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Abstract: Atmospheric deposition brings both nutrients and toxic components to the surface ocean,
resulting in important impacts on phytoplankton. Field and lab studies have been done on the
iron (Fe) fertilization on marine phytoplankton. However, studies on other trace metals are limited.
Both bioassay experiments and field observations have suggested that aerosols with high copper (Cu)
concentrations can negatively affect the primary productivity and change phytoplankton community
structure. Note that with increasing human activities and global environmental changes (e.g., ocean
acidification, warming, deoxygenation, etc.), the input of aerosol Cu could exceed toxicity thresholds
at certain times or in some sensitive oceanic regions. Here, we provide a comprehensive review
on aerosol Cu and marine phytoplankton studies by summarizing (1) physiological effects and
toxicity thresholds of Cu to various phytoplankton taxa, (2) interactions between Cu and other
metals and major nutrients, and (3) global distribution of surface seawater Cu and atmospheric Cu.
We suggest that studies on aerosols, seawater chemistry, and phytoplankton should be integrated
for understanding the impacts of aerosol Cu on marine phytoplankton, and thereafter the air–sea
interaction via biogeochemical processes.
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1. Introduction

Atmospheric deposition plays an important role in providing both nutrients and toxicants
to the ocean ecosystem [1–4], particularly for the case of increasing sea surface temperature and
stratification [5,6]. Studies about aerosol effects on marine phytoplankton have focused on natural
aerosols, e.g., volcanic ash [7] and dust [8,9]. With the enhancement of anthropogenic activities,
more chemical components are emitted and transported to oceans [10–12], modifying the seawater
chemistry and affecting phytoplankton growth [2,7,13]. One of the representative chemicals emitted
by human is copper (Cu). According to ice-core based assessments in the former Soviet Union,
anthropogenic emissions of Cu showed a significant increase from the year 1935 and culminated in the
1970s (5300–8600 tons per year, briefly t yr−1), which was mostly attributed to the development of
non-ferrous metallurgy [14]. In China, the primary anthropogenic emission of Cu is still growing,
rising up to 9548 t yr−1 in 2012, which is mainly from coal combustion, brake and tire wear, metal
smelting, etc. (Figure 1) [15].
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Figure 1. Anthropogenic sources of aerosol copper (Cu) in China (Data quoted from Tian et al. [15]).

Metal-containing aerosols exhibit profound impacts on ocean biogeochemistry and climate [16–19].
Dust transported to the high nutrient, low chlorophyll (HNLC) oceans could fertilize phytoplankton
growth due to their supply of iron (Fe) [20]. Unlike Fe, Cu is a key metal for living organisms,
which manifests positive and negative effects on marine phytoplankton at low and high concentrations,
respectively [21,22]. Atmospheric deposition is one of the most important sources of external Cu
to the ocean, and some studies have found that its flux is the same order of magnitude as fluxes
from riverine input and upwelling waters [23]. Paytan et al. suggested that aerosols with high
concentrations of Cu might inhibit phytoplankton growth, and that the responses varied across
different phytoplankton taxa [10]. They also estimated the global distribution of atmospheric Cu fluxes
via numerical simulations and pointed out two hot spots (the Bay of Bengal and small areas in the
western Pacific, downwind of Asian industrial regions) for anthropogenic Cu deposition, though
the solubility of Cu used in the model was questioned by Sholkovitz et al. [24]; the solubility can
be affected by the source, transport pathway and physicochemical characters of aerosols [25,26].
Aerosol Cu toxicity to phytoplankton studied in the Sargasso Sea and the western Mediterranean
Sea [4,6] further strengthened former results. The toxicity thresholds of Cu are distinct with different
seawater chemistry and phytoplankton taxa [27]. In the East China Sea (ECS), soluble Cu and Fe were
found to be the most significant predictors among components in atmospheric deposition responsible
for changes in chlorophyll a [28]. However, the interaction of Cu with other components in the aerosol
further complicates understanding the effect of Cu on plankton (Figure 2). Additionally, Cu’s ions
can outcompete lower complexing stability cations (e.g., zinc (Zn), manganese (Mn)) for organic
ligands [29], which extends Cu’s lifetime in the ocean by preventing particulate scavenging [30].

The main body of this review is organized as follows. The first subsection will talk about
physiological functions and toxicity of Cu, including toxicity thresholds for different phytoplankton
taxa. Interactions between Cu and other components, as well as their bioavailability, are briefly
described in the following Sections 2.2 and 2.3. Then, information about the distribution and speciation
of oceanic Cu are provided in Sections 2.4 and 2.5. The final two subsections point out the great
contribution of atmospheric input to ocean Cu, and summarize the sources and characteristics of
aerosol Cu. This integrated study of Cu behaviors in phytoplankton, aerosols, and seawater provide
a comprehensive view of aerosol Cu impacts on marine phytoplankton.
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Figure 2. Factors affecting the Cu toxicity for marine phytoplankton.

2. Perspectives

Atmospheric deposition, hydrothermal vent, sediment, and riverine input are important sources
of oceanic Cu (Figure 3). Surface ocean receives a large fraction of Cu from the atmosphere, especially
during seasonal stratification [23,31,32]. When stratification occurs, nutrient supply from the depth
decreases, and impacts of the same magnitude of atmospheric input can be amplified within the
shallower mixed layer. The western Pacific Ocean and the southeast Indian Ocean receive aerosols
with the highest dissolved Cu (See more information in Section 2.7). Although Cu is required as
a co-factor in important enzymes of phytoplankton (Figure 3), high Cu may impede metabolic activities
by substituting for other essential intracellular metals, interfering with cell permeability, and catalyzing
the production of reactive oxygen species (ROS), etc. [33–35]. Phytoplankton respond differently to Cu
concentrations, depending on their sizes, habitats, and light adaptability [27,35,36]. Copper toxicity to
marine phytoplankton is also influenced by other metals (e.g., Fe) and nutrient status (e.g., nitrogen
(N) limitation).

Figure 3. The scheme of Cu sources, transport, and transformation in marine ecosystems. Natural and
anthropogenic sources of Cu, as well as their relative transport processes, are illustrated. The detailed
description can be seen in relevant sections. After aerosol Cu is deposited into the seawater, some of
it is scavenged, while some is taken up by phytoplankton. The uptake pathways are also shown as
diffusion as well as low- and high-affinity transports in the figure.

2.1. Physiological Functions and Toxicity of Cu

Many biotic activities are related to cellular Cu concentrations, because Cu is required as a co-factor
in important enzymes of phytoplankton [37], such as plastocyanin, cytochrome oxidase, ascorbate
oxidase, superoxide dismutase (SOD), laccase, and ferroxidase (Figure 3). Plastocyanin is a kind
of cuproprotein (proteins that are unable to substitute other metal ions for Cu) found in many
cyanobacteria species, and is involved in the electron transport system in photosynthetic process [38].
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Thus, Cu has an important effect on cyanobacteria growth. Cytochrome oxidase, with both Fe and
Cu, is a terminal protein responsible for mitochondrial electron transport, reducing O2 to H2O [30].
Nitrate reductase, an essential reductive enzyme responsible for the conversion of NO3

− into NH4
+, is

sensitively affected by Cu [39]. Nitrous oxide reductase also needs Cu in denitrification activity [40].
Nonetheless, high concentrations of Cu may interfere with (1) phytoplankton cell permeability;

(2) uptake of nutrients and essential metals; (3) carbon fixation; (4) biosynthesis of lipids, cytochromes,
and enzymes; and (5) impair chloroplast ultrastructure [33–35]. High concentrations of Cu may curb HCO3

−

intake by reducing carbonic anhydrate activities [34]. The xanthophyll cycle, which is mainly comprised
of diadinoxanthin and diatoxanthin in diatoms, was reported to be vulnerable to high Cu concentration.
The inversion of diadinoxanthin to diatoxanthin could be hindered by high Cu levels, resulting in a rise of
the DT index (DT index refers to [diatoxanthin]/([diatoxanthin] + [diadinoxanthin])) [34]. Copper could also
catalyze the production of reactive oxygen species [38,41]. Chlorophyll molecules could be destroyed when
Cu2+ replaces Mg2+ in the porphyrin ring [34]. Transcription of photosynthesis-related genes decreased
under Cu stress [36], and photosynthetic rates declined when Cu inhibited the first step of chlorophyll
photosynthesis, accumulation, and function [42]. Under acute Cu stress, the major energy metabolic protein,
ATP synthase, was inhibited in Sargassum fusiforme, while carbohydrate metabolism, protein destination,
RNA degradation, and signaling regulation were induced [22]. Ritter et al. reported that proteins related to
energy production (e.g., pentose phosphate pathway) accumulated at high Cu concentrations [43]. It should
be noticed that acute stress of Cu seemed to increase phytoplankton reproduction rates in the short-term;
however, these effects were more likely due to hormesis rather than any evidence for Cu limitation [27,44].

Phytoplankton respond differently to Cu concentrations. Smaller phytoplankton are less tolerant
to Cu, as they have large surface area to volume ratios and thereby possibly faster uptake rates [27,35].
In general, cyanobacteria are very sensitive to Cu additions, while diatoms are the least sensitive [27,45].
For example, the abundance of Skeletonema costatum dominates over Synechococcus when free Cu2+

concentration is up to 100 pM [46]. However, Levy et al. noted that cell size may not be related to Cu
sensitivity [47]; in Fe-limited situations, the larger phytoplankton (>5 µm) may be more susceptible to
Cu toxicity [48]. Researchers also found that the Cu tolerance of phytoplankton was higher in coastal
regions than in offshore and open oceans [34,49]. In the East China Sea, chlorophyll a increased
and decreased with enhanced Cu deposition in coastal and remote areas, respectively [28]. On the
Visakhapatnam coast (coastal embayment of the Bay of Bengal), mesocosm experiments showed that
Cu (5, 10, 25, and 50 nM) first hindered, then stimulated phytoplankton growth, suggesting that
coastal phytoplankton had potentially high Cu tolerance [34]. Under excess Cu stress, both coastal
and open-ocean Synechococcus reduce their photosynthesis-related gene transcripts; coastal strains
demonstrate higher metal and oxidative adaptation, whilst open ocean strains show a general stress
response in their activated genes [36]. Some phytoplankton produce polyphenols and exudates against
Cu. For example, the green algae Dunaliella tertiolecta produces phenolic compounds (e.g., gentisic acid,
(+) catechin and (−) epicatechin) under Cu stress, which can lower the solubility and bioavailability of
Cu [50]. Light adaptability is also an important factor affecting Cu tolerance, and high-light-adapted
species are more resistant to toxic Cu than low-light-adapted ones [35].

Toxicity thresholds of Cu for different phytoplankton taxa are listed in Table 1. Several parameters
have been chosen for assessing Cu toxicity. Hall et al. suggested that growth rate was the most
sensitive toxicity indicator in N-limited cultures [51], whereas final yield ranked the most susceptible
in P-limited cultures. Some studies have shown that final yield and growth rate decrease but cell size
increases with increasing Cu concentrations [35,52,53], possibly owing to the uncoupling between
photosynthesis and cell division, resulting in the continuous accumulation of carbon fixation within
the cell and mediation of membrane [51,53]. Copper may also affect phytoplankton by weakening
the grazing activities of zooplankton (e.g., ciliate) [21,54]. However, grazers such as copepods have
different sensitivity to Cu at different life stages [55], and the combined impacts of grazing activities
and Cu addition on phytoplankton remain uncertain.
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Table 1. Toxicity thresholds of Cu for different phytoplankton taxa.

Phytoplankton Threshold Speciation Indicator Reference

Pyrrophyta (nM)
Gonyaulax tamarensis 0.0001 Cu2+ ions Inhibited growth [56]

Peridinium sp. (A1572) 0.001 Cu2+ ions Reduced reproduction rates [27]
Prorocentrum sp. (R1568) 0.001 Cu2+ ions Reduced reproduction rates [27]

Gonyaulax tamarensis 0.04 Cu2+ ions 50% nonmotile [57]
Gonyaulax tamarensis 0.2 Cu2+ ions 100% nonmotile [57]

Cyanobacteria (nM)
Cyanobacteria 0.001 Cu2+ ions Reduced reproduction rates [27]

Synechococcus bacilaris 0.003 Cu2+ ions
50% inhibition of
reproduction rate [27]

Synchrococcus 0.112 Cu2+ ions Reduced cell division rate [35]
Synechrococcus (Red sea) 0.2-2* Total Cu Impaired cell growth [10]

Bacillariophyta (µM)
Asterionella glacialis 0.1 Cu2+ ions Dead [27]

Bacteriastrum delicatulum 0.1 Cu2+ ions Dead [27]
Hentiuulus sinensi 0.1 Cu2+ ions Dead [27]

Rhizosolenia setigera 0.1 Cu2+ ions Dead [27]
Thalassiosira oceanica (Bering Sea) 0.001 Dissolved Cu unable to grow [49]
Thalassiosira sp. (Adriatic Sea) 0.31–0.78 Dissolved Cu Inhibited growth [58]
Thalassiosira decipiens (SW Bay) 1.00 Dissolved Cu Abundance [34]

Phaeodactylum tricornutum 1.6 Dissolved Cu 50% growth reduction [59]
15.7 Dissolved Cu Inhibited growth [59]

Cylindrotheca closterium
(Adriatic Sea) 3.13–7.81 Dissolved Cu Inhibited growth [58]

Achnanthes brevipes 3.13–7.81 Dissolved Cu Inhibited growth [58]
Skeleonema costatum 0.0002 Cu2+ ions Cell division rates reduced [27]

Chlorophyta (µM)
Chlorella pyrenoidosa 4.13 Dissolved Cu Biosorption capacities [60]

Chlamydomonas geitleri Ettl 10 Cu2+ ions 50% reduction in growth rate [51]
Chlorella vulgaris Beyerinck 10 Cu2+ ions 50% reduction in growth rate [51]

Ochrophyta (µM)
Ectocarpus siliculosus

(Southern Peru) 0.78 Dissolved Cu Chlorophyll drop to 70% of
chlorophyll autofluorescence [43]

Ectocarpus siliculosus
(Northern Chile) 3.91 Dissolved Cu Chlorophyll decay of

cell-autofluorescence [43]

Haptophyta (µM)
Hymenomonus corterae 0.0007 Cu2+ ions Dead [27]

Emiliania huxleyi 0.3 Dissolved Cu Inhibited growth [33]
Emiliania huxleyi

(Mediterranean strain) 0.32 Dissolved Cu EC50 [33]

Gephyrocapsa oceanica 0.4 Dissolved Cu EC50 [33]

Note: * Units: mg Cu/mg Chl a.

2.2. Interactions between Cu and Other Metals and Nutrients

Copper toxicity may be affected by other metals. Researchers have found a co-limitation of
growth by Cu and Fe in phytoplankton [21,34,49]. Under Fe-limiting conditions, some phytoplankton
increase Cu uptake and use plastocyanin, Cu/ZnX–SOD, and others as a substitute for Fe-containing
enzymes (e.g., cytochrome c6 and Fe-SOD, [54,61]). In the N cycle, Fe and Cu can be incorporated
into enzymes and interchangeably used for ammonium oxidation and denitrification [62]. In this
case, Fe additions may reduce Cu toxicity [28]. Indeed Thalassiosira oceanica relies solely on the
Cu-containing plastocyanin, instead of the Fe-containing cytochrome c6; the photosynthesis rates of
T. oceanica are hindered under low Cu, and when Cu hindered cells are exposed to 10 nmol L−1 Cu,
their Fe uptake rates are enhanced by 1.5-fold [49,61]. Maldonano et al. also found that Fe uptake
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rates closely depended on Cu availability in Fe-limited T. oceanica, and Fe transport improved with Cu
addition, indicating that the inducible Fe transport system was consisted of multiple Cu oxidases [63].
The Cu-dependent upregulation of the high-affinity Fe uptake system was also reported by Annett et
al. [64]. Both oceanic and coastal Thalassiosira showed obvious enhancement in Cu demands under Fe
limitation. Semeniuk et al. suggested that larger Fe-limited phytoplankton were more susceptible to
Cu limitation and the complex interaction between Fe and Cu was also related to grazing pressure
and light [48].

Researchers found that Zn and Cu also have an interactive influence on the silicic acid uptake by
Thalassiosira pseudonana, showing as a Zn-dependent system for silicic acid uptake that is inactivated
by Cu [65]. Zn and Nickel (Ni) can be part of the SOD enzyme alleviating the demand for Cu [30].
Cupric ion and Mn2+ show competitive interaction on the cellular growth of Thalassiosira, and Cu can
competitively hinder the cellular Mn 2+ uptake or binding [66].

Nutrient status is an important determinant of phytoplankton tolerance to Cu toxicity [3,67].
Phosphate bodies may act as sites for complexing and detoxifying Cu, and thereby Cu toxicity
imparts a high demand for phosphorus (P) and results in P limitation [51]. Hall et al. suggested that
phytoplankton were more Cu sensitive in P-limited conditions than in N-limited cells [68]. Under high
Cu concentrations, inhibition on NO3

− uptake and synthesis of nitrate reductase were observed [39].
Rijstenbil et al. argued that more Cu accumulation took place under N-enriched treatment, probably
owing to impaired metal exclusion/elimination mechanisms [69]. In the South Pacific, the distribution
of dissolved Cu was tightly correlated with SiO4

4− in the upper 1500 m, implied the link between Cu
and silicon (Si) uptake by diatoms [70].

2.3. Bioavailability and Uptake of Cu

Copper quotas in phytoplankton vary among taxa and oceanic regions. In general, the metal
abundance ranking in phytoplankton follows Fe ≈ Zn > Mn ≈ Ni ≈ Cu ≈ cobalt (Co) ≈ cadmium (Cd),
with Cu cellular concentration approximately 2–5 fold less than Fe [37]. Field observations of 3.5 [71],
3.8–17.9 [72,73], 1.3–4.2 [74], 27–30 (different size fractions) [75], and 13.6 (particulate Cu > 0.45 µm) [76]
µmol Cu per mol C have been reported in North Atlantic plankton, North Atlantic Trichodesmium,
northeast Pacific Ocean plankton assemblages, northeast subarctic Pacific Ocean, and Southern Ocean
diatoms, respectively, which are comparable to 0.3–6.3 [64], 1.5 [72], and 0.04–6.2 µmol Cu per mol
C [77] found in the lab experiments. Anthropogenic aerosol deposition may increase cellular Cu
concentrations, with different-sized phytoplankton responding differently [78].

The speciation of Cu determines its bioavailability to phytoplankton. Previous studies have reported
that low-molecular-weight lipophilic Cu and inorganic Cu species are available for uptake [79,80], and that
free Cu ions can be absorbed directly by phytoplankton [27,81]. Copper ions are more competitive for
transport sites, compared to other metals that have a lower tendency to form complexes, e.g., Fe, Zn,
Mn, and Co [29,33]. High-affinity biogenic chelates alter Cu solubility and speciation, and have all been
hypothesized to be Cu detoxification in the early studies [30,82,83]. However, recent studies have found
that Cu bound to strong L1 ligands could be acquired by cyanobacteria [84]. Walsh et al. reported
cysteine-enhanced Cu bioavailability in Cu-limiting Emiliania huxleyi via cysteine-mediated reduction of Cu
(II) to Cu (I) [85]. The purpose of biogenic ligand production requires further study.

There are three types of uptake (Figure 3), including diffusion and low- and high-affinity transports.
The lipophilic ligands bind Cu, and neutrally charged chloro-complexes can be assimilated by diffusion [80,81].
Under high Cu concentrations, Cu2+ ions can pass through low-affinity transporters for uptake [86,87].
High-affinity Cu transport is usually related to the transformation of Cu(II) to Cu(I), assisted by cell
membrane reductase and a photochemical process [88], as well as by cysteine-mediated reduction [85].
The mechanisms of Cu uptake seem to be different in prokaryotic and eukaryotic phytoplankton [84].

The adsorption of Cu on the cell surface is an important process that occurs rapidly (reaching
a plateau in about 40 min) before cellular uptake or internalization. [47,89,90]. Most of surface
adsorptions are non-specific binding—for example, the binding of Cu with carboxylic, sulfhydryl,



Atmosphere 2019, 10, 414 7 of 21

and phosphate groups, and other metals can also compete with Cu for these sites [47,89]. Although
adsorption is non-discriminatory to cell wall type [47], cells with a mucilaginous surface bind relatively
high amounts of Cu [91]. Since pH can largely affect the chemical speciation„ as well as surface sites,
it plays an important role in affecting adsorption [90]. Gonzalez-Davila et al. observed adsorption
of Cu in Phaeodactylum tricornutum only when the pH was over 4, and pH became less effective for
Cu adsorption when greater than 7 [90]. Salinity can also influence the adsorption via surface charge,
double-layer capacitance, and the activities of metal ions [92]. However, most of these studies were
conducted under a high level of Cu addition, which was not representative of the real environment.
Further studies should be developed to mimic real scenarios by using nM levels of Cu in seawater
in order to improve our understanding.

2.4. Distribution of Dissolved Cu in the Ocean

The global distribution of dissolved Cu in surface seawater is shown in Figure 4. Cu concentration
exhibits spatial variation, showing relatively high and low values in coastal and remote oceans,
respectively, which is probably associated with upwelling [6,93], currents [94], or mesoscale eddies [95].
In some coastal areas, heavy rain may cause a sudden increase of Cu in the surface water [96].
Posacka et al. investigated the dynamic variability of dissolved Cu in the subarctic northeast Pacific
during the years 2010–2012, and indicated that subsurface Cu concentration increased due to
atmospheric deposition [95]. High concentrations of dissolved Cu were found in the Mediterranean Sea,
East China Sea, and northeast Pacific surface seawater. Among these, some coastal areas of the
Mediterranean Sea suffered from ambient industrial contamination (e.g., acid mine drainage [97]),
resulting very high Cu concentrations compared to other coastal places. In the surface ocean, the lowest
concentrations occur in the Atlantic and Pacific gyres, while relatively high values are found at high
latitudes (Figure 4). The distribution of dissolved Cu in seawater also exhibits seasonal variability,
due to seasonal cycles of stratification and upwelling. In the Gulf of Aqaba, dissolved Cu shows a slight
surface enrichment in August and September, probably due to both stratification and dust storms from
the Sahara Desert [30,98]. Additionally, Cu concentration may increase significantly in coastal areas
with enhanced anthropogenic activities (e.g., shipping) in the summer [94,99]. The residence time of
Cu was about thousand years for all the oceans (Box 1).

Figure 4. Dissolved Cu in surface seawater. The color bar refers to the concentration of dissolved Cu
in the unit of nmol kg−1. Data source: Schlitzer et al. [100]. Map was produced using Ocean Data View
(Schlitzer, R., Ocean Data View, odv.awi.de, 2017). The spatial extent of the interpolation is ~800 km.



Atmosphere 2019, 10, 414 8 of 21

Box 1. Residence Time of Cu.

A typical removal process for metals from the mixed layer is particulate scavenging. Particulate transport
was estimated to be 2.2 × 105 t yr-1 of dissolved Cu from surface to deep ocean [23]. Chen et al. estimated that
the dissolved Cu from atmospheric deposition had the residence time of 32 years in the surface 50 m of the
Gulf of Aqaba [101]. Atmospheric input of Cu to the Pacific Ocean had a residence time of 5000 years [102],
comparable to its riverine input. Copper residence time estimated from its isotopic ratios was about 2000–3200
years for all the oceans [23,103].

As for vertical distribution, Cu shows low concentration in the surface layer, due to biological uptake [23].
Dissolved Cu in the eastern North Pacific and tropical South Pacific increases with depth, mimicking typical
depth profiles of major nutrients [70,95]. Similar depth profiles of dissolved Cu were observed in the Indian
and Atlantic oceans (Figure 5). This also indicates that surface phytoplankton may encounter a sharp
increase of dissolved Cu during the mixing event. In the surface ocean, the lowest values occurred in the
Atlantic and Pacific gyres, while relatively high concentrations were observed at high latitudes (Figure 5).
At the air-sea interface, aerosol Cu may have shown different characters (Box 2).

Figure 5. Latitudinal and depth distributions of dissolved Cu in the Pacific, Atlantic, and Indian oceans.
Data quoted from Coale and Bruland [104], Boyle et al. [102], Chen [105], Wen et al. [106], Vance et al. [107],
Chase et al. [98], Sunda [30], Vu and Sohrin [108], Lagerström et al. [109], Pinedo-Gonzalez et al. [110],
Middag et al. [111], Posacka et al. [95], and Whitby et al. [112].
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Box 2. Sea-Surface Microlayer (SSM).

The sea-surface microlayer (SSM) is a single hydrated gelatinous layer at the air–sea interface, which has
unique physical, chemical, and biological properties differing from surface water [113–115]. Total Cu was
enriched by factors of 2.8 and 16 in the SSMs of Lake Dołgie Wielkie [116] and the Mediterranean Sea [113]
compared to underlying waters, and dissolved Cu showed enrichment factors of 3 and 20 in the SSMs of
Bay of Villefranche [113] and the Mediterranean Sea [117], respectively. The active interactions between
organics and Cu within the SSM have been observed near the Mediterranean coast and north Norwegian
fjords, and the complexing capacity of ligands with Cu in the SSM vary from 230 nM to 1790 nM in the
subarctic region [118], 280 nM to 940 nM in the northwest Mediterranean [119], and 52 nM to 680 nM in the
eastern Mediterranean [120]. The residence time of dissolved aerosol Cu in the SSM is potentially long enough
(180–210 min), compared to dissolved Fe (8.1–26 min) and Zn (10–14 min), for atmospheric deposited substances
to get involved in reactions [121]. The SSM acted more like a trap for aerosol particles [117], and more work
needs to be done to clarify the complex processes of biological response and Cu addition in this layer.

2.5. Copper Speciation in the Seawater

In seawater, Cu exists in both thermodynamically stable Cu (II) and unstable Cu (I). Copper
(I) consists of 5%–10% of the filterable Cu [30,122], generally as chloride complexes, since natural
organic ligands cannot meet Cu (I)’s requirement for tetrahedral coordination site in complexation [123].
Copper (II) can be reduced to Cu (I) via photochemical processes, ligand-to-metal charge transfer
reactions, or reductions, and the Cu (I) can also be oxidized to Cu (II) (Box 3) [123,124]. The redox
chemistry of Cu is closely related to Fe in the seawater (Box 3).

Box 3. Redox Chemistry of Cu.

High concentrations of dissolved organic ligands or low Cl− concentrations are favorable to the oxidation
rate of Cu (I) [123,125]. A change of pH leads to an obvious speciation change of inorganic Cu (II), since the
major species of inorganic Cu (II) are carbonate complexes. Differently, the oxidation of Cu (I) is less affected
by increasing acidification, because it is dominated by chloride complexes or free ions [126]. At low oxygen
concentrations (<22 µM), Cu (I) oxidation depends on its reaction with H2O2 [127]. When the concentration
of bicarbonate in seawater is under 5 mM, the oxidation rate constant of Cu (I) increases with the increase
of bicarbonate concentration [125]. Ions such as Mg2+ and Ca2+ can decrease Cu (I) oxidation rate constants,
possibly due to the slow exchange of Mg2+ or Ca2+ complexes with Cu2+ and the back-reaction of Cu (II) [125,128].
The presence of Cu (II) catalyzes the oxidation of Fe (II), and in turn Fe (II) can enhance the reduction of Cu
(II) to Cu (I) under both air-saturated and anoxic conditions [129]. In contrast, Cu (I) is likely to be oxidized
in the presence of Fe (III), and the oxidation rate linearly decreases with the increase of Fe (II) under oxygen
saturation conditions [130]. Apart from these direct redox reactions, the current kinetic model also includes the
competition between Cu and Fe by reactive oxygen species (ROS), as well as the formation of Fe–Cu species
(e.g., cupric ferrite) [130].

More than 99% of dissolved Cu in the surface seawater is chelated as dissolved, low-molecular-
weight organic complexes [122,131]. Abiotic factors, such as pH and temperature, can affect the
complexation of Cu with organic ligands. Biota are thought to be the major source of organic ligands
binding Cu (Box 4 and Table 2) [75,132]. Both the production rate and the number of Cu-binding
ligands were found to be enhanced rapidly after Cu addition in seawater [6,133]. High carbohydrates
were observed to be exuded by Cylindrotheca fusiformis (diatom) exposed to high Cu, suggesting
a plausible cell protection mechanism via polysaccharide production [134]. The strong Cu-binding
ligands can be produced by dinoflagellate [135] and cyanobacteria [82]. This may have partly
explained why strong Cu complexes reach a peak when cyanobacteria were abundant [104,122].
Some phytoplankton also produce both low concentrations of strong ligands and high concentrations
of weak ligands—for example, Emiliania huxleyi can produce thiols as well as carbohydrates as
a Cu-complexing ligand [136,137]. Seasonal changes of Cu speciation may be partly attributed to the
variation of phytoplankton community composition [138,139]. The weaker L2 ligands (as well as L3

ligands) may be derived from activated sludge or humus in some coastal areas [140], which contributes
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to 1%–27% of the total ligand concentration in the northeast Pacific [112]. The conditional stability
constants of Cu with humic acid (HA) and fulvic acid (FA) are stronger than Zn, Co, Fe, and Al [141].

Box 4. Ligands.

In general, there are two classes of ligands, the strong L1 ligands (Kcond
CuL1,Cu2+ = 1012–14) mainly found in surface

water with concentrations between 1–2 nmol kg−1) and the weak L2 ligands (Kcond
CuL2,Cu2+ = 108–10) [122,142].

However, Hurst and Bruland [143] argued that a weaker L3 class of ligands existed in San Francisco Bay
waters (Kcond

CuL2,Cu2+ = 108.3–9.3). Dissolved Cu was first bound by high-affinity organic ligands (L1), and once
L1 approached upper capacity, weaker L2 appeared to bind additional Cu [79]. In the northeast Pacific,
the L1-complexed Cu comprised of 94% dissolved Cu when ligands were sufficient in the water column [112].

Table 2. Copper-complexing ligands produced by phytoplankton.

Ligand Producer Taxa Class Reference

Cylindrotheca fusiformis Diatom Strong ligands [134]
Amnphidiniumn carterae Dinoflagellate Strong ligands [135]

Synechococcu. spp Cyanobacteria Strong ligands [82,135]
Emiliania huxleyi Haptophyta Both strong and weak ligands [136,137]

Hymnenoinonas carterae Coccolithophorid Weak ligands [135]

2.6. Atmospheric Contribution to Oceanic Cu

Atmospheric deposition is one of the most important sources for oceanic Cu, in conjunction with
hydrothermal vents, sediment, rivers, and other sources. Duce et al. elucidated that global atmospheric
deposition and riverine input of dissolved Cu were comparable [31]. An isotopic study showed that
rivers and dust contributed 4.6 × 104 and 3.4 × 103 t yr−1 of Cu to the oceans, respectively [144].
With regard to wet deposition, which is often more important than dry deposition over oceanic
regions [32], Takano et al. reported that 6.1 × 104 t yr−1 of dissolved Cu came from the atmosphere,
higher than rivers (4.8 × 104 t yr−1) and but less than upwelling (1.9 × 105 t yr−1) inputs [23]. In addition,
the majority of riverine input of metals deposits in the estuaries and mainly influence the coastal area,
whilst atmospheric deposition can reach remote oceans [31].

Hydrothermal fluids were found to account for 14% of dissolved Cu in the deep ocean [145].
The decomposition of biogenic sinking particles in the benthos also releases Cu, and upwelling or
vertical mixing can bring Cu to the surface. In shelf waters, sediment may dominantly contribute to Cu
concentration. In the Irish Sea, sediment Cu flux (160 t yr−1) was significantly higher than atmospheric
deposition (26 t yr−1) and riverine input (38 t yr−1) [146]. Sediment flux of Cu in the south Yellow Sea
was 5.4 × 103 t yr−1, which was comparable to Cu dry deposition of 2.8 × 103 t yr−1 [147] and Yellow
River input of 13.2 × 103 t yr−1 [148]. However, the surface ocean receives larger fractions of Cu from
the atmosphere during the seasonal stratification, due to shallowed mixed layer and reduced upwelling
inputs [4,6,149].

2.7. Sources, Solubility, and Deposition of Atmospheric Cu

Atmospheric Cu has both natural and anthropogenic sources. Volcanic emission (e.g., [150]), sea spray
(e.g., [151] and [152]), and dust (e.g., [153] and [154]) are typical natural sources. Anthropogenic sources
include fuel combustion (e.g., coal and furnace oil), industry (e.g., industrial boiler, iron and steel
production, nonferrous metal smelting, and cement production), traffic emissions (e.g., brake and tire wear),
and incineration of waste [155–157]. Aerosol Cu derived from anthropogenic emissions is predominantly
distributed in fine particles [15]. Asia has the largest anthropogenic emission of trace metals, attributed to its
soaring demand for energy in the process of industrial development [158].

Cu associated with dust can be transported over a long distance to the ocean. Surface particles
in dry and sparsely vegetated soil start to saltate in a horizontal flux when the wind speed exceeds
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threshold friction velocity. Next, small particles are dislodged, lifted into the air, and carried
downstream [32,159]. Some of them can reach the free troposphere and be transported for thousands
of kilometers. For example, Asian dust is carried to Hawaii [154] and remote high-altitude sites
in North America [153]; African dust is transported to the eastern Mediterranean [160], Florida [8],
and Amazon [161]. It has been indicated that the western Mediterranean Sea receives high fluxes
of aerosols, and Sahara dust is the largest natural contributor [4,162]. Prevailing winds, convective
processes, and adiabatic vertical motion associated with fronts also play roles in the transport of dust.
During this transport process, interactions with clouds and interactions between Cu and other aerosol
components (e.g., acidic components) take place, resulting in changes in physicochemical characters
of Cu.

The metal solubility in aerosols is closely dependent upon aerosol sources [26]. Sholkovitz et al. showed
that Cu solubility in dust-derived aerosols was 1%–7% (Table 3), far lower than that of anthropogenic
aerosols (10%–100%) [24]. During transport, Cu solubility is also affected by chemical and photochemical
reactions. Redox reactions between Cu and oxidants (e.g., HOX) during cloud processing are more rapid
than those between Fe and oxidants, and these reactions are quite important in affecting Cu speciation and
solubility [163,164]. Due to the large emissions of acidic components (represented by CO2, SO2, NO2, etc.)
into the atmosphere, high acidity of aerosol and low pH cloud water have been observed, which could
increase Cu solubility and change Cu speciation [5,165]. For example, atmospheric hygroscopic sulfate is
capable of enhancing Cu dissolution [166]. The dissolution rate of Cu elevates rapidly in the first 20 min,
then stabilizes to lower values in the atmospheric aqueous condition [167]. In marine precipitation, over 80%
of the total Cu exists in dissolved form when pH < 5 [168]. Furthermore, Cu is more soluble in rainwater
than in seawater, and Chen et al. measured the Cu solubility of 66% and 49% in pure water and seawater
(Table 3), respectively [25].

Table 3. Fractional solubility of aerosol Cu over the global oceans.

Ocean Seawater Pure Water Sample Types References

East China Sea 51% Non-dust event days [169]
An island in Taiwan Strait 42% Aerosol samples [170]

Coastal site in Taiwan Strait 27% Aerosol samples [170]
North Atlantic (Bermuda) 84% Rain samples [168]

Atlantic 40% Aerosol samples [10]
German Bight 41% Aerosol samples [171]
Gulf of Aqaba 49% 66% Aerosol samples [25]

Mediterranean Sea (Corsica) 48% Rain samples [168]
Western Mediterranean 76% Rain samples [172]

Sargasso Sea and Bermuda 1–7% Dust source [24]
Sargasso Sea 10–100% Anthropogenic source [24]

Due to gravitational settling, turbulent dry deposition, and rain scavenging, Cu in the atmosphere
will deposit in the marine boundary layer after long-range transport [159]. The dry deposition flux
can be calculated by multiplying the Cu concentration by a size-dependent dry deposition velocity
under the Williams model [173]. With fewer uncertainties, recent studies provide more promising
approaches, using radionuclide beryllium-7 as a tracer to calculate the deposition of various chemical
species from the atmosphere [174]. Submicron particles are largely affected by precipitation, and wet
deposition usually dominates the deposition in remote oceans [32].

According to the atmospheric concentrations of dissolved Cu obtained from GEOTRACES
Intermediate Data Product 2017 (IDP2017, [100]), published papers, and our measurements over
the western North Pacific, we showed a global distribution of dissolved aerosol Cu over the ocean
(Figure 6). Aerosol sampling methods followed Fu et al. [175]. We calculate dry deposition fluxes of
Cu using an empirical deposition velocity of 1 cm s−1. Human activities can significantly increase the
atmospheric emission flux of dissolved Cu and impact the growth of marine phytoplankton, and the
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deposition of anthropogenic Cu has the greatest probability to be “toxic” in the western North Pacific
and the southeast Indian Ocean [10–12], due to rapid economic development, the increase of human
activities, and growing energy consumption in adjacent continents [15,157,158,176].

Figure 6. Global distributions of dissolved aerosol Cu over the global oceans. The color bar refers
to the concentration of dissolved aerosol Cu in the unit of pmol m−3.Data sources: Maenhaut and
Cafmeyer [177], Virkkula et al. [178], Witt et al. [179], Chand et al. [180], Hsu et al. [169], Kang et al. [181],
Laing et al. [182], Chance et al. [183], Illuminati et al. [184], Baker et al. [185], Wang et al. [28], Schlitzer
et al. [100], and our unpublished data. Figures were produced using Ocean Data View (Schlitzer, R.,
Ocean Data View, odv.awi.de, 2017).

3. Remarks

To better understand aerosol Cu effects on marine phytoplankton, studies on aerosols, seawater
chemistry, and phytoplankton should be integrated. In the future, an urgent priority is to accurately
estimate the contribution of atmospheric Cu to the oceanic bioavailable Cu pool, and the application
of isotopic analyses will promote such studies. Bioassay studies should be carried out with Cu
concentrations in the same order of magnitude as seawater (nM levels), in order to simulate the virtual
scenario. The purpose of organic ligands produced by phytoplankton, whether is for self-protection or
for other reasons, remains to be investigated among different taxa. In addition, Cu impacts on primary
productivity under different nutrient conditions, as well as the synergistic or antagonistic effects of
aerosol Cu and other metals on phytoplankton growth, should be further studied.

In future decades, changes of the global environment, such as ocean acidification, warming,
and deoxygenation may amplify the impacts of metals. The presumed pH of global ocean will be 7.7 by
the year 2100, and this will result in a 30% augmentation of free ionic forms of Cu in the seawater [126].
Researchers have already seen that Cu toxicity to marine organisms (coastal benthic species) would
increase under ocean acidification [186]. The reduction of Cu (II) to Cu (I) will increase with the
warming and lowered oxygen [5]. Adverse synergistic interactions between abiotic stressors and
Cu are more likely to take place in future oceans [187]. Attendant with the growing human activity,
the implication of anthropogenic aerosol Cu to the marine ecosystem should be highly concerning.
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