Supplementary Materials

Kitchen area air quality measurements in northern Ghana: evaluating the performance of a low-cost particulate sensor within a household energy study

Authors

Evan R. Coffey1*

David Pfotenhauer¹

Anondo Mukherjee²

Desmond Agao³

Ali Moro³

Maxwell Dalaba³

Taylor Begay¹

Natalie Banacos⁴

Abraham Oduro³

Katherine L. Dickinson⁴

Michael Hannigan¹

Affiliations

*corresponding author

¹University of Colorado Boulder College of Engineering and Applied Science. 427 UCB, 1111 Engineering Drive, Boulder, CO 80309 USA

²University of Colorado Boulder Atmospheric and Oceanic Sciences. 311 UCB, Boulder, CO 80309 USA

³Navrongo Health Research Centre, Behind Navrongo War Memorial Hospital, Upper East Region, Ghana, West Africa.

⁴Colorado School of Public Health, University of Colorado Anschutz Medical Campus. 13001 East 17th Place, Aurora, CO, 80045.

Baseline Correction algorithm

```
%% P3 Ghana Cookstove Project HAPEx Analysis
*Created by Anondo Murkerjee in Python and translated to Matlab by Taylor Begay
tic \mbox{\ensuremath{\$}} Clear workspace, command window, and close any open figures. clear all/close all;
%% Begin Body of Code
disp('------HAPEx Analysis Code-------disp('------
\ User selects the folder with data for analysis \ Ask the user for folder path and get the directory info disp('Select folder with dataset for analysis'); disp(' ');
% Prompt the user to select the folder with HAPEx data folders
hapexDir = uigetdir(pwd,'Select folder with dataset for analysis');
% Display an error if user hits "cancel"
assert(~isequal(hapexDir,0),'No data folder selected!');
disp(['Analyzing files in folder: ' hapexDir '...'])
disp(' ')
\$\$ User selects the subfolders within the selected HAPEx data folder \$ Ask user to pick 1 or more files with HAPEx data that NEEDS to be \$ baseline corrected
% baseline corrected
disp('Select 1 or more folders for HAPEx baseline correction')
IndivHAPEXdir = uigetfile_n_dir(hapexDir,'Choose 1 or more folders');
\mbox{\$} Get the number of selected subfolders that are to be checked for DST
% errors.
nFolders = size(IndivHAPEXdir,2);
%% User selects the folder for outputs to be saved
% Ask the user for output folder path
outFolderPath = uigetdir(pwd, 'Select folder for outputs to be saved');
% Display an error if user hits "cancel"
assert(~isequal(outFolderPath,0),'No output folder selected!');
%% Create a folder within the output folder to store all the files from each run finalFolder = ['Baseline Corrected ' 'Time-' datestr(now,'mm-dd-yy HHMMSS')];
finalFolder = ['Baseline Corrected ' 'Time-' datestr(now, 'mm-dd-yy HHMMSS')];
mkdir(outFolderPath, finalFolder)
outPath = fullfile(outFolderPath, finalFolder); % Store that file path for use later
%% Create a pathway to the excel file that keeps track of skipped/bad HAPEx files
%Prompt the user to select the 'Skipped HAPEx files.csv' file
[SkippedFilesName,SkippedFilesPath] = uigetfile((".csv; *.CSV'), 'Select ''Skipped HAPEx files.csv''', 'MultiSelect', 'off');
% Create the pathway to the excel file
SkippedFilesdir = fullfile(SkippedFilesPath,SkippedFilesName);
\mbox{\tt \%} Initialize a Count variable to keep track of baseline corrected files as \mbox{\tt \%} well as a current date variable Count = 0;
count = 0,
currentDate = datetime(datestr(now,'dd/mm/yyyy HH:MM:ss'));
% Gather the directories to all the HAPEx files in all the selected
% subfolders.
allHAPEXfiles = [];
for n = 1:nFolders
% for n = 1
       % Create the folder name
       try
indCatch = regexp(IndivHAPEXdir{n},'\d+.\d+.\d+');
folderName = IndivHAPEXdir{n}(indCatch(1):end);
             indCatch = regexp(IndivHAPEXdir(n),'\');
folderName = IndivHAPEXdir(n)(indCatch(end)+1:end);
      % Get the filepaths to all the .csv files within the selected folder.S
[~,message,~] = fileattrib([IndivHAPEXdir{n},'\*']);
allExts = celfun(@(s) s(end-2:end),(message.Name},'uni',0); % Get the extensions to every file and subfolder in the selected folder
CSVidx = ismember(allExts,'csv'); % Search 'allExts' for files that have .csv extensions
allHAPEXfiles = (message(CSVidx).Name); % Use CSVidx to list all file paths to the .csv files
       % Display total number of .csv files within the selected folder.
       disp(' ')
fprintf('Analyzing %i *.csv HAPEx files in folder: %s\n',numel(allHAPEXfiles),folderName)
       % Convert the list of hapex files to a table if it's not empty
if isempty(allHAPEXfiles)
   allHAPEXfiles = table([],[],[],[],[],['VariableNames',{'name','folder','date','bytes','isdir','datenum'});
              allHAPEXfiles = cell2table(allHAPEXfiles','VariableNames',{'folder'});
       % %% Read columns of data as strings
% formatSpec = '%s%s%s';
% delimiter = ',';
      \% Loop through all files in selected folders and correct the baseline for each set of data for i = 1:size(allHAPEXfiles,1) for i = 27:size(allHAPEXfiles,1)
```

```
% Create the file name and file path
filePath = char(allHAPEXfiles.folder(i));
filename = filePath(regexp(filePath,'HAPEX_\d+'):end-4);
 fprintf('-(%i/%i) Baseline correcting data in file: %s',i,numel(allHAPEXfiles),filename)
 % Call to the function importHAPExFiles to extract the data in each
 [TimeStamp, HAPEx, compliance] = importHAPExFiles(filePath);
 if any(TimeStamp > currentDate)
    disp([' ---- File: ' filenam
         disp([' --- File: ' filename ' has date
output = cell2table(cellstr(filename));
                                                                             ' has datetime issues'])
         output. Properties.VariableAmes = {\skipped files'};
Table = readtable(SkippedFilesdir, 'Delimiter',',');
% If there's no previous table data, write our output row at the first
% row in this table.
          if isempty(Table)
         writetable(output, SkippedFilesdir, 'Delimiter',',')
Skipped files = length(output);
% If there's already data in the table, append our new data row to the
% end of the old table, then rewrite the table into the csv file.
        % end of the old table, nem.
else
   Table_all = [Table; output]; % Append new list to old list
   Table_new = unique(Table_all); % In case duplicate files were selected from last run, take only unique filenames
   Skipped files = size(Table_new,l) - size(Table_l);
   writetable(Table_new,SkippedFilesdir,'Delimiter',',')
          clear output Table Table_all Table_new
         continue
end
 % Skip the file if no time data exists. Should be an empty HAPEx file.
      SKIP the file if no time data exists. Should be an empty HAPEx file. isempty(TimeStamp) disp([' --- File: ' filename ' does not have a sufficient amount of data']) output = cell2table(cellstr(filename)); output.Properties.VariableNames = {'Skipped_files'}; Table = readtable(SkippedFilesdir,'Delimiter',','); % If there's no previous table data, write our output row at the first % row in this table.
         % row in this table.
if isempty(Table)
  writetable(output, SkippedFilesdir, 'Delimiter',',')
  Skipped_files = length(output);
% If there's already data in the table, append our new data row to the
% end of the old table, then rewrite the table into the csv file.
                e
Table all = [Table; output]; % Append new list to old list
Table_new = unique(Table_all); % In case duplicate files were selected from last run, take only unique filenames
Skipped files = size(Table_new,l) - size(Table_n);
writetable(Table_new,SkippedFilesdir,'Delimiter',',')
         clear output Table Table all Table new
end
% Merge the data into a table and convert to a timetable
dat2 = table(TimeStamp, HAPEx, compliance);
dat2timetable = table2timetable(dat2);
% Take the minute average of the data using mean
dat2min = retime(dat2timetable,'minutely','mean');
dat2shape = size(dat2min);
dat2cols = dat2shape(1);
 % If there are only 5 data points, or less than 5 data points, skip the
% file
if dat2shape(1) <= 6 % Less than or equal to 5 data points
    disp([' --- File: ' filename ' does not have a sufficient amount of data'])
    output = cell2table(cellstr(filename));
    output.Properties.VariableNames = {'Skipped files'};
    Table = readtable(SkippedFilesdir, 'Delimiter',',');
    % If there's no previous table data, write our output row at the first
    % row in this table.
    if isempty(Table)
        writetable(output.SkippedFilesdir,'Delimiter',',')</pre>
                  writetable(output,SkippedFilesdir,'Delimiter',',')
         Skipped files = length(output);
% If there's already data in the table, append our new data row to the % end of the old table, then rewrite the table into the csv file.
                  Table all = [Table; output]; % Append new list to old list
Table_new = unique(Table_all); % In case duplicate files were selected from last run, take only unique filenames
Skipped_files = size(Table_new,1) - size(Table,1);
writetable(Table_new,SkippedFilesdir,'Delimiter',',')
         clear output Table Table_all Table_new
continue
% Get the column names of the data
colnames = dat2min.Properties.VariableNames;
hapexlname = colnames(1);
hapex1_com_name = colnames(2);
\mbox{\$} Store the HAPEx and compliance data into the variable hapex1 hapex1 = dat2min;
% Get the timetable and array format of hapex1
hapex1table = timetable2table(hapex1);
hapexlarray = table2array(hapex1table(:,[2,3]));
 % Initialize the array for the baseline
mins = size(hapex1,1);
hapex1_base = zeros(mins,2);
```

```
\$ Iterate through each minute (ii), using 80 minute windows from minute \$ (ii) to (ii + 80) to find baseline
                 % Iterate through each minute (ii), using 80 minute windows from minute
% (ii) to (ii + 80) to find baseline
for ii = 1:mins-1
    if ii < mins-81
        win40 = hapex1(ii:ii+80,:); % Find 80 minute running window
        win40table = timetable2table(win40);
        win40array = table2array(win40table(:,[2,3]));
elseif ii >= mins-81
        win40 = hapex1(ii:mins-1,:); % Use the remaining data if less than 80 minutes exist after minute (ii)
        win40table = timetable2table(win40);
        win40array = table2array(win40table(:,[2,3]));
end
                          \  Determine how many negative HAPEx values there are negwin = win40array(win40array(:,1) < 0); negcnt = length(negwin);
                          % Replace negative HAPEx values with NaN, replacing compliance
% values with NaN if it's corresponding hapex value is NaN.
if negcnt < 5 && negcnt > 0
win40array(win40array(;1) < 0) = NaN;
win40array(any(isnan(win40array),2),:) = NaN;
                           % Sort the values based on the hapex values only
[-,idx] = sort(win40array(:,1));
sortwin10 = win40array(idx,:);
wincnt = length(win40array);
                          if wincnt > 2
   hapex1 base(ii,:) = sortwin10(3,:);
elseif wincnt <= 2
   win40min = nanmin(win40array);</pre>
                                   hapexl_base(ii,:) = win40min;
                          clear win40 win40table win40array
                  % Let the baseline go flat for the last 6 minutes (set last 5 values to 6 6th to last value)
last5valHap = hapex1 base(mins-6,1); last5valCom = hapex1 base(mins-6,2); hapex1 base(mins-5,1) = last5valHap; hapex1 base(mins-5,2) = last5valCom; hapex1 base(mins-4,1) = last5valHap; hapex1 base(mins-4,2) = last5valCom; hapex1 base(mins-3,1) = last5valHap; hapex1 base(mins-3,2) = last5valCom; hapex1 base(mins-2,1) = last5valHap; hapex1 base(mins-2,2) = last5valCom; hapex1 base(mins-1,1) = last5valHap; hapex1 base(mins-1,2) = last5valCom; hapex1 base(mins,1) = last5valHap; hapex1 base(mins,2) = last5valCom;
                 hapexl_B_Cor = hapexlarray - hapexl_base; % Subtract the baseline from the original
common_val = mode(hapexl_B_Cor(:,1));
Mode = repmat(common_val_mins,1);
                  hapex1_B_Cor(:,1) = hapex1_B_Cor(:,1) - common_val;
                 % Combine data for the final output csv file.
outTable = table(datestr(table2array(hapexltable(:,1))),hapexlarray(:,1),hapexlarray(:,2),...
hapexl base(:,1),Mode,hapexl B Cor(:,1),'VariableNames',('datetime',...
'HAPEx','compliance','HAPEx_baseline','Mode','HAPEx_B_corrected'});
                  % Convert the table and create a csv file in the output folder
filenameout = ['B_Cor' filename];
writetable(outTable,[char(fullfile(outPath,filenameout)) '.csv'])
                  % Plot the corrected data over the original
                  figure(i)
                 ligure(1)
plot(table2array(hapexltable(:,1)),hapexlarray(:,1),'k')
hold on
plot(table2array(hapexltable(:,1)),hapexl B Cor(:,1),'b')
title((datestr(table2array(hapexltable(1,1))))' ~ ' datestr(table2array(hapexltable(end,1)))])
                  xlabel('Date')
ylabel('Pollutant Concentration')
                  % Adjust the x-axis to show the proper date
                 % Adjust the X-axis to snow the proper date
xlim([table2array(hapexltable(1,1)) table2array(hapexltable(end,1))])
xtickformat('MM/dd HH:mm')
NumTicks = 4;
L = get(gca, 'XLim');
set(gca, 'XTick',linspace(L(1),L(2),NumTicks))
                  % Adjust the legend to show the mode of the data
                  Spacing_lines = 2;
h = plot(nan(mins, Spacing_lines));
                  hold
                 % Save the image in the same folder as the created csv file
imageFileOut = ['Image_' strrep(filename,'.csv','.jpeg')];
saveas(figure(i),char(fullfile(outPath,imageFileOut)))
                  close(gcf)
                Count = Count + 1;
       end
fprintf('Total files: %i\n',size(allHAPEXfiles,1))
fprintf('Analyzed files: %i\n',Count)
```

Relative humidity corrections

Two pointwise RH corrections were tested on 1-min baseline-corrected HAPEx data. Equation S1 is from Chakrabarti et al., 2004 [1] using RH as a decimal fraction. Equation S2 was derived from sensitivity effects found by Wang et al., 2015 [2] (Figure S1) with data they provided with RH as a percentage.

$$HAPEx_{corr} = \frac{HAPEx_{raw}}{1 + \frac{0.25 \times RH^2}{1 - RH}}$$
 Equation S1

$$HAPEx_{corr} = HAPEx_{raw} \times 1.18E^{-8} \times RH\%^{4.167} + 0.859$$
 Equation S2

Figure S1: Relative humidity effects on a) GP2Y1010 sensors (n=4) as measured by Wang et al., 2015 using a TSI SidePak Personal Aerosol Monitor AM510 as reference. A power function best fit the data and correction coefficients were determined relative to a RH of 50% and b) GP2Y1010 sensors as measured by Wang et al., 2015 using a scanning mobility particle sizer (SMPS) as reference. A quadratic function best fit the data. This correction was not pursued due to humidity effects on the reference instrument noted by the authors.

$$48hr\ HAPEx_{weighted}mean\ measure = \frac{\sum_{measure_i \times \frac{HAPEx_i}{\sum_{1}^{n} HAPEx_n}}}{\sum_{\frac{HAPEx_i}{\sum_{1}^{n} HAPEx_n}}}$$
 Equation S3

Figure S2: Classification of urban and rural kitchen descriptions from 60 study households visited. Urban kitchens tend to have more walls and oftentimes a roof, relative to rural kitchens.

Figure S3: Absolute differences between paired 48hr mean HAPEx readings using a) no RH-correction b) the Chakrabarti et al. and c) Wang et al. pointwise RH corrections. Red lines show linear trend. HAPEx unit IDs are shown.

Figure S4: Mean (95% CI using bootstrapping) modified combustion efficiency (MCE) as measured by deployment-specific background-subtracted CO and CO_2 concentrations for all samples. Lower MCE (<1) is indicative of combustion activity with depressions corresponding to typical mealtimes 7:00-9:00 and 16:00-19:00.

Figure S5: Kitchen area 48hr mean HAPEx readings against gravimetric total PM2.5 mass concentration grouped by a) rural and urban kitchens and b) season. Shaded areas represent 95% CI of linear model (*p<0.05. **p<0.01). Grouping the regression analysis of mean 48hr HAPEx signal on gravimetric PM2.5 mass concentrations by urban and rural location and by season, slopes and intercepts change slightly to reflect location-specific particle properties and environments. Rural samples have a slightly shallower slope (0.0706, 95% CI: 0.032, 0.109, p<0.05) than urban samples (0.106, 95% CI: 0.028, 0.185, p<0.05) yet have a larger intercept (9.17, p<0.05) compared to urban kitchens (2.88, p=0.37).

Figure S6: Scatterplot of particle coefficients by 48hr HAPEx-weighted mean RH. The slope of the linear best fit was not significantly different from zero (p=0.11) yet the intercept was significant (*p<0.01). These data were not pointwise RH-corrected. RH variation within 48hr periods were high and were likely washed-out when averaged over a 48hr period.

Figure S7: Boxplots of fraction of total $PM_{2.5}$ mass as dust by season and urban/rural classification. 'Dry' and 'Light Rainy' seasons have the highest median fractions of dust with more variation and lower fractions during the 'Harmattan/bushburning' and 'Heavy Rainy' seasons where urban/rural differences are most pronounced. 'Other' is a transitional period of two weeks between 'Light Rainy' and the 'Dry' seasons.

Modeling Particle Coefficient

Linear regression model from Equation 6:

ParticleCoefficient $\sim b(0) + b(1)$ meanHAPEx*season + b(2)dust*season + b(3)meanHAPEx *LocationType

Estimated Coefficients:

	Estimate	SE	tStat	pValue	e		
							
(Intercept)	0.1117	6 0.0	37508	2.9796	0.0055697		
MeanHAPEx	0.006	5635	0.0037714	1.740	3 0.0917	22	
Dust	-0.00088	3273 0	.00052119	-1.693	7 0.1003	35	
LocationType_Urban		0.1198	3 0.051	021 2.3	3487 0.0	2539	
MeanHAPEx:season_Harm	attan_bushbı	ırning	-0.00	10364 0	0.0040523	-0.25577	0.79982
MeanHAPEx:season_Heav	y Rainy	0.	0046899	0.00473	47 0.9905	55 0.329	58
MeanHAPEx:season_Light	Rainy	0.0	70954	0.0080961	8.764	6.7797e-10)
MeanHAPEx:season_Other	•	C	0	NaN	I NaN	J	
Dust:season_Harmattan_bushburning 0.00022017 0.00058909 0.37375 0.71113							
Dust:season_Heavy Rainy	-0.001	1368	0.0008186	3 -1.388	86 0.174	185	
Dust:season_Light Rainy	-0.0232	257 0.	.0028688	-8.1067	3.7266e-0)9	
Dust:season_Other	0	0	NaN	NaN	J		
MeanHAPEx:LocationType	_Urban	-(0.010222	0.00394	48 -2.591	0.0144	48

Number of observations: 44, Error degrees of freedom: 33

Reference groups:

MeanHAPEx:season – meanHAPEx:Dry

LocationType - Rural

Dust:season – Dust:Dry

MeanHAPEx:LocationType – MeanHAPEx:Urban

Root Mean Squared Error: 0.0609

R-squared: 0.837, Adjusted R-Squared 0.787

F-statistic vs. constant model: 16.9, p-value = 2.84e-10

Figure S8: Modeling particle coefficient using equation 6 a) residuals by fitted values and b) histogram of residuals demonstrating normality.

Modeling 48hr Gravimetric PM_{2.5} Mass Concentration

Linear regression model (Equation 7) with no RH correction:

 $\log([PM_{2.5}]) \sim b(0) + b(1) \\ Mean_temp + b(2) \\ Mean_rh + b(3) \\ PercbyMCE + b(4) \\ meanHAPEx + b(5) \\ season + CoverageClass*LocationType' (Equation 7)$

Estimated Coefficients:

Esti	mate SE	E tSta	it pVa	lue	
(Intercept)	36.561	11.733	3.116	0.0066536	
Mean_temp	-0.10007	0.0372	208 -2.68	95 0.016	6114
Mean_rh	-0.041546	0.01173	5 -3.540	4 0.0027	213
PercbyMCE	-0.36505	0.293	36 -1.24	44 0.231	127
MeanHAPEx	0.046299	0.0089	789 5.15	65 9.558	6e-05
CoverageClass_No roof 2 walls		-0.20722	0.29603	-0.69997	0.494
CoverageClass_No roof 3 walls		-0.34178	0.30454	-1.1223	0.2783
CoverageClass_No roof or walls		-0.34027	0.65891	-0.51642	2 0.61262
CoverageClass_Roof 1 walls	-	0.4727	0.65707	-0.7194	0.48227
CoverageClass_Roof 3 walls	().28139	0.47671	0.59027	0.56326
CoverageClass_Roof 4 walls	().69222	0.4921	1.4067	0.17866
CoverageClass_Roof no walls		-1.941	0.7464	-2.6005	0.019322
season_Harmattan_bushburning		-0.5926	0.218	83 -2.708	33 0.015505
season_Heavy Rainy	1.3	492 0.5	56858 2.	.3729 0.0	030517

season_Light Rainy	0.1014	0.5285	0.1	9187	0.85026	
season_Other	0 0	N	aN	NaN		
LocationType_Urban	0.87859	0.532	205	1.6513	0.11816	
CoverageClass_No roof 2 walls:Location	nType_Urba	an	0	0	NaN	NaN
CoverageClass_No roof 3 walls:Location	nType_Urba	an	0	0	NaN	NaN
CoverageClass_No roof or walls:Location	onType_Urb	oan	0	0	NaN	NaN
CoverageClass_Roof 1 walls:LocationTy	ype_Urban		0	0	NaN	NaN
CoverageClass_Roof 3 walls:LocationTy	ype_Urban		0	0	NaN	NaN
CoverageClass_Roof 4 walls:LocationTy	ype_Urban	-2	2.5149	0.820	64 -3.064	6 0.0074098
CoverageClass_Roof no walls:Location	Гуре_Urban	ı	0	0	NaN	NaN

Number of observations: 40, Error degrees of freedom: 23 $\,$

Reference groups:

CoverageClass - No roof and 1 wall

season - Dry

LocationType - Rural

Mean_CO2:season – Mean_CO2:Dry

CoverageClass:LocationType - no roof and 1 wall:Rural

Root Mean Squared Error: 0.418

R-squared: 0.816, Adjusted R-Squared 0.687

F-statistic vs. constant model: 6.36, p-value = 3.95e-05

Figure S9: Residuals of Equation 7 by fitted values. RMSE=0.42.

Linear regression model (Equation 8) with pointwise RH correction:

 $log([PM_{2.5}]) \sim b(0) + b(1) \\ Mean_temp + b(2) \\ Mean_rh + b(3) \\ PercbyMCE + b(4) \\ meanHAPEx + b(5) \\ cleanSD + b(6) \\ Mean_CO2*season + b(7) \\ CoverageClass*LocationType' (Equation 8)$

Estimated Coefficients:

Esti	mate SE	tStat	pValue			
					_	
(T	11.066	4.60 0.5	205 00	050400		
(Intercept)				053682		
Mean_temp	-0.099825	0.039135	-2.5508			
Mean_rh		0.010831	-2.9551	0.014409		
Mean_CO2	-0.0096285	0.0043357	-2.220	0.050	0631	
PercbyMCE	-0.80014	0.30895	-2.5898	0.02695	58	
MeanHAPEx _{RH-corr}	0.076047	0.011466	6.632	2 5.8379	e-05	
CoverageClass_No roof 2 walls	-0	.34652 0	.31048	-1.1161	0.29049	
CoverageClass_No roof 3 walls	-0.	058938 (0.29328	-0.20096	0.84476	
CoverageClass_No roof or walls		2.497 0.0	67948	3.6748 (0.0042831	
CoverageClass_Roof 1 walls	2.4	1972 0.6	5919 3.6	6092 0.0	0047744	
CoverageClass_Roof 3 walls	-0.05	53256 0.	41547 -0	0.12818	0.90055	
CoverageClass_Roof 4 walls	1.2	2784 0.49	9616 2.	.5765 0	.027581	
CoverageClass_Roof no walls	2.	0579 0.8	34339	2.44 0.	.034846	
season_Harmattan_bushburning		-4.1741	1.9297	-2.1631	0.055818	
season_Heavy Rainy	-1.542	2.0825	-0.7404	47 0.47	7604	
season_Light Rainy	30.205	11.919	2.5343	0.0296	553	
season_Other	0	0 Na	aN l	NaN		
LocationType_Urban	-2.435	0.590	9 -4.12	13 0.002	20727	
CleanSD	-0.084	713 0.03	2449 -2	2.6107	0.02601	
Mean_CO2:season_Harmattan_bu	shburning	0.00	74781 0.	.0040819	1.832 0.096856	6
Mean_CO2:season_Heavy Rainy		0.0059761	0.00411	65 1.45	17 0.17721	
Mean_CO2:season_Light Rainy	-(0.069704	0.027166	-2.5658	0.028091	
Mean_CO2:season_Other		0 0	NaN	Na Na	N	
CoverageClass_No roof 2 walls:Lo	cationType_U	rban (3.3572	0.79594	4.2179 0.001777	' 6
CoverageClass_No roof 3 walls:Lo	cationType_U	rban	0	0 N	aN NaN	
CoverageClass_No roof or walls:I			0	0 N	IaN NaN	
CoverageClass_Roof 1 walls:Locate			0	0 Na	N NaN	
CoverageClass_Roof 3 walls:Locate	ionType_Urba	an	0	0 Na	N NaN	

CoverageClass_Roof 4 walls:LocationType_Urban	0	0	NaN	NaN
CoverageClass_Roof no walls:LocationType_Urban	0	0	NaN	NaN

Number of observations: 40, Error degrees of freedom: 18 Reference groups:

CoverageClass - No roof and 1 wall

season - Dry

LocationType - Rural

Mean_CO2:season – Mean_CO2:Dry

CoverageClass:LocationType - no roof and 1 wall:Rural

Root Mean Squared Error: 0.346

R-squared: 0.901, Adjusted R-Squared 0.786

F-statistic vs. constant model: 7.83, p-value = 2.48e-05

Figure S10: Residuals of Equation 8 by fitted values. RMSE=0.35.

References:

[1] Chakrabarti, B.; Fine, P.M.; Delfino, R.; Sioutas, C. Performance evaluation of the active-flow personal DataRAM PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements. *Atmospheric Environment* **2004**, *38*, 3329–3340.

[2] Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. *Aerosol Science and Technology* **2015**, 49, 1063–1077