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Abstract: The variational data assimilation (DA) method seeks the optimal analyses by minimizing
a cost function with respect to control variables (CVs). CVs are extended in this study to include
hydrometeor mixing ratios related variables besides the widely used sets of CVs (momentum fields,
surface pressure, temperature, and pseudo-relative humidity). The impacts of the extra CVs are
investigated in terms of hydrometeor mixing ratios to the assimilation of radar radial velocity (Vr)
and reflectivity (RF) for the analysis and prediction of Typhoon Chanthu (2010). It is found that the
background error statistics of the extended CVs from the National Meteorological Center (NMC)
method is reliable. The track forecast is improved significantly by including hydrometeor mixing
ratios as CVs to assimilate radar Vr and RF. The DA experiments using the hydrometer CVs show
much improved intensity analysis and forecast. It also improves the precipitation forecast skills to
some extent. The positive impact is significant using a direct RF assimilation scheme, when Vr and
RF data are applied together. It suggests that when we applying an indirect RF assimilation scheme,
the fitting of more hydrometers in the cost function will tend to cause a slight degradation for other
variables such as the wind and temperature.
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1. Introduction

Variational data assimilation (DA) optimizes the meteorological states by minimizing a cost
function with respect to control variables (CVs) that penalizes the observations and first guess fields.
Methods for estimating observation errors for various types of observations, especially for the widely
used radar observations, are well developed and evaluated based on innovation (observation minus
background, OMB) statistics [1]. For the background error covariance (B), the dimension of the B
matrix is so large (107

× 107) that it needs to be simplified with the control variable preconditioning
procedure. Any prognostic or diagnostic variable can be used as a control variable theoretically.
Generally, there are three groups of CVs accounting for the model states [2]: (1) Momentum related
CVs such as stream function and velocity potential (ψχ); (2) temperature (T), (3) surface pressure (P),
(4) humidity related CVs, such as pseudo-relative humidity (RHs). To better constrain the cost function
and optimize the analysis, CVs are adjusted or extended. Sun et al. (2016) applied horizontal UV as
CVs to improve convective-scale analyses [3]. Michel et al. (2011) and Descombes et al. (2015) designed
a multivariate approach to include hydrometeors in CVs to improve the analyses when assimilating
the radar reflectivity and satellite radiance data [4,5].

Atmosphere 2019, 10, 415; doi:10.3390/atmos10070415 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
http://www.mdpi.com/2073-4433/10/7/415?type=check_update&version=1
http://dx.doi.org/10.3390/atmos10070415
http://www.mdpi.com/journal/atmosphere


Atmosphere 2019, 10, 415 2 of 15

Doppler weather radar is considered as one of the most outstanding platforms that provide
observations with high temporal and spatial resolution [6,7]. Radar observations play an important
role in terms of providing tremendous information about velocity fields from radar radial velocity,
and about hydrometer fields from radar reflectivity. The determination of the CVs related to the
hydrometers is one of the key techniques for radar data assimilation. What is not systematically
discussed is how the analyses and forecasts with direct and indirect radar reflectivity data assimilation
depend on the hydrometer-related CV options for tropical cyclone (TC) cases. This study serves as a
pilot to evaluate the impact of the extra CVs in terms of hydrometeor mixing ratios for radar radial
velocity (Vr) and reflectivity data assimilation in the framework of Weather Research and Forecast
model data assimilation system (WRFDA). The understanding of the behaviors of the extra CVs,
including the hydrometeor mixing ratios related variables, are based on the results for the case of
Typhoon Chanthu (2010). Chanthu is one of the most powerful typhoons in 2010, which swept through
Wuchuan in Guangdong province. Overall, CNY 5.54 billion (USD 817.7 million) economic losses and
nine people killed were reported.

This paper is organized as follows. A brief introduction of the overall WRFDA-3 dimensional
(WRFDA-3DVar) system and control variables are described in Section 2. Section 3 describes the
experiment design, radar DA configurations, and the typhoon case overview. The results based on
different CVs are illustrated in Section 4, before the conclusions and discussions in Section 5.

2. Methodologies

2.1. Cost Function in WRFDA

WRFDA is developed by the National Center for Atmospheric Research (NCAR). The three
dimensional variational method [8] of the weather research and forecasting and data assimilation
model (WRFDA-3DVar) [9] is designed to obtain a statistically optimal analysis via minimizing a
prescribed nonlinear cost function iteratively as:

J = (x− xb)
TB−1(x− xb) + (yo

−H(x))TR−1(yo
−H(x)), (1)

where vectors x and xb represent the atmosphere states and background states, respectively [10].
y◦ represents the observation vector. H is the observation operator that maps the model space to
the observation space. The background error covariance B and the observation error R are two vital
matrixes to constrain the analysis increment.

2.2. The NMC Method

The climatological background error (BE) statistics are estimated using the National Meteorological
Center (NMC) method [11]. The NMC method is commonly used to model B, which takes the difference
between pairs of forecasts valid at the same time [12]. Plenty of samples based on the forecast differences
(for example with 24 and 12 h forecast ranges) are required for the modeling with the NMC method to
achieve stable climatological forecast error statistics over a long period (e.g., one month). The background
error covariance matrix is expressed as the difference averaged over the time and domain:

B ≈ (x24 − x12)(x24 − x12)T (2)

where x24 and x12 are 24 and 12 h forecasts, respectively. It is reminded that both of the forecasts
contain their errors and that we never have the truth.

x24 = xtruth + ε24 + b24 (3)

x12 = xtruth + ε12 + b12 (4)
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Here, xtruth represents the truth that we never have. b24 and b12 are the biases in each forecast.
ε24 and ε12 are the random errors. Both 24 and 12 h forecasts are assumed to be unbiased or the bias is
constant in time, as b24 = b12, leading the forecast difference to be:

xdiff = ε24
− ε12 (5)

The BE covariance matrix can be modeled as:

B ≈ (xdiff)(xdiff)
T
= (ε24 − ε12)(ε24 − ε12)T (6)

2.3. B Modeling in WRFDA-3DVar

In the WRFDA-3DVar system, B matrix is usually decomposed as B = UUT so that the
preconditioning transform Uv = x − xb is applied. δx = x − xb represents the analysis increment
vector and v stands for control variable vector.

With the following approximation

yo
−H(x) ≈ yo

−H(xb) −H(x − xb) (7)

where H is the linearization of the observation operator H, Equation (1) can be reshaped in the form of
control variable v as

J =
1
2

vTv +
1
2
(d −HUv)TR−1(d −HUv) (8)

where d = yo −H(xb) is the innovation vector.
There are five CVs in WRFDA-3DVar that are mostly commonly used. A default option is

CV option 5 (CV5) in WRFDA-3DVar. CV5 includes the stream function ψ, the unbalanced part
of velocity potential χu, the unbalanced part of temperature Tu, the pseudo-relative humidity RH,
and the unbalanced surface pressure Psu. Another natural choice is to use velocity components (U,V)
as control variables for wind analyses (CV option 7; CV7), which includes U component, V component,
full temperature (T), full surface pressure (Ps), and pseudo-relative humidity (RHs). The effects of
the two momentum control variable options—stream function velocity potential (ψ,χ) and horizontal
wind components (U,V)—in radar Vr data assimilation have been discussed in previous studies [13].
To assimilate the hydrometers of radar reflectivity data, the total water qt (sum of water vapor,
cloud water, and cloud rain) is used as the moisture CV instead of the RHs (Xiao et al., 2007) [14].
The total water increments are partitioned into water vapor, cloud water, and cloud rain increments
using the tangent and adjoin model of a warm-rain physics.

Microphysical variables including both ice and liquid particles need to be included in the CVs of
the cost function to effectively assimilate radar radial velocity and reflectivity data. CVs are extended
in this study to include hydrometeor mixing ratios related variables besides the widely used sets of
CVs (momentum variables, surface pressure, temperature, and pseudo-relative humidity). The impact
of the extra CVs is investigated in terms of hydrometeor mixing ratios (rainwater-qr, snow-qs, ice-qi,
graupel-qg, and cloud liquid-qc mixing ratio) for radar data assimilation.

The CVs from the two CV options for comparison are summarized as:

CV_7: U, V, Ps, T, qt

CV_8: U, V, Ps, T, RHs, qc, qr, qi, qs, qg

The transform δx = Uv maps the CVs to the analysis variable space through a series of operations
δx = UpUvUhv. Details of the operators Up, Uv, and Uh can be referred to Barker et al. (2004) [5].
The Uh is for modeling the horizontal auto-correlation for each control variable, that are assumed to be
homogeneous and isotropic using recursive filters. The Uv stands for the vertical transformation by an
empirical orthogonal function (EOF) decomposition of the vertical component of BE. In WRFDA-3DVar,
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the vertical correlations and variances from BE are domain-averaged and constant on each model level.
The operator Up consists in transforming increments of CVs to increments of analysis variables physically.

2.4. Radar Observation Operators

To include the radar observations in the cost function of the WRFDA-3DVar system, the observation
operators for radar velocity (Vr) and reflectively (RF) are required. The observation operator for Vr is
designed following the formulation in Tong and Xue (2005) [15], as:

Vr = u cosα sin β+ v cosα cos β+ w sinα (9)

where α radar elevation angle, β is the azimuth angle. u, v, w are the three-dimensional wind speeds.
For the reflectivity, the data can be assimilated either directly or indirectly. For the direct RF data

assimilation, the operator follows that in Sun and crook (1997) [16], which is expressed as:

Z = c1 + c2 log10(ρqr) (10)

where Z is the reflectivity factor. The factors of c1 and c2 are constants with the value of 43.1 and 17.5,
respectively. qr, is the rainwater mixing ratio and ρ is the air density.

One of the problems in the direct radar reflectivity assimilation in WRFDA is that it uses the
Z–qr (reflectivity–rainwater) equation of Equation 10 as the observation operator and a warm-rain
partition method to create the hydrometer increments. Nevertheless, WRFDA applies an incremental
approach in minimization which requires the linearization of the forward model. The linearization
problem will tend to arise, since there is high nonlinearity between Z–qr, especially when qr is small
in a dry background. Thus, a successful direct radar reflectivity assimilation relies largely on other
techniques, such as cloud analysis or physical initialization. Another approach is to assimilate the
retrieved hydrometers derived from radar RF. The assumption that the in-cloud humidity is saturated
is applied to estimate the water vapor following Wang et al. (2013) [17]. Firstly, the in-cloud relative
humidity is assumed to be 100% where radar reflectivity is higher than a threshold of 30 dBZ to create
the “observation” qo

v based on the pressure and temperature. For the observation qo
v, the nonlinear

observation operator is:
qv = rh × qvs, (11)

where qv, rh, and qvs are specific humidity of water vapor, relative humidity, and saturated specific
humidity of water vapor, respectively. The forward model for equivalent radar reflectivity factor
relies on the sum of the contributions from pure rainwater qr, snow qs, and graupel qg mixing ratio,
following the formulation in Gao et al. (2012) [18],

Ze = Z(qr) + Z(qs) + Z(qg) (12)

3. Experiment Setup

3.1. Radar Observation

The radar observations from coastal WSR-98D radars at Haikou and Yangjiang. The raw data
were first preprocessed by an automatic data quality control procedure before assimilation, using the
88d2arps module available in the ARPS [19,20] to correct and remove erroneous observations in terms
of Doppler velocity ground clutter removal and de-aliasing. Radar Vr data were further checked and
edited manually using the interactive SOLO software [21] from NCAR after the automatic quality
control procedures. After quality control was performed, the velocity fields were correctly de-aliased
(not shown). The observational error for the Vr and RF data was set as 2 m/s and 5 dBZ following the
previous studies of Xiao et al. (2009), Shen et al. (2016), and Shen et al. (2017) [22–24].



Atmosphere 2019, 10, 415 5 of 15

3.2. Model Configuration and Experimental Design

A single domain was applied in the framework of the WRF model [25] (Skamarock et al. 2008)
with 401 × 401 horizontal grids (with 5 km resolution) and 41 vertical levels (with 50 hPa model top),
Figure 1. The following physical schemes were employed for the simulation: the Yonsei University
scheme (YSU) boundary layer scheme [26] (Hong et al., 2006); the Lin et al. microphysics scheme [27]
(Hong et al., 2004); the Kain–Fritsch cumulus parameterization [28] (Kain 1990); the rapid radiative
transfer model (RRTM) long-wave scheme and short-wave radiation scheme [29] (Mlawer et al. 1997),
and the Noah land surface model for land surface processes scheme.
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Figure 1. The model domain and the coverage of the two radars.

To investigate the impact of the hydrometer CVs on the analyses/forecasting cyclings, radar DA
experiments were conducted every 1 h from 1800 UTC 21 July 2010 to 0000 UTC 22 July (Figure 2),
before a deterministic 18 h forecast is initiated from the final DA cycle at 0000 UTC 22 July 2010.
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Figure 2. The flowchart for the analyses/forecast cycling experiments.

This study conducted three radar DA experiments denoted as RV_RF_CV7, RV_RF_CV8,
and RV_RRF_CV8 in Table 1. The first two experiments differ based on whether extended CVs
were included when radar reflectivity was assimilated directly. For the third experiment, RV_RRF_CV8,
the hydrometers retrieved from the reflectivity data were assimilated with CV8 to include the
hydrometer CVs.
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Table 1. Description of the experiments, with radar velocity and radar reflectivity using CV7
(RV_RF_CV7), with radar velocity and radar reflectivity using CV8 (RV_RF_CV8), and with radar
velocity and retrieved hydrometers with radar reflectivity using CV8 (RV_RRF_CV8).

Exp Name Data CV Type

RV_RF_CV7 RV, RF CV7
RV_RF_CV8 RV, RF CV8

RV_RRF_CV8 RV, hydrometers from RF CV8

4. Results

4.1. The Background Error Statistics

The characteristics of the climatological background error from the NMC method are illustrated
before the DA experiments were conducted. The standard deviations in the estimated background
error matrix for CVs are shown in Figure 3. There were assumptions that the BE statistics of variance
and length scale for the control variables are homogeneous and isotropic so that they only vary with
heights. The vertical distributions of the standard deviation for the background error (Figure 3) reflect
those corresponding features of the profiles for the fields. For example, there are maximum errors at or
near the tropopause level for the wind and temperature (around vertical level 30), which was also
found in Zhang et al. (2011) [30]. The errors of the snow and graupel mainly appear in more higher
levels (>level 17) than that of rainwater (level 10).
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Figure 3. The standard deviations of the background errors at different vertical levels for (a) zonal
wind (u-wind), (b) meridional (v-wind), (c) t—temperature, (d) rh—relative humidity, mixing ratio of
(e) cloud liquid water—qc, (f) rainwater—qr, (g) ice—qi, (h) snow—qs, and (i) graupel—qg.

Figure 4 shows the vertical correlation of each control variable. The vertical correlations can be
large at the associated precipitation levels. The vertical correlations were relatively larger for lower
levels for wind and temperature. For solid hydrometers (qi, qs, qg) therewere larger correlations for
higher levels (level > 25), while the vertical correlation is larger for lower levels for qr (level close to 20).
These vertical correlations of the hydrometeor errors determine how the information of the observed
radar data spread out vertically.
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The horizontal correlation length scales of the background errors are shown in Figure 5. It was
found that the length scales for the wind fields were around seven to eight grids (~3540 km) and those
for the temperature and humidity fields were five grids (~24 km). The length scale for the hydrometers
were much smaller with maximum magnitude of one grid (~5 km).
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4.2. Analysis Increment

The analysis increments of the column integrated qr from the first assimilation cycle are illustrated
in Figure 6 at 1800 UTC 21 July 2010. The qr increment from RV_RF_CV7 experiment was close to
0 near the area of the typhoon center in Figure 6a with qt as CV. Similar dry bias was also found in
Wang et al. (2013) when assimilating RF directly [31]. Positive qr increment was observed near the
typhoon center in the neighborhood of Guangdong province in Figure 6b, which can be attributed
to the use of the hydrometer-related control variable qr directly. Noticeable positive increments of
qr were found in RV_RRF_CV8 (Figure 6c) when introducing retrieved hydrometeors in the cost
function. The large positive qr increments from RV_RRF_CV8 was probably introduced by largely
fitting the extra retrieved hydrometers, with all hydrometer-related CVs considered. The qs and qg

increments of RV_RF_CV7 and RV_RF_CV8 were zero, since there was no qs and qg information from
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the observations. Noticeable qs and qg increments were observed in RV_RRF_CV8 due to the use of qs

and qg hydrometers as CV when assimilating the retrieved qs and qg information. The increments from
the south boundary from RV_RF_CV7 was due to the use of qt as CV to partition the qt increments into
the qr increment, which may introduce spurious information to warm hydrometers. For RV_RRF_CV8,
the qr increment from the south boundary was probably related to the overfitting problem when an
indirect RF assimilation scheme is applied with CV8. The analysis increments for qi and qc were zero
for all the experiments, because there is no consideration of qi and qc in the observation operator and
there is no covariance between qi and qc with other CVs.
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from (a,d,g) RV_RF_CV7, (b,e,h) RV_RF_CV8, and (c,f,i) RV_RRF_CV8 experiments at 1800 UTC 21
July 2010.

4.3. Verification against the Conventional Observations

Figure 7 shows the vertical profiles of the root mean square error (RMSE) for u-wind, v-wind,
temperature, and specific humidity when verifying the analyses against the conventional observations
(radiosondes and GeoAMV). The improvement from the radar assimilation with CV8 was observed
for most of the fields, while CV7 yielded the largest errors. Generally, RV_RF_CV8 outperforms
RV_RRF_CV8 for the wind and temperature. For humidity, smaller RMSE from RV_RF_CV8 was
demonstrated at the low troposphere (around 925 hPa) compared with RV_RRF_CV8. The results
explain that wind and temperature fields can be improved during the minimization with qr included
in the cost function. It suggests that, when we applying an indirect RF assimilation scheme, the fitting
of more hydrometers, such as snow related particles, will tend to cause a slight degradation for other
variables such as wind and temperature. It is reported that there is difficulty for the variational DA in
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obtaining analyses that fit “optimally” to observations representing different scales in one step that
minimizes only one cost function (Xie et al., 2011; Tong et al., 2016) [32,33]. Gao et al. (2012) [18] also
find that when radar reflectivity is assimilated, the bias errors of the model fields that are related to the
reflectivity (such as, rain, snow, and graupel) can be projected onto other model variables (such as
wind and temperature) during DA cycles.
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Figure 7. The root mean square error (RMSE) of vertical profiles of analyses versus conventional
observations for (a) u-wind, (b) v-wind, (c) t—temperature, and (d) q vapor for RV_RF_CV7, RV_RF_CV8,
and RV_RRF_CV8, respectively, at 0000 UTC 22 July 2010.

Similarly, RMSE for surface variables as 10 m u-wind, 10 m v-wind, 2 m temperature, 2 m qv,
and surface pressure against the conventional observations are illustrated in Figure 8. The improvement
from the radar assimilation with CV8 can be seen for the wind and temperature, and 2 m qv fields.
Generally, RV_RF_CV7 yielded the largest RMSE for most of the surface variables.
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temperature, (d) 2 m q vapor, and (e) surface pressure for RV_RF_CV7, RV_RF_CV8, and RV_RRF_CV8,
respectively, at 0000 UTC 22 July 2010.

4.4. Track, Intensity, and Precipitation Forecast

The 18 h track forecasts of Typhoon Chanthu initialized from 0000 UTC 22 July 2010 to 1800 UTC
22 July 2010 are shown in Figure 9a,b to illustrate the impact of the determination of CVs on the TC
forecasts. Obvious southward biases were observed from both RV_RF_CV7 and RV_RRF_CV8. The
forecast track in the RV_RF_CV8 experiment fited most closely to the CMA (Chinese Meteorological
Administration) best track. The method of monitoring TC in CMA can be referred to in Yu et al.
(2007) [33] and Song et al. (2010) [34]. RV_RF_CV8 and RV_RRF_CV8 yielded smaller track errors
in Figure 8b compared to RV_RF_CV7. For the intensity forecast, the RV_RF_CV8 produced MSLP
(minimum sea level pressure) and MW (maximum surface wind speed), thus fitting the best track most
closely. The improvement from RV_RF_CV8 was also noticeable to some extent compared with the
RV_RF_CV7 in terms of the intensity forecast.
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4.5. Precipitation Forecast

Accurate predictions of the precipitation for typhoons are very important for warnings of inland
floods. Figure 10 shows the 12 h accumulated precipitation initialized at 0000 UTC 22 July 2010 from
the three experiments against the CMA grid rainfall estimation. The rainfall estimation merges the
observations from more than 30,000 automatic weather stations of CMA and the rainfall estimates
from the NOAA CPC morphing technique (“CMORPH”) [35] (Joyce et al., 2004). It can be seen that the
observed maximum exceeded 120 mm in the north of Guangdong Province along the coast from 21◦ N
to 22◦ N with a nearly square pattern in Figure 10a. The RV_RF_CV7 experiment under predicted the
maximum center with a band pattern in Figure 10b. The accumulated precipitation was increased in
Figure 10c after assimilating the RF with the retrieved hydrometer using CV8, by extending the CVs
in RV_RF_CV8. The significant improvements from RV_RF_CV8 existed in terms of correcting the
location and the amount of precipitation. It was found that RV_RRF_CV8 overestimates the maximum
of the precipitation in Figure 10d.

The equitable threat scores (ETSs) were calculated for different precipitation thresholds following
the metrics in Schaefer 1990 [36] (Figure 11) for the whole domain. Generally, there were higher
ETS scores in CV8 than in that in CV7, indicating the advantage of adding extra control variables.
For larger thresholds, the ETSs of RV_RF_CV8 and RV_RRF_CV8 were comparable, but the scores
from RV_RF_CV8 were consistently superior to RV_RRF_CV8 for smaller thresholds.
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5. Conclusions and Perspectives

Control variables are extended in this study to include mixing ratios of hydrometers on top of
the widely used sets of CVs (momentum fields, surface pressure, temperature, and pseudo-relative
humidity). The impact of the extra CVs is investigated in terms of hydrometeor mixing ratios for radar
radial velocity (Vr) and reflectivity (RF) data assimilation. The results are based on the case of Typhoon
Chanthu (2010). It is found that the background error statistics of the extended CVs from the NMC are
able to reflect those corresponding to the features of the profiles for the fields. The use of hydrometer
CVs upgraded the forecast skills of the typhoon track, intensity, and the precipitation to some extent,
especially when RF data are assimilated directly along with Vr data. It suggests that, in an indirect RF
assimilation scheme, the fitting of more hydrometers (such as snow related particles) tends to cause a
slight degradation for other variables (such as wind and temperature).

Although the results are encouraging, there are areas for further improvements and explorations.
Further studies with more TCs that are in different regions and at various stages of development are
needed for better understanding the impacts of the extra CVs. Our effort in this study represents a
step in that direction. To better utilize retrieved hydrometers with various phases (such as from radar
reflectivity data), the impacts of individual CVs need to be explored when fitting the observations in
the cost function with all sets of control variables and observation types. Therefore, it is important to
design a multistep and multiscale DA technique that accounts for the different types and different
scales of observations.
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