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Abstract: This study was conducted to evaluate the suitability of an analog model output statistics
(MOS) downscaling technique for urban-scale meteorology research and compares this MOS-Analog
technique with the sliding window technique. We downscaled air temperatures forecasted for the
Seoul metropolitan area from 1.5 km resolution (using data from the Unified Model-Local Data
Assimilation and Prediction System, UM-LDAPS) to 25 m resolution using the analog MOS technique
described in the paper. The support vector machine (SVM) technique was employed for empirical
computational modeling, using urban surface parameters calculated using the Climate Analysis
Seoul (CAS) workbench and automated weather station (AWS) observational data as training data.
The comparison of the downscaled prediction results with the AWS observations for the periods of
July/August 2016 and 2017 resulted in a lower root mean square error (RMSE) and higher correlation
coefficients (CC) than those obtained for the LDAPS prediction results. The prediction performance
was also stable for September, during which precipitation episodes and seasonal fluctuations occurred.
The results of this study demonstrate that the proposed technique, which overcomes the limitations
of the sliding window technique, is applicable to urban-scale meteorology research and potentially
applicable other areas.

Keywords: urban-scale meteorology; analog day; model output statistics (MOS); urban surface
characteristics; statistical downscaling

1. Introduction

Major weather events are predicted on global or regional scales using global climate models,
also known as general circulation models (GCMs) or regional climate models (RCMs). However,
most weather disasters occur at local or microscale levels [1,2]. Urban-scale weather phenomena,
such as heat islands, precipitation variations, and air quality changes, exhibit spatial differences
depending on urban surface characteristics, such as urban structures and land cover characteristics [3].

With the growing demand for high-resolution spatiotemporal weather prediction data in the
field of urban-scale climate change adaptation and response [4–7], downscaling is increasingly being
used as a method to handle detailed spatiotemporal meteorological information. Two techniques are
used. The first type is dynamic downscaling, which is applied to a regional numerical model to obtain
a higher spatial resolution than is obtained with a GCM. GCM-based downscaled local and urban-scale
weather prediction models coupled with dynamic downscaling techniques are now available. However,
dynamic downscaling models are prone to systematic error on a regional scale. They are also limited
in their ability to reflect regional characteristics because of the low-resolution topographic data
used [8–11]. In the field of urban-scale climate prediction, which requires building-level resolution,
it is particularly difficult to use dynamically downscaled data [12].
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The second type of technique is statistical downscaling, which uses statistical relations between
numerically predicted weather data and observed data to correct the bias in the former. Significant
reduction in bias through the use of statistical downscaling has been reported [13–16].

There are many ways to analyze numerically predicted weather data objectively. The perfect prog
method (PPM) and model output statistics (MOS) are typical statistical downscaling methods [17]. MOS
produces predictands, not predictors. The predictors are produced by the GCM/RCM and are inputs
to the MOS models. Furthermore, MOS models cannot explain systematic errors, but they can correct
for them, which is a way to calibrate the forecasts. The MOS downscaling technique continues to be
upgraded and is made more amenable to practical uses as the performance of numerical weather prediction
models improves [18]. MOS-based models include linear regression and analog models, with which past
records are examined for weather conditions similar to the current one. Many recent research efforts have
been devoted to machine learning-based statistical downscaling applications, including linear/nonlinear
relationships [19,20]. Notably, studies in which machine learning has been compared with other approaches
have consistently found that the former outperforms the latter [21]. In addition, among the machine-learning
methods available, SVM models have been reported in various studies to be applicable to the spatial
downscaling of several factors. SVM regression models also allow easy manipulation and require only
low-level calculations, which makes them desirable for use in a variety of fields [22,23].

In a recent study, spatial downscaling from a resolution of 1.5 km to 25 m was accomplished by
applying machine learning to the local data assimilation and prediction system (LDAPS) of the unified
model (UM), an air temperature forecast (spatial resolution: 1.5 km) that receives its boundary fields from
the global data assimilation and prediction system (GDAPS) [24]. In that study, the latest temperature
trends in the prediction model were reflected using a training dataset consisting of temperature data for
the last 30 days and a sliding window technique to calculate the maximum and minimum temperatures
of the subsequent day. The overall summer temperature prediction accuracy was found to be enhanced,
but sudden meteorological changes, such as rainfall events, were overestimated.

Statistical downscaling of urban-scale temperatures requires not only a high-resolution numerical
weather prediction model, but also the application of a statistical downscaling technique to reflect the
actual temperature profile of a complex urban structure to the greatest extent possible, as shown in the
aforementioned study. Turco et al. [25] downscaled RCM-computed complex terrain precipitation data
using an analog technique based on a MOS technique (hereinafter MOS-Analog), demonstrating its
potential to yield stable and improved downscaling outputs [25]. In this study, we performed statistical
downscaling of temperature prediction data to high-resolution data by applying the MOS-Analog technique
to complex urban-scale LDAPS prediction results and evaluated the operational suitability of its results.

2. Materials and Methods

2.1. Study Region

The study region, Seoul (605 km2; 37◦25′–37◦41′ N, 126◦45′–127◦11′ E), is the capital city of and
largest metropolis in the Republic of Korea, in Northeast Asia. The Han River runs through the center of
Seoul, which lies in a basin encircled by mountains (Figure 1a). Seoul is characterized by tall buildings
and a high population density, with over 9.7 million people (i.e., 18% of the population of Korea),
living in an area that accounts for only 0.6% of the country, making it the most densely populated
of Organisation for Economic Co-operation and Development (OECD) cities. According to the local
climate zone (LCZ) types proposed by Steward and Oke [26], which describe urban landscapes based
on climatic characteristics that depend on land cover and building configuration factors, Seoul is largely
characterized by compact mid-rise building clusters, interspersed with high-rise commercial buildings
and low-rise residential quarters, with its land cover consisting predominantly of impervious surfaces
(Figure 1b). Its flat surfaces are filled with buildings of various shapes and with streets (Figure 1c,d).
The number of heat days (those with daily maximum temperatures above 33 ◦C) in Seoul between 2010
and 2016 (Seoul Weather Station, AWS #108, Korea Meteorological Administration) and the number of
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patients diagnosed with heat-related illnesses (National Health Insurance Service) suggest that both the
number of heat days and the number of patients with heat-related illnesses in the Seoul Metropolitan
Area are on the rise (Figure 2). With a high population ratio exposed to the heat island phenomenon,
there is a compelling need to establish high-resolution spatiotemporal weather prediction data for use
in the efficient management of climate change adaptation and response.
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Figure 1. Topographic and land cover characteristics of Seoul. (a) Aerial photograph (yellow line
denotes the administrative boundary of Seoul); (b) local climate zone (LCZ) types of land surfaces with
building footprints; (c) shaded relief map; and (d) street networks (white) and automated weather
stations (AWSs; yellow dots).
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2.2. Numerical Weather Prediction Models

The LDAPS was configured for high-resolution weather prediction over the Korean peninsula
and surrounding waters (Table 1). Its spatial resolution is 1.5 km, and it consists of 70 vertical
levels up to 40 km. With a horizontal grid spacing of 1.5 km, starting from the lower left corner
(121.834◦ E, 32.257◦ N), LDAPS has 602 grid cells in the x-direction (East–West) and 781 grid cells
in the y-direction (North–South). It receives boundary fields at 3-h intervals from the GDAPS,
which has a horizontal grid spacing of 17 km, and performs weather prediction eight times a day
(00:00, 06:00, 12:00, and 18:00 Coordinated Universal Time (UTC): 36-h prediction; 03:00, 09:00, 15:00,
and 21:00 UTC: 3-h prediction). The system is operated as a self-analyzing prediction cycle system
based on a three-dimensional variational (3DVAR) data assimilation system. There are two types of
LDAPS-computed data: Isobaric surface data (seven parameters in the range of 1000–50 hPa) and grid
surface data (78 parameters; Figure 3a) [27].

The data collection period considered in the present study was 2015–2017. The available 12 h
prediction data (00:00, 06:00, 12:00, and 18:00 UTC: h000–h011) were selected from the LDAPS 36 h
prediction data (00:00, 06:00, 12:00, and 18:00 UTC: h000–h036) for use in this study. The data for the
time period between h000 and h005 were used as the model training data, and those for the time period
between h006 and h011 were used as prediction data. Thus, four forecasting periods per day were
considered (denoted 00:00, 06:00, 12:00, and 18:00 UTC, where 00:00 UTC refers to the period from
06:00 to 11:00, 06 UTC refers to the period from 12:00 to 17:00, 12 UTC refers to the period from 18:00 to
23:00, and 18:00 UTC refers to the period from 00:00 to 05:00).

The air temperature prediction dataset at the same spatial resolution is an essential component
of spatial resolution downscaling to 25 m spatial resolution. We interpolated the air temperature
forecast for the Seoul Metropolitan Area (50 km × 40 km; Figure 3b) from the LDAPS prediction results
(Figure 3a) to 25 m grid resolution using the inverse distance weighting (IDW) interpolation method.Atmosphere 2019, 10, x FOR PEER REVIEW 5 of 20 
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Table 1. Local Data Assimilation and Prediction System (LDAPS) variables used for downscaling of
air temperature.

Label Description Units

TMP Air temperature 1.5 m above the ground K
NCPCP Total precipitation kg/m2

RH Relative humidity 1.5 m above the ground %
TCAR Total cloud cover (random overlap) %
UGRD 10-m U wind component m/s
VGRD 10-m V wind component m/s
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2.3. Urban Surface Parameters

We calculated 25 m resolution urban surface parameters using the Climate Analysis Seoul
(CAS) workbench. The CAS workbench is a model suitable for computing topographic and land
cover parameters and analyzing microclimate (heat and wind) spatial distribution profiles [28–30].
First, we parameterized the three-dimensional (3-D) topographical structure from a digital terrain
model (DTM) and digital surface model (DSM) and computed 3-D topographic parameters, such as
the hollow depth, aspect ratio, dzdx, dzdy, and slope length. We then parameterized land cover
information from land cover (LC) data and computed the values of parameters related to horizontal
characteristics such as areal type, complete surface area ratio, fractional coverage, building height,
and vegetation height. Table 2 lists the CAS-computed urban surface parameters (Table 2).

Table 2. Urban surface parameters used for downscaling of air temperature.

Label Description Units

Aspect Aspect angle deg
CSAR Complete surface aspect ratios derived from BH %
dzdx Topographic gradient in the x-direction m/m
dzdy Topographic gradient in the y-direction m/m

Building height Building height derived from airborne LiDAR m
Vegetation height Vegetation height derived from airborne LiDAR m

Hollow depth Hollow depth by building and terrain m
Slope Slope angle deg

BS area Fractional coverage of building surfaces %
US area Fractional coverage of impervious surfaces %
TV area Fractional coverage of tall vegetated surfaces %
VS area Fractional coverage of vegetated surfaces %

WS Fractional coverage of water surfaces %
Z Sea level m

Areal type Forms of land cover -
BHBS Building volume -

2.4. AWS data

We used 3-y (2015–2017) observation data from 50 AWSs operated by the Korea Meteorological
Administration in the Seoul Metropolitan Area. The temperature data from the AWSs in the city center
clearly reflected the influence of heat generated in relation to urban surface characteristics and physical
structures in addition to that from mesoscale phenomena. On a related note, Yi et al. [31] confirmed
a high correlation between the quantitative distribution of human-made structures, such as buildings
and streets, and thermal features identified as a result of microclimatic analysis.

AWS data were used for two purposes. First, they were used as predictands of the training
model to obtain an empirical equation that could be used to estimate correlations between surface
parameters and observed air temperatures. For example, building and street fractions are different
from one AWS to another, and the corresponding data for each AWS are used as representative
fractional values of that AWS (Figure 4). Second, AWS data were used to test the urban-scale air
temperature prediction accuracy during various weather episodes (e.g., summer, heatwaves (more
than two days with maximum temperatures above 33 ◦C), tropical nights (more than two days with
minimum temperatures above 25 ◦C), precipitation events, and seasonal variations).
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2.5. MOS-Analog Technique

The MOS-Analog technique is a weather prediction method that uses statistical relationships
between observational data and numerical prediction model outputs [32]. It can correct for systematic
errors in numerical weather prediction models and generate predictands for a specific point. Due to
the advantages that the MOS-Analog technique offers in improving the outputs of numerical weather
prediction models, it has been continuously developed and made more amenable for use in practical
applications [33,34].

An analog technique is based on the hypothesis that “analog” atmospheric patterns (predictors)
induce “analog” local effects (predictands) [35,36]. The days for which data are extracted based
on similar atmospheric spatial patterns in a given set of forecasts and past case histories are called
“analog days.” In this study, Euclidean distances were calculated, and the Euclidean distances were
defined in analogous order from the closest to the third past case. This is one of the most widely used
downscaling techniques in applications in a variety of fields [37–40].

The MOS-Analog technique proposed by Turco [25,41] has demonstrated a potential for improving
prediction performance for average and extreme precipitation values in topographically complex
terrains through its application to RCM results [41].

2.6. Support Vector Machine

In this study, a support vector machine (SVM) was used to search for a statistical equation
linking the data from the observed and numerical prediction models. A support vector machine
(SVM) is a machine learning algorithm for regression analysis or data classification, implemented
by deriving specific characteristics or patterns in inter-data relationships [42]. An SVM permits the
identification of factors that influence learning in a relatively simple way, with adjustment of only
a small number of parameters. Furthermore, compared to artificial neural networks, less over-fitting
occurs, and SVMs offer the additional benefit of being simple to use. SVMs are used in a wide variety
of fields, from bioinformatics to astrophysics. We implemented an SVM regression model using epsilon
regression, based on the kernel function from the kernlab package [43].
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For a given data set
{
(xi, yi)

}n
i , the SVM regression model employed in this study uses Equation (1)

below to determine the regression function f (x) that optimally approximates a given y value:

f (x) = ωTx + b (1)

Here, ω is the weighting vector and b is a constant. The ω and b in Equation (1) can be estimated
via conversion to an optimization problem, as shown in Equation (2).

min
$,b,ξ,ξ∗

: Rreg( f ) =
1
2
$T$+ c

l∑
i=1

ξi + c
l∑

i=1

ξ∗i (2)

subject to


$Tφ(xi) + b− zi ≤ ε+ ξi
zi − $

Tφ(xi) − b ≤ ε+ ξ∗i
ξi, ξ∗i ≥ 0, i = 1, . . . , l.

Here, 1
2$

T$ is a normalization term that controls the balance between complexity and accuracy
in regression models; c is a normalized constant for the balance between empirical risk and the
normalization term, in which an increase in c represents an increase in the relative proportion of
empirical error with respect to the total error; ε represents the Epsilon tube, which indicates the range
of permissible errors, and a value of ε that is too small causes overfitting of the regression model.

Application of the Lagrangian multiplier and the Karush–Kuhn–Tucker conditions to Equation (2)
results in a common form of the SVM regression model in Equation (1), as shown in Equation (3).

f (x, α, α∗) =
n∑

i=1

(
αi − α

∗

i

)
K
(
xi, x j

)
+ b (3)

In Equation (4), K
(
xi, x j

)
is defined as a radial basis function (RBF) kernel function that treats the

training data samples as internal representatives and effectively identifies the nonlinear correlation
among the samples.

K
(
xi, x j

)
= φ(xi)φ

(
x j

)
= exp (−

‖xi − x j‖
2

2σ2 ) (4)

2.7. Computation System

In this study, we applied the MOS-Analog technique to air temperature forecasts with 1.5-km
resolution (LDAPS) for the Seoul metropolitan area and downscaled it to 25 m resolution using
CAS-computed urban surface parameters and AWS observation data as training data and the SVM
machine learning method as an empirical computational model. We named this process the urban
meteorological information system (UMIS). The UMIS output computation process consists of five
major steps.

The LDAPS domain was selected to reflect the local meteorological patterns of the study region.
For this study, we selected the Seoul metropolitan area (Figure 1) as the study area.

Second, Euclidean distances were calculated using LDAPS grid surface prediction parameters
(TMP, NCPCP, RH, TCAR, UGRD, and NS VGRD) to search for analog days for the Seoul metropolitan
area. Considering the seasonal and temporal patterns of the forecast period, the differences in month
and time were limited to 1 month and 2 h, respectively.

Let L(t) in Equation (5) be the predictor of the LDAPS forecast time series:

L(t) = [ L1(t), . . . , Ln(t)] (5)
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Let A(t) in Equation (6) be the prediction parameter of the LDAPS forecast results:

A(t) = [ A1(t), . . . , An(t)] (6)

where n is the number of grid points (n = 1, . . . , N) and m is the number of predictors.
Accordingly, the Euclidean distance in the MOS-Analog technique can be defined, as shown

in Equation (7):

D =
m∑

j=1

n∑
i=1

α j

[(
L j,i(t) − A j,i(t)

)2
]

(7)

where α j is the weight of each prediction parameter. The weight is empirically calculated and applied
in a manner such that all parameters can explain the parameter of interest, i.e., the temperature, well.

Third, the first three analog days with the smallest Euclidean distances are set as the predictands.
There were other analog-day candidates, but these three analog days outperformed them and were
found to be the most stable.

Fourth, the observed data for the selected analog days were used as training data, along with
LDAPS-predicted air temperature data and AWS urban surface characteristics data, and an empirical
equation was derived based on SVM machine learning.

Fifth, the empirical equation was applied to the input parameters, and the air temperature at 25 m
resolution was estimated.

3. Results and Discussion

3.1. Extraction and Computation of Analog Days

In this study, August 4, 2017, 06.00 (UTC) was selected as a prediction case from among the
dates of the validation period (July and August 2016 and 2017, every hour between 00:00 and 23:00).
The MOS technique was then applied to the LDAPS data based on site operations. The analog days
corresponding to the prediction parameters of the LDAPS for the prediction case were estimated and
their similarity with the prediction case was examined using the AWS observation data.

The ranks, according to Euclidean distance, calculated using the parameters of the prediction case
and the previous cases, were plotted against the RMSE values for the AWS data (Figure 5a). As the
rank according to the Euclidean distance decreased, the RMSE value for the observed temperatures of
the prediction and previous cases increased, with CC = 0.65 indicating a positive correlation coefficient
(Figure 5a). In addition, the previous cases were examined after filtering based on the conditioning of
each parameter: Temperature (b), wind (c), and relative humidity (d) (Figure 5). When the Euclidean
distances among the meteorological prediction parameters were filtered based on the filtering criteria,
the orange parts were selected, and their removal led to a reduction in the RMSE values of the observed
temperature between the prediction case and the previous cases from 3.76 ◦C to 1.60 ◦C, with a slight
increase in correlation coefficient from 0.65 to 0.69 (Figure 5b). When the filtering conditions for the
wind velocity prediction parameters were also considered, the red parts were selected; their removal
led to a reduction in RMSE from 1.60 ◦C to 1.50 ◦C, with an increase in the correlation coefficient from
0.69 to 0.71 (Figure 5c). When the filtering conditions for the relative humidity prediction parameters
were also considered, the green parts were selected, and removing these parts led to a reduction
in RMSE from 1.50 ◦C to 1.23 ◦C and a slight decrease in the correlation coefficient from 0.71 to 0.70.
These results indicate that the greater the number of parameters considered and combined for filtering
is, the higher the agreement is between the analog days and the atmospheric patterns of the prediction
case (Figure 5b–d). The analog days estimated from the rank, according to the Euclidean distance,
calculated using various prediction parameters, were identical to the days obtained by conditioning
each prediction parameter for filtering. Figure 5 presents the results that explain the possibility of
estimating analog days from the Euclidean distance based on the meteorological prediction parameters
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(Figure 5a), as well as the reason for considering various other meteorological conditions in addition to
temperature when examining similarities among temperatures (Figure 5b–d).

In this study, the analog days with the closest Euclidean distances to those from the ten closest
previous cases were extracted. The training data were established by combining the data for the three
closest previous cases (Figure 6). The following dates were selected as the analog dates: August 4, 2017,
05.00 (UTC); August 10, 2016, 06.00 (UTC); and August 18, 2016, 04.00 (UTC). The validation results
based on the AWS data yielded RMSE values of 0.8 ◦C, 1.19 ◦C, and 0.84 ◦C, respectively, with correlation
coefficients of 0.83, 0.55, and 0.7, respectively. These results indicate that the selection of atmospheric
patterns was similar to the temperature distribution of the prediction case (Figure 7). Compared to the
LDAPS data for temperature prediction, with an RMSE of 1.43 ◦C and correlation coefficient of 0.23,
the data for the analog dates yielded results for the predictands that improved the accuracy of the
LDAPS prediction (Figure 6). The results of the improvement in the LDAPS accuracy, based on the
analog dates estimated for the entire validation period, are described in Section 3.5.
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Figure 7. 1.5-m temperature distribution from LDAPS across South Korea, including the study region:
(a) The forecast day (4 August 2017, 06:00 Coordinated Universal Time (UTC)); (b) first analog day
(4 August 2017, 05:00 UTC); (c) second analog day (10 August 2016, 06:00 UTC); and (d) third analog
day (18 August 2016, 04:00 UTC). CORR = correlation coefficient.

3.2. Accuracy Evaluation of Maximum Temperature during a Heatwave Episode

We performed an accuracy evaluation of the UMIS temperature prediction on the basis of the
analog days corresponding to the heatwave forecast day. First, observed temperature data were
collected from 50 AWSs and compared with temperature data predicted using LDAPS and UMIS
(August 4, 2017, 06:00 UTC; Figure 8). Notable spatial differences were observed in the observed
daytime temperatures from one AWS to another. Yi et al. [31] noted that such spatial differences
are ascribable to the different shapes and sizes of urban surface components. In Figure 8, UMIS
shows greater spatial differences than LDAPS in the predicted temperature when checked against
the corresponding AWS observations. This is due to the susceptibility of the UMIS results to the
influence of microclimatic thermal effect arising from the surface characteristics and structure of the
area covered by each AWS. Accordingly, UMIS prediction results show a similar distribution profile to
that of the AWS observations compared with the LDAPS prediction results that show less variations
in temperature distribution according to land use. In a comparison using standard deviations as well,
UMIS had less over- or under-estimation than LDAPS with lower standard deviations. As a result of
accuracy validation, the RMSE and CC of LDAPS were calculated at 1.43 ◦C and 0.23, and those of UMIS
were 0.8 ◦C and 0.81, demonstrating that UMIS contributes to improving LDAPS prediction outcomes.

Then, the predicted temperature distribution profiles in the Seoul Metropolitan Area and Gangnam
district were compared between LDAPS and UMIS to evaluate the accuracy improvement through
spatial distribution (Figure 9). LDAPS showed clearly different temperature distributions between the
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city core and its periphery, with the former 2–3 ◦C higher (34–35 ◦C vs. 31–32 ◦C). In addition to this
spatial distribution profile of LDAPS-predicted temperatures, UMIS was exposed to microclimatic
thermal effects arising from urban surface characteristics and structure. Accordingly, this microclimatic
thermal effect was reflected in the LDAPS-predicted temperatures by an empirical equation based on
the training data made up of observed temperature data and urban surface characteristics parameters.
As a result, areas with high building footprint density and impervious surfaces were found to be more
susceptible to temperature rise in the surrounding area, and vegetated areas such as parks and street
trees in the city core showed temperatures lower than the surrounding core area.
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Figure 9. Spatial accuracy evaluation for the heatwave period (forecast day: August 4, 2017, 06:00
UTC). (a) Map of Seoul; (b) local data assimilation and prediction system (LDAPS) temperatures across
Seoul; (c) urban meteorological information system (UMIS) temperatures across Seoul; (d) map of the
Gangnam district; (e) LDAPS temperatures across the Gangnam district; (f) UMIS temperatures across
the Gangnam district.
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3.3. Accuracy Evaluation of Minimum Temperature during a Tropical Night

We also performed an accuracy evaluation of the UMIS temperature prediction results for August 4,
2017 (21:00 UTC), the results of which included the highest daily minimum temperature among the
tropical night episodes. Observed temperature data were collected from 50 AWSs and compared with
the temperature data predicted by LDAPS and UMIS (Figure 10). AWS-dependent spatial deviations
were more conspicuous at dawn than during the daytime. Yi et al. [31] noted that such spatial
differences are attributable to different shapes and sizes of urban surface components. Earlier studies
have attributed such temperature deviations to temperature decline through cold air generation due
to higher albedo in vegetated surfaces and the increase in sensible heat release into the atmosphere
from building surfaces during the night, depending on the surface area ratio [44,45]. In the case of
LDAPS, AWS-dependent temperature variations appeared at dawn to a greater extent than during
the daytime, owing to a higher thermal effect of land use. Likewise, UMIS showed a greater thermal
effect due to urban surface characteristics, demonstrating a temperature distribution profile closer to
that of the observed temperature distribution. In a comparison of the deviation between LDAPS and
UMIS, LDAPS did not reflect the effect of the heat released during the night according to the urban
surface characteristics for reasons of resolution, resulting in underestimation in most areas, and UMIS
exhibited smaller deviations in most areas. As a result of the accuracy validation, the RMSE and CC
of LDAPS were calculated to be 1.29 ◦C and 0.66, respectively, and those of UMIS were calculated
to be 0.51 ◦C and 0.95, respectively, demonstrating that UMIS also contributes to improving LDAPS
prediction outcomes during the dawn hours.

The predicted temperature distribution profiles for the Seoul metropolitan area and Gangnam
district were compared between LDAPS and UMIS (Figure 11). LDAPS showed clearly different spatial
temperature distributions between the city core and surrounding mountainous area, with the former
higher than the latter by 2–3 ◦C (27–29 ◦C vs. 23–25 ◦C). In the case of UMIS, temperature deviations
were more conspicuous in the urban-scale city core, owing to the heat island effect, which persists
for long periods of time because of the high building footprint and heat released from human-made
structures. In contrast, vegetated areas in surrounding mountainous areas undergo a large temperature
drop during the night. These results suggest that prediction accuracy during the night and dawn hours
can be further improved by UMIS, with the effects of temperature decline at night and dawn more than
offsetting the effect of temperature rise during the daytime as a result of urban surface characteristics.
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(a) Map of Seoul; (b) local data Assimilation and prediction system (LDAPS) temperatures across
Seoul; (c) urban meteorological information system (UMIS) temperatures across Seoul; (d) map of the
Gangnam district; (e) LDAPS temperatures across the Gangnam district; (f) UMIS temperatures across
the Gangnam district.

3.4. Accuracy Evaluation Associated with Precipitation Episodes and Seasonal Fluctuations

We also evaluated the temperature prediction accuracy in relation to precipitation episodes and
seasonal fluctuations. In a comparable study by Yi et al. [24], temperature overestimation occurred
when an abrupt precipitation episode was simulated.

From among the precipitation days during the summer months, August 15, 2017 was selected
as the forecast day. The day was characterized by a high daily average degree of cloud cover of 9.9
(on a scale of 0 to 10) and a sharp decline in the daily maximum temperature of approximately 5.7 ◦C
from the level of the previous day. We graphically compared the hourly observed temperature on the
precipitation day at the Seoul weather station (AWS #108) with the corresponding precipitation data
and UMIS-predicted temperatures (Figure 12).

The temperature was observed to decline gradually in the hours before precipitation began,
and the UMIS outputs also decreased to a similar extent. In the time segment during which precipitation
occurred, the UMIS results exhibited a temperature distribution similar to the AWS observations.
While slightly overestimated outputs appeared during the daytime, the overall prediction accuracy
improved in comparison to that obtained with the sliding window technique.



Atmosphere 2019, 10, 427 14 of 18

Atmosphere 2019, 10, x FOR PEER REVIEW 15 of 20 

 

3.4. Accuracy Evaluation Associated with Precipitation Episodes and Seasonal Fluctuations  

We also evaluated the temperature prediction accuracy in relation to precipitation episodes and 
seasonal fluctuations. In a comparable study by Yi et al. [24], temperature overestimation occurred 
when an abrupt precipitation episode was simulated. 

From among the precipitation days during the summer months, August 15, 2017 was selected 
as the forecast day. The day was characterized by a high daily average degree of cloud cover of 9.9 
(on a scale of 0 to 10) and a sharp decline in the daily maximum temperature of approximately 5.7 °C 
from the level of the previous day. We graphically compared the hourly observed temperature on 
the precipitation day at the Seoul weather station (AWS #108) with the corresponding precipitation 
data and UMIS-predicted temperatures (Figure 12).  

The temperature was observed to decline gradually in the hours before precipitation began, and 
the UMIS outputs also decreased to a similar extent. In the time segment during which precipitation 
occurred, the UMIS results exhibited a temperature distribution similar to the AWS observations. 
While slightly overestimated outputs appeared during the daytime, the overall prediction accuracy 
improved in comparison to that obtained with the sliding window technique.  

 
Figure 12. Accuracy evaluation for unforeseen events and seasonal fluctuations. Meteorological 
variable value for the Seoul weather station (AWS #108): OBS_PREC, observed precipitation; OBS, 
observed air temperature; UMIS, Urban Meteorological Information System. 

We then graphically compared the daily maximum temperatures observed at the Seoul weather 
station (AWS #108) and the UMIS-predicted temperatures to evaluate the UMIS prediction accuracy 
with regards to seasonal fluctuations (Figure 13). The UMIS predictions of daytime temperatures in 
September exhibited stable performance, without any significant underestimation (the temperature 
was predicted to be lower than the observed value) because of the low frequency of extreme heat, as 
in July and August, or overestimation (the temperature was predicted to be higher than the observed 
value), as in the sliding window technique. Thus, the MOS-Analog technique was found to be able to 
overcome the limitation of the sliding window technique, which cannot take into account 
precipitation and seasonal fluctuations that deviate from the latest temperature trends. These results 
demonstrate the potential for UMIS to produce stable outputs.  

Figure 12. Accuracy evaluation for unforeseen events and seasonal fluctuations. Meteorological
variable value for the Seoul weather station (AWS #108): OBS_PREC, observed precipitation; OBS,
observed air temperature; UMIS, Urban Meteorological Information System.

We then graphically compared the daily maximum temperatures observed at the Seoul weather
station (AWS #108) and the UMIS-predicted temperatures to evaluate the UMIS prediction accuracy
with regards to seasonal fluctuations (Figure 13). The UMIS predictions of daytime temperatures
in September exhibited stable performance, without any significant underestimation (the temperature
was predicted to be lower than the observed value) because of the low frequency of extreme heat,
as in July and August, or overestimation (the temperature was predicted to be higher than the observed
value), as in the sliding window technique. Thus, the MOS-Analog technique was found to be able to
overcome the limitation of the sliding window technique, which cannot take into account precipitation
and seasonal fluctuations that deviate from the latest temperature trends. These results demonstrate
the potential for UMIS to produce stable outputs.
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3.5. Prediction Accuracy of Daily Maximum and Minimum Temperatures in Summer

We performed an accuracy validation of statistical downscaling using the MOS-Analog technique
with regard to the daily maximum and minimum temperatures during the summer months (July and
August 2016 and 2017, 00:00–23:00 every hour).
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First, the hourly LDAPS- and UMIS-predicted temperatures were compared to the real-time AWS
observations. Next, the respective mean monthly values of RMSE and CC were calculated (Figure 14a):
1.64 ◦C and 0.4, respectively, for LDAPS and 1.22 ◦C and 0.7, respectively, for UMIS. The application of
the MOS-Analog technique resulted in a 25% decrease in RMSE and a 0.3 increase in CC. With the bias
correction effect achieved through analog daytime temperature observations and the microclimatic
thermal effect due to time-dependent urban surface characteristics being reflected in the LDAPS
prediction results, the UMIS prediction accuracy was found to improve every hour.

Next, we compared the temperature prediction results for the daily maximum temperature time
slot with the real-time AWS observations and obtained their monthly averages (Figure 14b). The RMSE
and CC for LDAPS were calculated as 2 ◦C and 0.4, respectively, and those for UMIS were 1.65 ◦C and
0.7, respectively. The overall averages throughout the observation period resulted in a 20% decrease
in RMSE and a 0.3 increase in CC.

Last, we compared the temperature prediction results for the daily minimum temperature time
slot with the real-time AWS observations and obtained their monthly average (Figure 14c). The RMSE
and CC of LDAPS were calculated to be 1.52 ◦C and 0.46, respectively, and those of UMIS were 1.30
◦C and 0.73, respectively. The overall average throughout the observation period resulted in a 15%
decrease in RMSE and a 0.3 increase in CC.

The temperature rise effect due to sensible heat release from the thermal energy stored during
the day in the city’s core and the temperature drop effect due to the cold air generated during the
night in vegetated areas may be explained by the results of a previous study that describe the large
contribution of the quantitative distribution of observed air temperatures at the ground surface [31].
Therefore, as these two effects based on quantitative distributions of temperatures at the ground surface
are reflected in the UMIS prediction data, the UMIS prediction accuracy for the daily maximum and
minimum temperatures can be said to have improved.Atmosphere 2019, 10, x FOR PEER REVIEW 17 of 20 
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4. Conclusions

In this study, we performed statistical downscaling of air temperature prediction results with 1.5 km
resolution (UM-LDAPS) for the Seoul metropolitan area to 25 m resolution, using the MOS-Analog technique
described in this paper and carried out bias correction. CAS-computed urban surface parameters and AWS
observations were used as training data, and SVM machine learning was used as an empirical computational
model. Using temperature data predicted by the MOS-Analog-based UMIS, the prediction accuracy with
regard to analog days, heat days, daily maximum and minimum temperatures, inclusion of precipitation
days, seasonal features, and summer temperatures (hourly, daily maximum, and daily minimum) was
improved. Through these predictions and their evaluations, we assessed the suitability of the statistical
downscaling method using the MOS-Analog technique for microclimatic research.

With the bias correction effect through analog day temperature observations and microclimatic
thermal effect due to time-dependent urban surface characteristics reflected in the LDAPS prediction
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results, the UMIS prediction accuracy was found to improve every hour. With the temperature rise
effect due to the sensible heat released from city core land use and building structures, the temperature
rise effect due to the release of sensible heat stored in the city core during the day and the temperature
drop effect in vegetated areas due to cold air generation during the night being reflected in the
LDAPS prediction results, the UMIS prediction accuracy for both daytime and nighttime improved.
Furthermore, the UMIS results for precipitation periods were found to show temperature distribution
profiles similar to those of observed temperatures, and stable performance was also maintained
in cases reflecting seasonal features. It was thus verified that UMIS prediction accuracy improved
in all time slots, precipitation days, and episodes reflecting seasonal features, which confirms that
the MOS-Analog-based statistical downscaling technique described in this paper can be applied to
urban-scale meteorology research.

The statistical downscaling approaches employed to date in other studies have mostly been
associated with global or regional-scale climate models (GCM or RCM). However, to provide detailed
explanations of urban-scale weather phenomena triggered by complex urban spatial structures,
numerical weather prediction models should also have sufficiently high resolutions. To meet this
need, we performed a statistical downscaling process on the LDAPS with a local-scale resolution
(1.5 km grid). Given its short operation history (4 years since the last computation), there are not
many printed LDAPS data values available. Another disadvantage is its limited ability to compute
analog days for want of available data, given that it does not have recourse to weather pattern
simulations, because of the nature of analog analysis. However, hourly temperature, which is a variable
of interest, exhibits regular hourly, daily, and seasonal patterns, and the temperature distribution
profiles of time slots with the same cycle are very similar. Despite the limited quantity of available
data, MOS-Analog-based statistical downscaling was carried out in this study with 3 years of LDAPS
datasets. As a result, the applicability of the statistical downscaling technique employed in this study
has been verified. The number of analog day candidates increases as the number of LDAPS data
increases, which contributes to enhancing prediction accuracy through output correction with respect
to analog days with near-true values.

The results of this study suggest that the statistical downscaling approach proposed in this study
for microclimatic information extraction can be applied to solving problems related to urban-scale
meteorology, such as urban planning, as well as its potential applicability to other metropolitan areas
in need of microclimatic research.
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