogenic greenhouse
gases) or the internal variability (e.g., Rossby wave trains). Many other studies have also found that
there are significant differences between T and Te over other countries or globally (e.g., Pielke et al. [6],
Younger et al. [17] and Li et al. [43]), and their differences at a multiscale over the rest of the world, as
well as whether there is a potential linkage with our findings will require further investigations.

Despite these shortcomings, this article comprehensively discusses the characteristics of variations
of Te at multiple timescales in recent decades and their similarities and differences with those of T
from a new perspective of joint temperature-humidity-defined surface heat content. The relevant
results are intended to provide clues for the variations in the Te-related total surface heat content and
provide insights and bases for the comprehensive understanding of climate change as well as the
related compound extreme events (e.g., compound temperature-humidity extremes) in recent decades.
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