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Abstract: In this contribution, the authors present their preliminary investigations into modeling
the rainfall–runoff generation relation in a large subtropical catchment (Jiulong River catchment)
on the southeast coast of China. Previous studies have mostly focused on modeling the streamflow
and water quality of its small rural subcatchments. However, daily runoff on the scale of the whole
catchment has not been modeled before, and hourly runoff data are desirable for some oceanographic
applications. Three methods are proposed for modeling streamflow using rainfall outputted by the
Weather Research Forecast (WRF) model, calculated potential evaporation (PET), and land cover
type: (i) a ridge regression model; (ii) NPRED-KNN: a nonparametric k-nearest neighbor model
(KNN) employing a parameter selection method (NPRED) based on partial information coefficient;
(iii) the Hydrological Simulation Program-Fortran (HSPF) model with an hourly time step. Results
show that the NPRED-KNN approach is the most unsuitable method of those tested. The HSPF
model was manually calibrated, and ridge regression performs no worse than HSPF based on
daily verification, whilst HSPF can produce realist daily flow time series, of which ridge regression
is incapable. The HSPF model seems less prone to systematic underprediction when replicating
monthly-annual water balance, and it successfully replicates the baseflow index (the flow intensity)
of the Jiulong River catchment system.

Keywords: rainfall–runoff; numerical model; ridge regression; NPRED-KNN; HSPF

1. Introduction and Motivation

The Jiulong River (JLR) runs 258 km through a subtropical catchment situated at 24.2–25.8◦

N, 117–118◦ E in Fujian Province, on the southeast coast of China (Figure 1), covering an area of
14,700 km2. The JLR consists of two major branches: North Stream (Bei’Xi) and West Stream (Xi’Xi)
(Figure 3). The annual average runoff of the catchment is 1.2 × 1010 m3, with over two-thirds of the
total runoff contributed by the North Stream. The catchment shows significant intra-annual unevenness
in precipitation, as approximately 70% of the total runoff occurs during April–September due to
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typhoon and tropical storm events. The catchment is largely rural, where over 60% of the total area is
woodlands [1].Atmosphere 2018, 9, x FOR PEER REVIEW  3 of 23 

 

 

Figure 1. Location of the Jiulong River (JLR) watershed (the portion upstream of the Pu’nan gauge 
station); the blue and red lines present the river and ridge, respectively. 
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(precipitation, 2 m temperature) are provided by the Fujian Marine Forecast Institute 
(http://www.fjmf.gov.cn). Note that there are some instances after the year 2015 where the WRF 
model failed to receive the background field information; hence, some values are missing (5% of the 
total data amount) from the WRF dataset. For these dates, the WRF rainfall and temperature data are 
replaced by the ERA-5 (European Centre for Medium-Range Weather Forecast Reanalysis-5, or 
ECMWF-Reanalysis5) hourly reanalysis [24]. ERA-5 is the state-of-the-art global weather reanalysis 
dataset developed by the European Centre for Medium-Range Weather Forecast, which assimilates 
a large number of historical observations into ECMWF’s model outputs through the 4D-VAR 
technique. The dataset has a temporal resolution of 1 h and a spatial resolution of 31 km [24,25], and, 
to our knowledge, it is probably the only global reanalysis dataset with a 1-hour temporal resolution. 
To accommodate the 0.2° resolution of the WRF model output, nearest-neighbor resampling was 
applied to the ERA-5 dataset. Also, in order to compare the model with observations, two 
meteorological stations’ data were selected: Zhangping (ZP; an upstream station near the source of 
the JLR) and Xiamen (XM; a station representative of the lower stream, coastal conditions). During 
2010–2015, temperature measurements were usually taken at 6-hour intervals; from 2016 onwards, 
the temperature was measured every 3 h. For the whole period, the rainfall data were recorded every 
6 h (total precipitation during the previous 6 h). The meteorological observations were downloaded 
from www.rp5.ru. 

The river runoff data used in this paper were measured at 08:00 every day at the Pu’nan gauge 
station in the lower course of the JLR, and the time range is 2010–2017. The runoff observation data 
were download from http://xxfb.hydroinfo.gov.cn/ssIndex.html. 

The HSPF model, which is a semi-distributed hydrologic model, also requires topographic input 
for subcatchment and stream network delineation. The void-filled SRTM30 digital elevation model 
(DEM) [26], which is a combination of the data sourced from the Shuttle Radar Topography Mission 
and the previous U.S. Geological survey’s GTOPO30 dataset [27], was employed in the current study, 
as it is probably the publicly available global topography dataset with the highest resolution. The 
land cover information required by HSPF is based on MODIS’ MCD12 product [28] and Global 
Manmade Impervious Surface (GMIS) dataset v.1 ([29]; 
http://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1). 
  

Figure 1. Location of the Jiulong River (JLR) watershed (the portion upstream of the Pu’nan gauge
station); the blue and red lines present the river and ridge, respectively.

Previous research on JLR hydrology has mainly focused on the water quality [2] and land
use impact [1], and models that compute daily or monthly total runoff suffice for these purposes
(e.g., AnnAGNPS (Annualized Agricultural Non-Point Source) used in [2]). However, for other
purposes, runoff with finer temporal resolution is more preferable. Examples include those where
the timing of the freshwater runoff is important, such as when providing boundary conditions for
estuarine dynamic models for the study of estuarine stratification [3,4] and determining the interaction
between fluvial flood and storm surges [5]. Other applications for which hourly runoff input is
desirable include harmonic analyses of estuarine tides influenced by river runoff [6,7]. The main
intention of this work is to investigate how useful a rainfall forecast of limited accuracy (but readily
available to ocean modelers) obtained using operational Weather Research Forecast (WRF) models
are for modeling the (hourly) streamflow of the JLR catchment. An example of using an ensemble
WRF rainfall forecast for TOPMODEL (TOPography-based Hydrological MODEL) can be found in [8].
In our work, as no ensemble or probabilistic technique is used for improving WRF output quality,
the relatively large deviation of model outputs from observations can be a critical source of errors in
the streamflow hindcast; so, this issue will be briefly and qualitatively discussed.

Here, we attempt to compare three approaches to modeling the rainfall–runoff generation in the
JLR catchment: (1) ridge regression, (2) k-nearest neighbor regression employing precipitation output of
the Weather Research and Forecast model (WRF) and the computed potential evapotranspiration, and (3)
the Hydrological Simulation Program-Fortran (HSPF) model with hourly output. The application of the
first approach was inspired by the preliminary multivariate linear regression (MLR) analysis, and the
application of MLR to streamflow forecasting can be found in [9]. The second approach was proposed by
Lall and Sharma [10] and has been widely adopted as a nonparametric method for streamflow prediction
and disaggregation [11–13] (the NPRED-KNN (k-nearest neighbor) package can be downloaded from
http://www.hydrology.unsw.edu.au/download/software/npred). HSPF has also been widely adopted
for hydrological modeling of large catchments, not only in the United States [14–16] where the toolkit
was developed but in other countries as well (e.g., China: [17–20]). It is free, supports hourly output,
and has a semi-distributed, physically based routing component (with channel geometries inferred from
topography data), making it applicable for modeling complex, large catchments. Although the models

http://www.hydrology.unsw.edu.au/download/software/npred
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can only be compared with the daily measurements taken at the Pu’nan gauge station, all these methods
are easily extensible to hourly outputs.

MLR has been previously implemented for some small and (or) semi-arid watersheds smaller
than 1000 km2 ([21,22]). Here, as the regression technique was applied to a larger, humid, and heavy
watershed (thus having more diverse and complex features than the semi-arid ones), more predictors
were required, introducing multicollinearity to the problem. To deal with multicollinearity, ridge
regression was adopted.

The NPRED-KNN method adopted in this work is intended to be an example of a nonparametric
soft computing strategy. Other alternatives include combining machine learning techniques (e.g., artificial
neural network (ANN), ε− support vector machine with a nonlinear kernel) with some time series
decomposition/spectral analysis methods (e.g., singular spectrum, empirical mode decomposition) ([9,23]).
Given the scarcity of data and previous study of JLR streamflow simulation, as well as the fact that we
are focusing on the feasibility of using the less accurate but readily available rainfall simulation for runoff
estimation, at this stage, we would like to keep things simple and rely more on some less sophisticated
techniques (e.g., ridge regression, KNN). The majority of the paper deals with the methodology we adopted
for modeling, followed by the presentation and comparison of model results. A brief discussion on the (1)
computation of baseflow index using HSPF output and (2) the implication of the limited input rainfall
accuracy is provided.

2. Data and Methodology

The data sources for building these models are listed in Table 1. The WRF model outputs
(precipitation, 2 m temperature) are provided by the Fujian Marine Forecast Institute (http://www.
fjmf.gov.cn). Note that there are some instances after the year 2015 where the WRF model failed to
receive the background field information; hence, some values are missing (5% of the total data amount)
from the WRF dataset. For these dates, the WRF rainfall and temperature data are replaced by the
ERA-5 (European Centre for Medium-Range Weather Forecast Reanalysis-5, or ECMWF-Reanalysis5)
hourly reanalysis [24]. ERA-5 is the state-of-the-art global weather reanalysis dataset developed by the
European Centre for Medium-Range Weather Forecast, which assimilates a large number of historical
observations into ECMWF’s model outputs through the 4D-VAR technique. The dataset has a temporal
resolution of 1 h and a spatial resolution of 31 km [24,25], and, to our knowledge, it is probably the
only global reanalysis dataset with a 1-h temporal resolution. To accommodate the 0.2◦ resolution of
the WRF model output, nearest-neighbor resampling was applied to the ERA-5 dataset. Also, in order
to compare the model with observations, two meteorological stations’ data were selected: Zhangping
(ZP; an upstream station near the source of the JLR) and Xiamen (XM; a station representative of the
lower stream, coastal conditions). During 2010–2015, temperature measurements were usually taken
at 6-h intervals; from 2016 onwards, the temperature was measured every 3 h. For the whole period,
the rainfall data were recorded every 6 h (total precipitation during the previous 6 h). The meteorological
observations were downloaded from www.rp5.ru.

Table 1. Data sources.

Precipitation WRF model output * + ERA5 Reanalysis **

2m Temperature WRF model output + ERA5 Reanalysis
Inputs for hourly
PET calculation

2m Dew Point Temperature ERA5 – Reanalysis
Digital Elevation Model Data SRTM 30 (Resolution: 90 m)

Flowrate at Pu’nan Gauge Station Observation

* Hourly data, 0.2◦ grid; ** hourly data, 31 km resolution, nearest-neighbor—resampled to 0.2◦.

The river runoff data used in this paper were measured at 08:00 every day at the Pu’nan gauge
station in the lower course of the JLR, and the time range is 2010–2017. The runoff observation data
were download from http://xxfb.hydroinfo.gov.cn/ssIndex.html.

http://www.fjmf.gov.cn
http://www.fjmf.gov.cn
www.rp5.ru
http://xxfb.hydroinfo.gov.cn/ssIndex.html
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The HSPF model, which is a semi-distributed hydrologic model, also requires topographic input
for subcatchment and stream network delineation. The void-filled SRTM30 digital elevation model
(DEM) [26], which is a combination of the data sourced from the Shuttle Radar Topography Mission
and the previous U.S. Geological survey’s GTOPO30 dataset [27], was employed in the current study,
as it is probably the publicly available global topography dataset with the highest resolution. The land
cover information required by HSPF is based on MODIS’ MCD12 product [28] and Global Manmade
Impervious Surface (GMIS) dataset v.1 ([29]; http://sedac.ciesin.columbia.edu/data/set/ulandsat-
gmis-v1).

For all three models, only the discharge at the Pu’nan gauge station was computed. The North
Stream (Bei’Xi) that drains into this station accounts for more than two-thirds of the total runoff
generated in the catchment, so it is of greater significance to the estuarine and ecological processes in
Xiamen Bay. A flowchart of our methodologies is presented below in Figure 2.
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2.1. Data Preprocessing

2.1.1. Comparison with Observations

The WRF model tends to underestimate the temperature by 1.5 K and 2.35 K (after replacing
missing values with ERA-5 reanalysis) for XM and ZP, respectively, and the root-mean-square error
(RMSE) values are 2.75 K and 3.43 K.

Defining <0.1 mm (6-h total) as no rainfall, Tables 2 and 3 reveal that the WRF model significantly
overestimates rainfall occurrence, and the model performance is slightly better at the inland ZP station
(76% false positive vs. 82% false positive at XM).

Table 2. Rainfall occurrence (Xiamen (XM) and Zhangping (ZP)), Weather Research Forecast (WRF)
outputs during 2010–2015. Obs/Mdl_dry means no rainfall in observation/model.

Obs_dry Obs_wet Mdl_accuracy

Mdl_dry_XM 6396 1167 85%
Mdl_wet_XM 3133 684 18%
Mdl_dry_ZP 5386 1271 81%
Mdl_wet_ZP 3565 1110 24%

http://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1
http://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1
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Table 3. Rainfall occurrence (XM and ZP), ERA-5 (European Centre for Medium-Range Weather
Forecast Reanalysis-5).

Obs_dry Obs_wet Mdl_accuracy

Mdl_dry_XM 5803 1027 85%
Mdl_wet_XM 4306 901 17%
Mdl_dry_ZP 5389 1262 81%
Mdl_wet_ZP 4075 1266 24%

The WRF model calculates annual total rainfall amounts of 1950 mm and 2090 mm at XM and ZP,
respectively, while the observed values are 1381 mm and 1694 mm, indicating relative overestimates of
41% and 24%. The ERA-5 product overestimates XM’s annual rainfall as 1656 mm (a 20% difference
from observation), while it underestimates ZP’s annual rainfall as 1490 mm (a 12% underestimation).
In the WRF output, the general rainfall pattern—increasing from the coast toward the inland—in
southern Fujian Province is replicated. ERA5’s underestimation of inland rainfall might be attributable
to the coarser spatial resolution in ECMWF’s global models, which could lead to underrepresentation
of the orographic effect in the inland of Fujian Province. As the gaps in WRF outputs equate to only 5%
of the data and were filled with the ERA-5 product, the dataset’s characteristics are still dominated by
the WRF output. The RMSE values of the WRF rainfall amount are 6.94 mm at XM and 6.53 mm at ZP;
for the ERA-5 reanalysis, the RMSEs are 5.60 mm (XM) and 5.27 mm (ZP). The WRF (ERA-5) mean
bias (Mdl-Obs) of the wet period (periods during which 6-h rainfall > 0.1 mm is observed) rainfall
amount is −4.49 mm (−4.82 mm) for XM and −3.78 mm (−0.14 mm) for ZP. The underestimation
of average 6-h rainfall intensity is consistent with our expectation, as the modeled 6-h wet periods
greatly outnumber the observed, while the total annual rainfall is not proportionally overestimated.
The implications of the limited accuracy of the datasets are discussed later (Section 4.2).

2.1.2. Comparisons between WRF Rainfall and ERA-5 Reanalysis Product

The consistency between the rainfall occurrences in these two datasets is compared in Table 4.
The rainfall amounts are aggregated on a 6-h basis, and a 6-h total < 0.1 mm is defined as “dry”.
The limited inherent accuracy (accurate to 0.01 mm) of the two products suggests that defining and
comparing the hourly occurrence may not be very meaningful.

Table 4. Rainfall occurrence consistency between WRF and ERA5.

ERA5_dry_XM ERA5_wet_XM ERA5_dry_ZP ERA5_wet_ZP Pct. of Agreement

WRF_dry_XM 6219 1935 — — 76%
WRF_wet_XM 799 3435 — — 81%
WRF_dry_ZP — — 4424 2733 62%
WRF_wet_ZP — — 598 4633 89%

The hourly collinearity of the two datasets is represented by Pearson’s R coefficient, which ranges
between 0.21 and 0.28 across the selected 28 locations. Given the large sample size (74,328 samples),
this indicates highly significant yet relatively weak hourly collinearity.

These comparisons suggest a moderate agreement between the two datasets. As there are not many
reanalysis products with such a high temporal resolution, using ERA-5 may still be a justifiable choice.

2.1.3. Calculation of PET

Using modeled downward shortwave radiation, temperature, ERA-5 dewpoint temperature,
and ERA-5 wind speed, PET was calculated. The relatively large errors in the input datasets may
not justify more complex methods, so the simple Priestly–Taylor equation was adopted [30,31].
The constant α in the equation was set at its classic value of 1.26.
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An attempt was made to compute PET using the standard Penman–Monteith method. However,
the final result is too small: mostly under 800 mm/year. The actual annual evapotranspiration in the
catchment is about 1000 mm over the water surface and 700–800 mm over the soil surface, according
to the hydrology bureau websites of the counties in the JLR watershed.

2.2. Watershed Delineation

The 90 m resolution void-filled DEM data for the study area were derived from the SRTM30
dataset. Using the TauDEM program [32] which is packaged with the HSPF program, the watershed
boundary and subcatchments were delineated (Figure 3). In Figure 3a, the minimum contribution
area for a subcatchment is set as 1000 km2, which is used for interpolating model-output rainfall
and computed evapotranspiration using the Thiessen Polygon method onto the centroids of the
subcatchments (“Delineation 1”). In Figure 3b, the threshold is lowered to 100 km so that smaller
tributaries can be delineated (“Delineation 2”), which was found to improve the performance of the
HSPF model.
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Figure 3. Two versions of watershed delineation. (a) Coarser delineation for data interpolation;
(b) finer delineation for Hydrological Simulation Program-Fortran (HSPF) modeling. The three yellow
subcatchments (SUB0, SUB12, and SUB4) contain the locations that are identified as crucial for runoff
generation, and the WRF model output at these points (little black dots) within these sub-basins was
subsequently interpolated utilizing the Thiessen Polygon method onto the centroids (red dots) of these
sub-basins as HSPF input. See Section 2.4.2 “Preparing HSPF Input” for details.

The limited functionality of HSPF v12.2 (we had problems importing datasets containing more
than 500,000 float numbers as input) and the large amount of data imply that only three meteorological
stations (WRF grid points) can be selected in the model. These stations are assumed to be located at
centroids of the selected subcatchments containing the grid points that are more critical for outflow
generation. The average rainfall of the subcatchment was interpolated onto the centroid using the
Thiessen Polygon method. The critical locations were first selected through MLR; the meteorological
data interpolated at the centroids of the subcatchments containing these locations were further assessed
for their usefulness as runoff predictors by using the ridge regression method.
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2.3. Multiple Linear Regression (MLR)

We first used multiple linear regression (MLR) to identify the WRF output grid points that are
critical for runoff generation. Due to this limitation, and considering that the source waters are
physically important for flow generation, it is SUB0, rather than the two “critical” subcatchments
(Figure 6) lying between SUB0 and SUB12 (Figure 3a), that was selected as the upper-reach critical
location; as both SUB0 and SUB12 were selected through spatial auto-correlation, these two smaller
subcatchments’ contributions could more or less be represented by SUB0 and SUB12. For this study,
we used 28 rainfall variables as explanatory variables, and, due to the relatively close spatial distance
between each precipitation grid, their performances have certain similarities, so there may be strong
collinearity among explanatory variables.

There is a lag in time from the occurrence of precipitation to the increase in the flow; this lag is
referred to as the delay time. Also, the increase in streamflow is related to the accumulated precipitation
during the previous time period. Hence, precipitation at different times has a different contribution to
the increase in river flow. So, a weighting factor should be applied to precipitation at different times,
and the selection of the weighting factor is related to the specific river basin. The following empirical
formula developed for eastern New South Wales, Australia, was used to obtain the first estimate of the
time of concentration according to the catchment area [33].

T = 0.76A0.38 (1)

where A denotes the watershed area, and T is the delay time. This method results in an estimate of
29 h, which is quite close to the values based on lag-correlation analysis (i.e., the lag at which the
correlation is maximized; most of the lines in Figure 4 reach a maximum at ~25 h and then level off)
shown in Figure 4. For the weighting method, we used the bi-square function. The expression of the
bi-square function is

W = (1 − (t/T)2)
2
,−T ≤ t ≤ T (2)
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T and W refer to the delay time at the maximum weight and the weight value, respectively, and the
schematic diagram of W is in Figure 5. Given 28 locations, if the rainfall amount is temporally weighted,
and a lag-time of 30 h is chosen, then for each time step, 28 × 30 = 840 explaining variables are involved.
The weighting scheme can capture the temporal characteristic of the system and greatly simplify the model.
The weighting kernel concept and the bi-square kernel is borrowed from the Geographical Weighted
Regression (GWR) method, though, in GWR, as a weighted least-square technique, the weighting is
applied to the error covariance matrix (so as to emphasize that certain observed samples are more
“important/relevant” than the others). The advantage of the bi-square kernel is that the parameter T can
be assigned a relatively clear and simple physical interpretation: lag time. Another widely used kernel,
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the Gaussian kernel, does not decay to zero beyond the maximum lag, and its bandwidth parameter cannot
be so easily interpreted.
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2.4. Statistical Runoff Hindcast Models

2.4.1. Ridge Regression

Based on the results from MLR, locations critical for runoff generation can be identified. To justify
the three selected locations’ efficacy in predicting the discharge at the Pu’nan gauge station, and to
contrive some alternative statistical models with which the HSPF model can be compared, an improved
ridge regression model and a KNN model were built, solely using the meteorological data of the three
sub-basins containing the critical locations (see Figure 6 and Section 2.4 for details). Ridge regression is
a method widely used for dealing with high-dimensional independent variable matrices with high
multicollinearity. The theories and the auto-selection of the ridge parameter can be found in the user
manual of the R package “ridge” ([34]).

For better characterizing the temporal and spatial rainfall/evaporation patterns, some indices
were constructed for the three critical locations (one near the source of the JLR, one in the middle
stream, and one near the outlet; see Figure 3a). A similar design of such parameters can be found
in [21], and the inclusion of certain parameters, such as the parameters accounting for the temporal
and spatial distribution of rainfall, was inspired by [21].

1. Total precipitation during [Tcurr − L − 0.5L, Tcurr − L + 0.5L], where L is the time lag. This is
an indicator of the short-term rainfall amount, and ±0.5 is included to account for the uncertainty
in lag.

2. Relative centroid location of the short-term rainfall hyetograph (PrecCentr). At time tI, moving
the time origin to tI-L-0.5L, the centroid of the recent rainfall during [tI − L − 0.5L, tI − L + 0.5L]
is defined as:

PrecCentrI =
ΣL

j=1tjR(j)

LΣL
j=1R(j)

, 0 ≤ PrecCentrI ≤ 1 (3)

This is an approximate indicator of the temporal pattern of the recent rainfall. A larger PrecCentr
value corresponds to more tail-loaded recent rainfall events.

3. Total precipitation in the previous 30 days. This is an indicator of the “long-term” wetness
condition of the system; it may have some implication for the operations of the dams on the river.

4. The ratio between the previous 3-day total precipitation and previous 7-day total precipitation.
This parameter describes the recent soil moisture condition in the system. For evaporation,
these four parameters are computed in a similar way, except that the “centroid” is computed for
the evaporation in the preceding 30 days.
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Given the nonlinearity of the rainfall–runoff generation relation, the interactions between the
3 × (4 × 2) = 24 variables are also included in the model (but the quadratic of each variable itself is left
out), so, in total, 300 variables were entered into the ridge regression.

Three different configurations of the model were tested, and the above-listed parameters are
those that were included in all the experiments; the experiment including only these as the explaining
variables is referred to as the “Base Case”. Two more configurations were used; namely, Configurations
2 and 3. Configuration 2 is an experiment that includes the distance between the spatial centroid of
the total precipitation during [Tcurr − L − 0.5L, Tcurr − L + 0.5L] and the Pu’nan gauge station as an
extra explaining variable. This distance is normalized by the distance between Sub0’s centroid and
the gauge station, so it ranges between 0 and 1; its interactions with other variables are considered.
Configuration 3 involves seasonality: as we have seen in the MLR section, the regression’s performance
seems to depend on the season being modeled. Choosing Spring as the base case, three more binary
dummy variables standing for Summer, Autumn, and Winter are included in the third experiment.

The daily flow rates at 08:00 were first regressed against these predictors using the linear ridge
function in R’s “ridge” package. A bootstrapping procedure was applied for calibration and verification.
The ridge regression was run 50 times, each time using a randomly chosen 60% (number of samples:
N = 2142 × 0.6 = 1285) of the whole dataset for training, and the remaining 40% (N = 857) was used
for verification. In addition to this random split between the calibration and the verification sets,
the models were also calibrated using the first 60% portion of the input and validated against the
other 40%; this is later referred to as “continuous hindcast”, and the previous verification is referred
to as “random hindcast”. Firstly, in practice, “continuous hindcast” is a more common application
of rainfall–runoff models. Secondly, for randomly split sets, it is likely that the samples adjacent to
a verification data point are included in the calibration set. Given the auto-correlative nature of the
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datasets, predicting yi+1 using a model trained using xi and yi might inflate the result, making it
appear better than it would be if xi and yi were not in the calibration set.

2.4.2. NPRED and K-Nearest Neighbor Regression (KNN)

NPRED is an R package developed by Sharma et al. [35]. Basically, the NPRED package implements
two methods: (i) nonparametric predictor identification (NPRED) using partial information (see below for
expression) defined in [30]; (ii) modified k-nearest neighbor regression [10], with the samples weighted
by partial weights derived from partial information coefficients (PIC) [35]. Here, the NPRED-KNN
method is adopted as a nonparametric approach to statistical modeling based on kernel density
estimation. More theoretical details can be found in [35] and [36]. However, these methods are highly
computationally intensive (e.g., when ~50 independent variables are involved, it takes about 10 h to
finish 50 runs of the NPRED-KNN algorithm using this package on a laptop with a 2.5 GHz, 4-core
Intel(R) Core(TM) i7-4710MQ CPU); it is impractical to feed more than 300 independent variables into this
algorithm. As an expedient solution, for each run of the ridge regression’s calibration, the variables with
regression coefficients that are significant at 5% were recorded; then, the variables that were recorded
at least 45 times (out of 50) were passed on to the NPRED-KNN algorithm, which was similarly run
50 times. In [9], stepwise linear regression was adopted for the similar purpose of selecting inputs
for an ANN model. The division of the calibration/verification subsets and the distinction between
“random hindcast” and “continuous hindcast” both follow the same logic as in ridge regression.

2.5. HSPF Model

2.5.1. Model Description

HSPF (Hydrological Simulation Program-Fortran) is a semi-distributed hydrological model
developed by the Environmental Protection Agency (EPA), USA. The model simulates the surface and
soil moisture in the watershed on pervious and impervious surfaces separately, and it then routes the
channel flow to the outlet using kinematic wave routing (Manning’s equation is used) by estimating
channel width, depth, and slope from digital elevation model (DEM) data assuming Manning’s n.
The overland flow is routed into the main channel by assuming the average length and average slope
connecting the pervious/impervious land surface to the channel. HSPF version 12.2 was applied in
this study.

The basic inputs for the hydrological module of HSPF include meteorological data (PET; land
cover types and their associated impervious percentages). Key parameters in the model include
UZSN, LZSN, DEEPFER, INTFW, IRC, AGWRC, LZEPT, CEPS, etc. The first two define the nominal
upper/lower zone storage of the soil; DEEPFER denotes the loss to the deep groundwater; INTFW
controls how much of the direct runoff takes the form of interflow, and IRC determines interflow’s
recession rate; AGWRC is the baseflow recession, which can be estimated from observation data.
LZEPT is the lower zone evapotranspiration rate, which usually varies monthly according to the type
and growth stage of the vegetation. More details of the model structure and routing methods can be
found in the HSPF v12.2 user manual [37].

Due to the lack of high-quality land use and groundwater survey data, the model calibration
started with recommended values of the parameters and estimated AGWRC (0.985–0.992 based on
the baseflow separated from the observation). The calibration was done manually, guided by data
analyses and the recommended parameter ranges in [38], and the result is expected to be only a very
crude approximation of the actual parameters.

2.5.2. Preparing HSPF Input

HSPF 12.2 is distributed with free hydrological GIS software, TauDEM [32]. The sub-basins and
the stream link network can be automatically delineated using TauDEM. Then, each sub-basin is
assigned the meteorological station closest to its centroid (referred to as “Model Segmentation”).
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As mentioned in Section 2.4, due to the large amount of the hourly input data (~8.5 years, 74,328 h),
no more than three “meteorological stations” (i.e., the locations where we have WRF outputs) can be
selected in our application. To overcome this limitation and achieve a balance between reducing the
amount of data and describing the spatial heterogeneity in rainfall, three sub-basins in Delineation 1
(Sub0, Sub4, Sub12) that contain the critical locations were selected, and their sub-basin-scale average
rainfall/PET were computed by interpolating the data points within them using the Thiessen Polygon
method. A more relevant approach for such a mountainous area may be Krigging regression, which
may account for the elevation and the sloping direction of a pixel, yet we only have 28 spatial grids,
making the training of such a model impractical. Other non-regression methods may share the same
problem with the Thiessen polygon; to keep things simple, we stuck to this method for this study.

From MODIS and GMIS data, we estimated the areal proportion of each land cover type and
impervious percentage of each land cover type. Each pixel in the MCD12 product (labeled with
a certain type of land cover) measures 500 × 500 m2; there are about 278 GMIS pixels, which are
30 × 30 m2 each. Each GMIS pixel is labeled as pervious or impervious, so the impervious percentage
of such a MODIS pixel can be estimated. Thus, on a subcatchment or whole-catchment scale, the total
impervious percentage of the (sub)catchment and the average impervious percentage of each land
cover class (assuming all the samples for computing this average come from the same population,
and the standard deviation of the estimate of this average can also be estimated) can be derived.
In total, impervious surface accounts for 19% of the whole watershed area; the average impervious
percentage of each land cover type is shown in Table 5.

Table 5. Land cover type.

Proportion Imp

Water body 0.08% 33% ± 88% (n = 42)
Permanent Wetland 0.01% Unavailable from GMIS

Forest 37.98% 15% ± 5% (n = 20,308)
Grassland 55.56% 22% ± 0.4% (n = 29,709)
Cropland 4.34% 14% ± 2% (n = 2325)

Urban 2.02% 40% ± 2% (n = 1079)

Note that this is only a very rough estimate of the proportion of the impervious surface. Some
data presented here are not consistent with previous studies [1,39], e.g., overestimation of grassland
coverage. The impervious percentage for water body in Table 5 is obviously unreasonable. In our
application, it could either be set to 0 (artificial lakes, etc. that do not drain into the JLR) or 1 (dams
and channels belonging to the JLR stream network). Since it is a very small proportion of the whole
watershed area, setting it to 0 or 1 is not likely to have significant impacts, so here it was set to 0.

2.6. Verification Methods

The models were assessed using R2 (Equation (4)), the Nash–Sutcliffe model skill (NSE), and the
percentage bias (PBIAS; Equation (6)) from [40], as some empirical guidelines on their interpretations
were proposed in [40], and, at this stage, we do not particularly focus on low/high flow characteristics,
for which log-transformed/squared error statistics may be preferred:

R2 =

 ∑N
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PBIAS =
ΣN

i=1(Y
mdl
i − Yobs

i )

ΣN
i=1Yobs

i
× 100% (6)

The models were assessed according to the guidelines in [40], in which, for streamflow,
a “satisfactory performance” is defined as NSE > 0.50 and PBIAS within ±25%. In some references ([14]),
for daily flow rate, a necessary condition for satisfactory model skill is R2 ≥ 0.6.

For HSPF model output, the baseflow index (BFI) was also computed and compared with the
BFI estimated from the observation data. The computation of BFI follows the method introduced
in [41], where the Hollick filter algorithm is applied 1000 times, each time using a filter parameter
randomly chosen from [0.9,0.99], and the final BFI estimation is taken to be the median or the mean
of the 1000 runs; each run consists of applying the filter to the flow rate data in alternate directions
for an odd-number of times (n=3,5,7, . . . “loops”). In [41], it is recommended that the algorithm is
looped for 3 times (n = 3) if the daily flow rates are used and for 9 times (n = 9) if the hourly input is
involved. This overcomes the difficulty of filter parameter selection in the conditional method, where
only one single run of filtering is implemented, and the method in [41] could reduce the uncertainty
associated with filter parameter selection through averaging. The authors in [42] suggest choosing
filter parameters on the basis of expert geological knowledge of the study area, and that parameters
thus chosen can outperform those selected by machine learning techniques (since they attempt to
optimize total outflow at the cost of less realistic baseflow estimation); however, due to the limited
access to the geological data of the region, we preferred to keep the approach more data-driven at this
stage. HSPF output will be aggregated using different methods ((i.) Daily average; (iii.) Hourly raw
output) before the computation of BFI, and the n value’s and the aggregation method’s impacts on the
estimated BFI will be briefly discussed.

3. Results

3.1. MLR

A comparison of the three delay methods is shown in Table 6.

Table 6. Comparison of the three delay methods.

Delay Method No Delay Point Delay * Bi-Square

R2 0.0116 0.1744 0.4088

* means the correlation between the runoff and the precipitation of previous time steps but no weighting is applied.

It can be seen from Table 6 that the explanatory ability of precipitation regarding flow is
significantly improved by using the bi-square weighting method. We also used the VIF (variance
inflation factor) test method to check multicollinearity; generally, VIF > 10 is deemed to indicate
strong collinearity, and the results show that only two variables have a VIF value of less than 10,
so the collinearity is strong. However, the regression here is part of a preliminary investigation, so the
problem of collinearity is not rectified for the time being.

Also, the explanatory ability of rainfall may vary for different seasons, so we conducted MLR for
the four seasons, individually. By comparing the corresponding R2 of the four seasons, the contribution
of precipitation to runoff in each season was determined. The results are shown in Table 7.

Table 7. R2 for different seasons.

Season Spring Summer Autumn Winter

R2 0.3875 0.5136 0.3411 0.2347

According to Table 7, the values of R2 for summer and spring are larger, while those for autumn
and winter are smaller. It suggests either that in different season the mechanism of runoff generation
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is different (which is possible, given the classical “variable source” hypothesis and the size of the
catchment) or that the over-predicted rainfall occurrence and under-predicted intensity are more
detrimental to the MLR predictions of Spring and Winter runoff. This indicates that, in different
seasons, the mechanism of runoff generation differs. MLR’s inadequacy in modeling slow-varying
baseflow may be on account of its poorer performance in winter and spring (i.e., the relatively dry
seasons). The baseflow index (BFI) was subsequently calculated from the observation and HSPF
output, as shown in another section.

Based on this regression, different variables have different significance levels, so, for each season,
we selected variables with a high significance (p < 0.01), as shown in Figure 6.

The seasonal variability in the selected locations (based on the p-value) seems to reflect the concept
of the variable source [43,44], though further catchment-scale investigation is required. To distinguish
the results here from those obtained for a well-established variable source framework, for the time
being, we do not refer to these locations as “hydrologically sensitive areas”; rather, we call them simply
“critical locations”.

3.2. Statistical Models: Ridge Regression and NPRED-KNN

3.2.1. Ridge Regression (RR)

The verification results—both “random” verification and “continuous” verification—of the three
model configurations are shown in Table 8.

Table 8. Performance metrics of the ridge regression (RR) models—Verification period (numbers
outside of brackets are the medians of 50 random verification runs (for PBIAS, the minimum, maximum,
and the median are listed); bracketed numbers are metrics of the continuous verification).

R2 PBIAS (%) NSE

Base Case 0.41 (0.46) −9.51, 10.71, median = −0.38 (−10.92) 0.40 (0.42)
Config 2 0.41 (0.47) −9.59, 10.92, median = −0.49 (−11.19) 0.40 (0.42)
Config 3 0.41 (0.46) −9.50, 10.73, median = −0.40 (−11.46) 0.40 (0.41)

The three configurations make little difference in regard to the three performance metrics. None
of them yield a set of satisfactory metrics (R2 > 0.6, NSE > 0.5, |PBIAS| < 25%), and the RR method
systematically underestimates the flow rates by ~10% in the continuous verification. The time series
hindcasted by RR is plotted in Figure 8. As different configurations display similar skills, only the Base
Case configuration is further examined and discussed, as it is the simplest configuration of the three.

The histograms of the three metrics, based on the random verification runs, are shown in Figure 7
for the Base Case.

For the Base Case, the independent variables whose regression coefficients are significant for
over 90% of the random verification runs (at least 45 out of 50) were selected as the critical ones.
They were used as input predictors for the KNN model, and a smaller ridge regression model, RR2,
was constructed using them as explaining variables. In total, 35 out of 325 variables were selected.
The verification performance metrics are listed in Table 9.

Compared with RR’s metrics in Table 8, the model performance metrics in Table 9 are slightly
improved, though the flow rates are still systematically underestimated. The verification results of
RR, RR2 outputs, and observations are graphed in Figure 8. Visual inspection suggests that there
is a severe underestimation of the peaks, whilst the timing of the highs and low and the shape of
the recession limbs are better represented than the magnitudes. Further investigation shows that,
when RR2’s verification outputs are multiplied by a factor of 1.10, the PBIAS (NSE) then decreases
(increases) to −3.3% (0.47). This suggests that RR2’s verification outputs are likely to be dominated by
systematic errors.
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For the RR2 model, the flow rates hindcasted in continuous verification were block-averaged
over 30-day window lengths and compared with the block-averaged observations. On this monthly
timescale (n = 38 samples), R2 = 0.65, PBIAS = −15.32%, and NSE = 0.53 (Table 10). As expected,
the systematic underestimation persists, while the other two metrics improve, probably because the
sample size becomes much smaller. We also attempted to generate an hourly hindcast using the RR2
model; however, doing so resulted in a large number of negative values. This is possibly attributable
to the fact that the model was trained using a relatively small training set (~1200 samples), whilst the
hourly test set comprises ~20,000 samples, many of which might contain variable combinations unseen
during the training.
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Table 10. RR2’s verification performance (continuous, monthly; n = 38).

R2 PBIAS (%) NSE

RR2 Model 0.65 −15.32 0.53

3.2.2. NPRED-KNN

The 35 selected predictors of the Base Case were fed into the NPRED-KNN algorithm, but this
method performs badly in verification. The median NSE of the 50 “random hindcast” runs is only 0.02,
and the maximum is 0.26 (Figure 9); R2 is always smaller than 0.30, and the underestimation could be
as high as 50%. This may suggest that the candidate variables preliminarily selected by RR are not
suitable for KNN or that KNN itself is inferior to RR in this application. For “continuous hindcast”,
the NSE of the KNN method is only −0.04, and R2 is 0.07, again indicating that the method might
be inappropriate.Atmosphere 2018, 9, x FOR PEER REVIEW  16 of 23 
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We may conclude that the RR method outperforms the NPRED-KNN model when the 24 variables
and their quadratic interaction terms are entered as predictors. However, the attempt to simulate
hourly runoff using the RR or RR2 model fails due to the large number of hindcast negative values.
This is not very surprising, given the small training set (N = 1285) relative to the large number of
scenarios required in the output (more than 70,000 h); many of the scenarios (i.e., combinations of input
variables) may be absent from the training set, so the model could generate unrealistic predictions in
this case. In later sections, the RR (RR2) model is excluded from discussions involving hourly output.

3.3. HSPF Hydrology Model

The NSE, PBIAS, and R2 of each year are listed in Table 11. For the first 3 years, the model’s poor
performance is attributable to the inaccurate specification of the initial condition, of which we have
very limited knowledge. Excluding the first 2 years, the overall NSE is 0.36, R2 is 0.38, and PBIAS is
1.41% for 2012–2017.

Table 11. HSPF model statistics.

2010 2011 2012 2013 2014 2015 2016 2017 * 2016–2017 2010–2017
RR’s

Verification
Period

NSE −0.01 −1.05 0.11 0.31 0.29 0.22 0.43 0.45 0.45 0.25 0.42
PBIAS −11.26 −12.21 −14.80 17.09 26.91 −15.03 −7.95 4.41 −3.25 −1.45 −1.10

R2 0.31 0.06 0.27 0.53 0.53 0.24 0.44 0.46 0.46 0.38 0.43

* 2017 refers to the period from 01 January 2017 to 30 September 2017.
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Figure 10 displays the simulated and the observed flow rate time series, and Figure 11 shows
the comparison between the empirical cumulative distribution functions derived from the modeled
and the observed daily (08:00) flow rates. The observed average runoff over the simulation period is
283 m3/s, and its modeled counterpart is 279 m3/s, differing by 1.4%. For the average of the lower 50%
flow rates, the model has a −8.91% relative error (111.85 vs. 122.79 m3/s), and the model overestimates
the top 10% flow by 1.84% (983.12 vs. 965.39 m3/s).Atmosphere 2018, 9, x FOR PEER REVIEW  17 of 23 
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The observed values and the model output were also block-averaged on a 30-day scale (a proxy
for ‘monthly’ average runoff). The relevant statistics for the 30-day-averaged values of the RR model’s
verification period are summarized in Table 12.

Table 12. HSPF model skill for monthly average runoff.

R2 PBIAS NSE

0.63 (n = 95) −3.9% 0.60



Atmosphere 2019, 10, 62 17 of 22

When the baseflow separation algorithm described in [41] was implemented on both the model
output and the observations, we easily notice that the model can accurately replicate the BFI (baseflow
index) of the observations (Figure 12).Atmosphere 2018, 9, x FOR PEER REVIEW  18 of 23 

 

 
Figure 12. Baseflow index computed from daily 08:00 HSPF output and observations. 

4. Discussion 

4.1. Baseflow Index (BFI) 

The baseflow index computed using the method in [41] is sensitive to the number of times the 
input data are filtered. In [41], it is recommended that the algorithm is looped three times (n = 3) if 
the daily flow rates are used and nine times (n = 9) if hourly input is involved. However, in Figure 
13a, we can notice that, if daily input is utilized, the separated baseflow time series is still ragged 
when n = 3, and the curve becomes reasonably smooth when n = 5. For hourly inputs (Figure 14), 
when n = 9, the separated baseflow already looks reasonably smooth. The BFIs computed using 
different n values and different timescales are reported in Table 13. Hourly input with n = 9 yields an 
estimation consistent with the case where daily input and n = 3 are used (BFI ~0.60), yet, when n is 
increased, at least for the daily inputs, the BFI decreases. The selection of n could still be subjective, 
depending on the user’s judgment concerning whether the separated baseflow is “smooth” enough. 

In [46], the authors constructed a global map of BFIs based on the observations from 3394 
catchments utilizing a 1-hidden-layer artificial neural network. According to this map (Figure 11 in 
[46]), the BFI of our catchment lies between 0.45 and 0.65. Almost all the values listed in Table 13 
roughly fall into this range (only the 0.67 associated with n = 9, hourly input lies slightly out of this 
range). However, according to Huang’s research in [47], using daily flowrate data, the BFI of JLR 
catchment is found to be greater than 0.70. More experiments, both in-situ fieldwork and numerical 
experiments, may be required for determining the actual BFI of the catchment. 

 
Figure 13. Baseflow extracted from daily averaged HSPF output, looping three times (blue) or five 
times (red) using the method introduced in [41]. When the loop number is set as 3, the separated 
baseflow still looks ragged, possibly contaminated by the “quick flow” (i.e., overland streamflow). 

Figure 12. Baseflow index computed from daily 08:00 HSPF output and observations.

We may conclude that this empirically calibrated HSPF model is only capable of replicating the
monthly average runoff and the slow-varying, long-term baseflow pattern. Seong et al. [12] reported
a framework for combining HSPF with a Shuffled-Complex Evolution algorithm (SCE-UA) [45]
through programming in R. SCE-UA can efficiently help avoid the problem of being trapped in a local
optimum. However, Table 9 in [14] also suggests that the auto-calibrated models may not necessarily
have better performances than the manually calibrated ones.

4. Discussion

4.1. Baseflow Index (BFI)

The baseflow index computed using the method in [41] is sensitive to the number of times the input
data are filtered. In [41], it is recommended that the algorithm is looped three times (n = 3) if the daily
flow rates are used and nine times (n = 9) if hourly input is involved. However, in Figure 13a, we can
notice that, if daily input is utilized, the separated baseflow time series is still ragged when n = 3, and the
curve becomes reasonably smooth when n = 5. For hourly inputs (Figure 14), when n = 9, the separated
baseflow already looks reasonably smooth. The BFIs computed using different n values and different
timescales are reported in Table 13. Hourly input with n = 9 yields an estimation consistent with the
case where daily input and n = 3 are used (BFI ~0.60), yet, when n is increased, at least for the daily
inputs, the BFI decreases. The selection of n could still be subjective, depending on the user’s judgment
concerning whether the separated baseflow is “smooth” enough.

In [46], the authors constructed a global map of BFIs based on the observations from 3394
catchments utilizing a 1-hidden-layer artificial neural network. According to this map (Figure 11
in [46]), the BFI of our catchment lies between 0.45 and 0.65. Almost all the values listed in Table 13
roughly fall into this range (only the 0.67 associated with n = 9, hourly input lies slightly out of this
range). However, according to Huang’s research in [47], using daily flowrate data, the BFI of JLR
catchment is found to be greater than 0.70. More experiments, both in-situ fieldwork and numerical
experiments, may be required for determining the actual BFI of the catchment.
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Table 13. Baseflow index (BFI) computed from hourly and daily streamflow simulation.

HSPF (Daily), n = 3 HSPF (Daily), n = 5 HSPF (Hourly), n = 9 Obs, n = 3 Obs, n = 5

Median of BFI 0.62 0.54 0.67 0.60 0.50

4.2. Implications of the Inputs’ Data Quality: A Brief Qualitative Discussion

As mentioned in Section 2.1.1, the average 6-h wet period rainfall is underestimated in both
the WRF and ERA5 datasets. The empirical cumulative distribution functions (ECDFs) shown in
Figure 15 illustrate more clearly that the rainfall intensity is underpredicted by the model outputs
across all the percentiles (0–98%). This, combined with the more frequent rainfall occurrences in
the two model datasets, may partly explain why the modeled flood peaks are often underpredicted,
and why the minor peaks between two major storm events arise more frequently in the hindcast than
in the observations. The underprediction in the RR2 model seems to be more systematic, as it could be
greatly alleviated by multiplying the RR2 output with a factor of 1.10, thus bringing down PBIAS to
−3.3% and increasing NSE from 0.44 to 0.47. For the HSPF hindcast, the lower PBIAS and lower NSE
suggest that the errors might be more random: the over/underestimations tend to cancel each other
out, while the hindcast generally deviates severely from the true values (thus the low NSE).

Given the large deviation of the modeled rainfall from the real-world observations, the “best” selected
parameters could be different from those that might be inferred from the real-world physical properties
(e.g., experimentally determined soil hydraulic conductivity, etc.). From a Bayesian point of view, this might
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suggest that, when the model calibration is guided by some empirical values (e.g., initializing the parameter
prior distribution with a mean located at the empirical value), the underlying distribution should take
a large variance to account for the large uncertainty induced by the model rainfall’s deviation from the real
world; with properly designed priors, algorithms such as Markov-Chain Monte Carlo (MCMC) [48,49]
may then be implemented.Atmosphere 2018, 9, x FOR PEER REVIEW  20 of 23 

 

 
Figure 15. The rainfall intensity empirical cumulative distribution functions (ECDFs) (covering the 
range of 0–98%) comparing 6-hour wet period model outputs with observations: (a) XM; (b) ZP. 

5. Conclusion 

The verification performances of the “simplified” RR model (RR2) and the HSPF model outputs 
are summarized in Table 14. For the data-scarce catchment in the present study, the ridge regression 
(RR) model with appropriately constructed variables describing rainfall intensity, evaporation, 
antecedent watershed moisture, and month/season seems to perform no worse than a semi-
distributed HSPF model. However, the RR method (1) seems to be more susceptible to systematic 
biases (~10% underestimation of streamflow) than HSPF; (2) fails to produce realistic hourly runoff, 
whilst HSPF does not have this problem, as it is physically based; (3) has regression coefficients and 
systematic bias characteristics that may not be stationary over time, so it is not suitable for scenario 
studies. The NPRED-KNN method produces very poor results, which may suggest that the training 
set is not big enough, or the independent variables designed by the authors in this work are 
unsuitable for the NPRED-KNN method. We may tentatively suggest that the hourly outputs of 
HSPF are still acceptable and realistic (though not “satisfactory” by the standards set by thresholds 
for performance metrics); it may be meaningful to use them as inputs into certain ocean models for 
scenario studies, though care should be taken and more analyses (e.g., errors in the timing of the 
peaks) are required. 

Table 14. Comparing the RR2 and HSPF models (verification period). 

 R2 PBIAS NSE 

Daily 
RR2 0.50 −10.92 0.44 

HSPF 0.43 −1.10 0.42 

Monthly 
RR2 0.65 −15.32 0.53 

HSPF 0.63 −3.90 0.60 

The HSPF model appears to be successful at replicating the JLR system’s baseflow index, yet the 
parameter selection for the BFI computation algorithm outlined in [41] could introduce some 
uncertainty into the final results. Depending on different parameter selection strategies, the estimated 
BFIs using daily/hourly flow rates could either be consistent or inconsistent with each other, though 
it might be determined that the BFI of the JLR catchment lies in the range of 0.50–0.67, agreeing well 
with [46]. 

The major limitations of the present work include (1) the “black box” nature of the RR model, 
which renders it unfit for scenario studies; (2) the limited sources of input and observation data, 
which results in input data that are not very accurate, and the hourly outputs of HSPF could not be 
adequately verified against hourly observations; (3) the problem with using HSPF v12.2 for importing 

Figure 15. The rainfall intensity empirical cumulative distribution functions (ECDFs) (covering the
range of 0–98%) comparing 6-h wet period model outputs with observations: (a) XM; (b) ZP.

5. Conclusions

The verification performances of the “simplified” RR model (RR2) and the HSPF model outputs are
summarized in Table 14. For the data-scarce catchment in the present study, the ridge regression (RR)
model with appropriately constructed variables describing rainfall intensity, evaporation, antecedent
watershed moisture, and month/season seems to perform no worse than a semi-distributed HSPF model.
However, the RR method (1) seems to be more susceptible to systematic biases (~10% underestimation
of streamflow) than HSPF; (2) fails to produce realistic hourly runoff, whilst HSPF does not have this
problem, as it is physically based; (3) has regression coefficients and systematic bias characteristics
that may not be stationary over time, so it is not suitable for scenario studies. The NPRED-KNN
method produces very poor results, which may suggest that the training set is not big enough, or the
independent variables designed by the authors in this work are unsuitable for the NPRED-KNN method.
We may tentatively suggest that the hourly outputs of HSPF are still acceptable and realistic (though not
“satisfactory” by the standards set by thresholds for performance metrics); it may be meaningful to use
them as inputs into certain ocean models for scenario studies, though care should be taken and more
analyses (e.g., errors in the timing of the peaks) are required.

Table 14. Comparing the RR2 and HSPF models (verification period).

R2 PBIAS NSE

Daily RR2 0.50 −10.92 0.44
HSPF 0.43 −1.10 0.42

Monthly RR2 0.65 −15.32 0.53
HSPF 0.63 −3.90 0.60

The HSPF model appears to be successful at replicating the JLR system’s baseflow index,
yet the parameter selection for the BFI computation algorithm outlined in [41] could introduce some
uncertainty into the final results. Depending on different parameter selection strategies, the estimated
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BFIs using daily/hourly flow rates could either be consistent or inconsistent with each other, though it
might be determined that the BFI of the JLR catchment lies in the range of 0.50–0.67, agreeing well
with [46].

The major limitations of the present work include (1) the “black box” nature of the RR model,
which renders it unfit for scenario studies; (2) the limited sources of input and observation data,
which results in input data that are not very accurate, and the hourly outputs of HSPF could not be
adequately verified against hourly observations; (3) the problem with using HSPF v12.2 for importing
large input datasets; an expedient measure was taken as a workaround, and, in the future, the feasibility
of some similar models will be assessed; (4) inadequate quantitative analyses of input data inaccuracy’s
impact on the modeled streamflow.

In the long term, the data sources can be ultimately diversified, and their accuracy and quantity
should be improved. In the short term, when the input data’s quality still lies at the core of our
problem, techniques such as MCMC (mentioned in Section 4) may be employed to account for the
large uncertainty in the parameters. Some proposed alternatives for improving the rainfall data
accuracy can also be adopted: (i) spatially interpolate the meteorology station data that we have;
(ii) further statistically downscale model outputs (e.g., GP, SLP, etc.) to local rainfall [50]; (iii) the
forecast of intense rainfall associated with typhoons remains a challenge due to the large uncertainty
and long lead time [51], though estimating rainfall distribution and intensity from posterior probability
distributions derived from satellite data has proven useful [52]. For (i), observation data availability
is a major challenge: from various sources (e.g., www.rp5.com.ru, National Ocean and Atmosphere
Administration (NOAA)’s websites), only 2–3 stations in the JLR catchment area are available for
downloading, making interpolation and its validation unfeasible. The limited data availability also
poses a problem to training the downscaling model in (ii). In the short term, when the issue of
data scarcity persists, the more feasible option for improving the rainfall forecast seems to be (iii).
However, beware that the WRF model may still require much refining; otherwise, the posterior
distribution derived from the WRF-simulated rainfall and satellite measurements could still deviate
severely from observations because, currently, the WRF prediction of rainfall occurrence seems to be
systematically biased.
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