
genes
G C A T

T A C G

G C A T

Article

Gene Regulatory Networks Reconstruction Using the
Flooding-Pruning Hill-Climbing Algorithm

Linlin Xing 1 ID , Maozu Guo 1,2,3,*, Xiaoyan Liu 1, Chunyu Wang 1 and Lei Zhang 2

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
xinglinlin@hit.edu.cn (L.X.); liuxiaoyan@hit.edu.cn (X.L.); chunyu@hit.edu.cn (C.W.)

2 School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture,
Beijing 100044, China; lei.zhang@bucea.edu.cn

3 Beijing Key Laboratory of Intelligent Processing for Building Big Data, Beijing 100044, China
* Correspondence: guomaozu@bucea.edu.cn; Tel.: +86-150-1063-0193

Received: 23 May 2018; Accepted: 2 July 2018; Published: 6 July 2018
����������
�������

Abstract: The explosion of genomic data provides new opportunities to improve the task of gene
regulatory network reconstruction. Because of its inherent probability character, the Bayesian network
is one of the most promising methods. However, excessive computation time and the requirements
of a large number of biological samples reduce its effectiveness and application to gene regulatory
network reconstruction. In this paper, Flooding-Pruning Hill-Climbing algorithm (FPHC) is proposed
as a novel hybrid method based on Bayesian networks for gene regulatory networks reconstruction.
On the basis of our previous work, we propose the concept of DPI Level based on data processing
inequality (DPI) to better identify neighbors of each gene on the lack of enough biological samples.
Then, we use the search-and-score approach to learn the final network structure in the restricted
search space. We first analyze and validate the effectiveness of FPHC in theory. Then, extensive
comparison experiments are carried out on known Bayesian networks and biological networks from
the DREAM (Dialogue on Reverse Engineering Assessment and Methods) challenge. The results show
that the FPHC algorithm, under recommended parameters, outperforms, on average, the original hill
climbing and Max-Min Hill-Climbing (MMHC) methods with respect to the network structure and
running time. In addition, our results show that FPHC is more suitable for gene regulatory network
reconstruction with limited data.

Keywords: gene regulatory networks; flooding-pruning hill-climbing algorithm; neighbor selection;
data processing inequality

1. Introduction

The growth and development of organisms and the ability to respond to environmental conditions
are controlled by an intrinsic regulation mechanism, which spans multiple molecular levels [1].
Gene regulatory networks (GRNs) depict this complex mechanism at the level of genes and provide
an intuitive understanding of how these interactions determine the characteristics of organisms [2].
The structure of GRN reflects the interactions between the regulatory elements in biological systems,
such as genes and proteins [3–5]. Therefore, the reconstruction of gene regulatory network from gene
expression data, also known as reverse engineering, is the most fascinating task in system biology
and bioinformatics. More importantly, these predicted networks can generate valuable hypotheses to
promote further biological research. This has led to the fast development of computational approaches
for the reconstruction of GRNs [6].

At the simplest level, clustering methods can be applied to find genes sharing the same expression
pattern, which are likely to be involved in the same regulatory processes [7]. Pearson correlation

Genes 2018, 9, 342; doi:10.3390/genes9070342 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-2345-0026
http://dx.doi.org/10.3390/genes9070342
http://www.mdpi.com/journal/genes
http://www.mdpi.com/2073-4425/9/7/342?type=check_update&version=2

Genes 2018, 9, 342 2 of 20

coefficient and mutual information [8–10] are commonly used metrics for measuring the similarity
of expression profiles. This idea was developed further to construct relevance networks by using
such metrics [11–13]. These correlation-based methods are highly efficient, but cannot identify the
directions or model system dynamics.

The explosion of expression data, promoted by novel and high-throughput technologies, has thus
propelled the evolution of GRN analysis from clustering method to systematic or model-based
methods. Systematic methods can provide researchers with deeper insights into the holistic regulatory
mechanism at a network level [4,14,15]. Taking this one step further, biologists can put forward valuable
clues or ideas in real life scenarios, such as disease gene discovery [5], seed oil [16], yield character
location [17].

However, due to the small sample size of expression data and the exponential solution
space, it would be a big challenge. The large amount of data from high-throughput technologies
offers an opportunity for seeking systematic approaches to understanding the structure of gene
regulatory networks [4]. The main mathematical models include Boolean network [18–20], Bayesian
Network [21–24], and differential equation [25–27]. These mathematical models can vary from the very
simplified, such as Boolean network, to the very complex, such as differential equations in computing
complexity aspect. Each has its own characteristics and fits different applicable scenes. With the
gradual increase of computing complexity, the data size they can process rapidly goes down. Using the
assumption that genes are simple binary switches in genetic regulation, the Boolean network approach
uses the Boolean functions to model gene regulatory networks. The probabilistic Boolean network
extends Boolean network methods by integrating rule-based dependencies between variables [28].
Although these assumptions make the Boolean network the most mathematically tractable, these crude
simplifications cannot reflect the genetic reality. At the opposite end, the differential equation approach
quantitatively describes the dynamics of change of each gene’s expression level on its regulatory genes.
Obviously, differential equation approach can capture more detail about genes’ activities, but it is only
suited for some concrete and very small systems, generally ascribed to computational complexity.

Bayesian network is another popular model for the reconstruction of GRNs, which uses Directed
Acyclic Graph (DAG) to represent GRNs. Between these three approaches, the Bayesian network is a
combination of probability and graph theory and of medium complexity and scale. More importantly,
due to its inherent probabilistic nature, the Bayesian network can deal with noisy data and cope with
uncertainty. Yet, the Bayesian network model has its limitations. Due to its NP-hard nature of structure
learning with respect to the number of genes, the exact Bayesian network structure can be learned only
for relatively small networks [29].

Typically, two main approaches, search-and-score approach and constraint-based approach,
are used to learn the structure of BN. The constraint-based approach [30–33] tries to use statistical or
information measures to test the conditional independence (CI) between variables. These methods
rely heavily on the threshold selected for CI tests. High-order CI tests using large condition sets
may be unreliable with the limitation of data size. Recently, the recursive autonomy identification
(RAI) algorithm [31] reduces the number of high-order CI tests using sequentialization and recursion
techniques and, hence, requires fewer data. However, the requirements of computational capabilities
and data size to perform reliable tests are still problems of constraint-based approaches, which limits
their application in biological network reconstruction.

The search-and-score approach [34–36] attempts to traverse all possible structures using certain
search algorithms to find the optimal one that maximizes the scoring function. In addition,
prior knowledge can be easily incorporated into the model through the prior probability term in
the scoring function. The search methods are heuristic and do not guarantee global optimal in most
cases in consideration of large search space.

Hence, a typical way to accelerate the learning phase of search-and-score algorithms is to reduce
the search space of possible structures. Specific methods include Sparse candidate (SC) [21], maximum

Genes 2018, 9, 342 3 of 20

number of parents limitation [37] (also called maxP technique), Max-Min Hill-Climbing (MMHC) [38],
and the Candidate auto selection method (CAS) [39] etc.

The sparse candidate algorithm applies a restrict-search iteration strategy to speed up the search
process. It heuristically estimates the parents of each node, and then perform a search-and-score
procedure. The algorithm constraints the size of the parent set per node to a user-defined upper limit
k and repeatedly execute the above two steps. The maxP technique restricts the search space in a
more simple way, by only limiting the maximum number of parents for each node without a heuristic
estimation step. Nevertheless, the two methods ignore the biological fact and suffer from the problem
of tuning parameter. The fact that they actually do not generate candidate sets for each node results in
wasting much of the time on examining unreasonable candidates due to the scale and the sparsity of
biological networks [39].

Actually, the MMHC algorithm should be called a hybrid method. It first applies a constraint-based
algorithm, called Max-Min Parents and Children (MMPC), to learn the neighbors of each node and
then uses hill-climbing search to orient the edges [38]. The combination of constraint-based approach
and search-and-score approach seems to be a trend. So far, MMHC outperforms all other methods in
the field of search-and-score approach, given enough samples.

However, as mentioned in the analysis of constraint-based approach, the exponential data
dependence to accurately estimate the strength of conditional independence in MMPC step cannot
be satisfied in a biological sense. The lack of data leads to a failure in candidate sets identification
and then makes the behavior of MMHC algorithm similar to typical greedy search. So, we can see
that the situation, typically known as “large p, small n” problem, greatly limits the use of the MMHC
method for biological network reconstruction. Moreover, users also need to define a p-value as the
threshold of conditional independence. Hence, the MMHC algorithm does not work well on small
datasets and may lead to a huge amount of false positives.

Recently, in our previous work, the CAS algorithm was proposed to infer GRN [39]. It uses a
method based on mutual information and breakpoint detection to separate related nodes and unrelated
nodes. However, the overestimation of the strength between genes and its neighbors results in the
problem of false positives.

In this paper, we propose the Flooding-pruning Hill-Climbing algorithm (FPHC) on the basis of
our previous work in order to further improve its performance for GRN reconstruction. FPHC also
follows the idea of hybrid methods for learning structure of BN and aims at reducing the false discovery
rate of neighbor node identification. FPHC tries to alleviate these problems listed above with less data,
that is, to infer the directed network with less false-positive edges and with high computational
efficiency. By learning the skeleton of BN, FPHC estimates the candidate neighbor set of each node:
a neighbor set of node X is all the nodes Y that shares an edge with X. The difference from existing
methods is that the algorithm needs smaller sample size and is highly effective and deterministic.

FPHC works in a sound manner and solves the problems in SC and MMHC methods. To find the
candidate set, the FPHC method employs a two-phase algorithm to identify the neighbors of each node,
called the flooding phase and pruning phase. This is very different with MMHC, which uses a heuristic
constraint-based algorithm to identify the skeleton. The flooding phase aims at finding the propagation
boundary of mutual information in a DAG through a breakpoint detection method, which is the same
as our previous work. In this step, the related nodes of each node will be selected. In the pruning
phase, the concept of data processing level (DPI Level) is introduced to filter out indirect regulations
(false positives). To infer the structure, we apply the greedy search-and-score methods to learn the
network structure based on the neighbor sets of each node.

To evaluate the proposed methods, comparison experiments against several typical methods are
carried out on various networks and sample sizes. Our study also provides a theoretical analysis and
comparison of existing candidate selection algorithms.

Genes 2018, 9, 342 4 of 20

2. Materials and Methods

A Bayesian network consists of two parts. A DAG G = (V, E) represents the network structure,
where V = {X1, X2, . . . , Xn} represents the variables (or genes), n is the total number of variables or
genes and E, the edge set, consists of ordered pairs (for example, < Xi, Xj >) of distinct nodes in V.
An uppercase letter (for example, X) and X = {x1, x2, . . . , xn} represents a variable or gene and the
corresponding expression vector. A Conditional Probability Table (CPT) represents the corresponding
joint probability of this structure. Under the decomposable assumption, the joint probability can be
represented in a product form:

P(X1, X2, . . . , Xn) =
n

∏
i=1

P(Xi, Pa(Xi)) (1)

Then some scoring functions are derived for learning Bayesian network structures in a
search-and-score scheme. In our study, the widely used BDeu score [36] (Bayesian Dirichlet with
uniform priors) with an equivalent sample size of one is selected. The learning aim is to recover the
parents Pa(Xi) of all nodes that maximize the joint probability, given dataset D.

2.1. Mutual Information

Mutual information (MI) is a powerful and fair metric for measuring the non-linear dependency
between gene pairs. In this article, mutual information is adopted as a similarity measure between
the expression profiles of two genes. The mutual information of two discrete variables (genes) X, Y is
defined as:

MI(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y)log
(

p(x, y)
p(x)p(y)

)
(2)

where p(x, y) is the joint probability of variable X and Y, and p(x) and p(y) are the marginal
probabilities of variable X and Y, respectively. The MI indicates the relationship between two genes
without considering other variables. Hence, MI tends to overestimate the regulation strengths between
genes. High MI value indicates that there may be a close relationship between the variables (genes) X
and Y, while low MI value implies their independence. We use φi,j to represent the interaction of gene
i and gene j, if φi,j = 0, gene i and gene j do not interact directly. This notation includes the gene pairs
that are statistically independent (MI = 0) and the gene pairs that are not statistically independent and
indirectly interact.

2.2. Data Processing Inequality and the Concept of DPI Level

The data processing inequality (DPI) states that if gene Xi and gene Xk interact only through
a third gene Xj, and no alternative path exists between gene Xi and gene Xk, then the following
conclusion will be obtained [40,41]:

MI(Xi; Xk) ≤ min(MI(Xi; Xj), MI(Xj; Xk)) (3)

That is, only the least of the three MIs can come from indirect interactions, and check the DPI
may identify those indirect interacted gene pairs. Taking this one step further, we put forward the
idea of DPI Level. Given target node Xi, suppose there are l nodes on the path from Xi to Xk. Hence,
for node Xk, this inequation can be tested l times. This concept uses the number of times that Xk
satisfied the inequation to indicate the distance between Xi and Xk. Thus, the bigger the DPI Level,
the more distantly related of the two nodes. Specifically, in a tree structure, the DPI Level is the jumps
from Xi to Xk, and all the nodes with DPI Level = 1 are the neighbors.

However, feed-forward control and feedback loops, called triples, are commonly observed in a
common biological network. In Figure 1, the nodes with red cycles around it are the pairs affected
by duplicate paths. They are feed forward (Figure 1a), feedback (Figure 1b), parallel control channel
(Figure 1c), and duplicate parents (Figure 1d), respectively. In this situation, the computation of DPI

Genes 2018, 9, 342 5 of 20

Level is not exactly the distance between Xi and Xk. The DPI Level of Xk will be affected if there
are triples or parallel regulations in the path from Xi to Xk, as shown in Figure 1. The DPI Level
will increase, according to the nodes involved in triples. The detailed algorithm for calculating the DPI
Level is the Pruning Phase section.

Genes 2018, 9, x FOR PEER REVIEW 5 of 20

DPI Level is not exactly the distance between
i

X and
k

X . The DPI Level of
k

X will be affected if

there are triples or parallel regulations in the path from
i

X to
k

X , as shown in Figure 1. The DPI

Level will increase, according to the nodes involved in triples. The detailed algorithm for calculating

the DPI Level is the Pruning Phase section.

Figure 1. The four kinds of duplicate paths.

2.3. The Flooding-Pruning Neighbor Selection Algorithm

The Bayesian network learning algorithm FPHC presented in this work is based on the local

neighbor selection algorithm called Flooding-Pruning Neighbor Selection (FPNS). FPNS provided a

way to exactly identify the neighbors of target node T, that is, the edges to and from node T, and is

used by FPHC to select the neighbors of each node. Although we use the break-point detection

algorithm of our previous work, the idea of FPNS is different with CAS. The idea of FPNS algorithm

comes from the information spreading process on a DAG. The FPNS simulates the propagation,

truncation, and attenuation processes of signals. This makes the two phases of FPNS tightly coupled.

FPNS consists of two phases: the flooding phase and pruning phase. The name “flooding phase”

means that we will include all the nodes that can be reached when signals travel along the active

paths in a flooding manner. The name “pruning phase” means that we will prune the rambling

branches to remain a more precise candidate set for each target node.

We describe the idea of FPNS briefly and then state the specific algorithm.

For selected target node T, we represent the set of candidate neighbors of T as tN and the set

of related nodes as Rt . Given dataset D, FPNS will output the candidate neighbor set tN , provided

there is an underlying true network. tN includes the parent nodes and child nodes of target node

T. Firstly, FPNS will identify the propagation boundary of target node T in the flooding phase, that

is, to generate related node set Rt . All the statistically related nodes will be included in Rt . Then,

candidate neighbor set tN is generated by cutting off the indirect nodes based on the concept of

DPI Level in pruning phase. This simulates the attenuation process of signals. By invoking FPNS on

all nodes, we will obtain the reduced search space, which consists of neighbor sets of all nodes.

Finally, one has to get the orientation of each edge to learn the structure of BN. This will be discussed

in the structure learning section.

Figure 1. The four kinds of duplicate paths.

2.3. The Flooding-Pruning Neighbor Selection Algorithm

The Bayesian network learning algorithm FPHC presented in this work is based on the local
neighbor selection algorithm called Flooding-Pruning Neighbor Selection (FPNS). FPNS provided a
way to exactly identify the neighbors of target node T, that is, the edges to and from node T, and is
used by FPHC to select the neighbors of each node. Although we use the break-point detection
algorithm of our previous work, the idea of FPNS is different with CAS. The idea of FPNS algorithm
comes from the information spreading process on a DAG. The FPNS simulates the propagation,
truncation, and attenuation processes of signals. This makes the two phases of FPNS tightly coupled.
FPNS consists of two phases: the flooding phase and pruning phase. The name “flooding phase”
means that we will include all the nodes that can be reached when signals travel along the active paths
in a flooding manner. The name “pruning phase” means that we will prune the rambling branches to
remain a more precise candidate set for each target node.

We describe the idea of FPNS briefly and then state the specific algorithm.
For selected target node T, we represent the set of candidate neighbors of T as Nt and the set of

related nodes as Rt. Given dataset D, FPNS will output the candidate neighbor set Nt, provided there
is an underlying true network. Nt includes the parent nodes and child nodes of target node T. Firstly,
FPNS will identify the propagation boundary of target node T in the flooding phase, that is, to generate
related node set Rt. All the statistically related nodes will be included in Rt. Then, candidate neighbor
set Nt is generated by cutting off the indirect nodes based on the concept of DPI Level in pruning phase.
This simulates the attenuation process of signals. By invoking FPNS on all nodes, we will obtain the
reduced search space, which consists of neighbor sets of all nodes. Finally, one has to get the orientation
of each edge to learn the structure of BN. This will be discussed in the structure learning section.

2.3.1. Flooding Phase

We know that distant relatives with lower MI give little information for target variable T, and close
relatives (neighbors) with higher MI can help to understand the target T. The aim of this phase is to

Genes 2018, 9, 342 6 of 20

identify the related nodes Rt of target node T. All the possible relations between target node T and
other nodes are shown in Figure 2.

Genes 2018, 9, x FOR PEER REVIEW 6 of 20

2.3.1. Flooding Phase

We know that distant relatives with lower MI give little information for target variable T, and

close relatives (neighbors) with higher MI can help to understand the target T. The aim of this phase

is to identify the related nodes Rt of target node T. All the possible relations between target node T

and other nodes are shown in Figure 2.

Figure 2. The relationships between target node T and other nodes.

For the task of BN structure reconstruction, Node Z and its descendants are always not in

evidence. Therefore, the related nodes that can be reached to or from target node T are in two

categories: (i) direct connection and indirect connection situation as shown in Figure 2a,b, in which

these nodes are its descendants and ancestors; (ii) common cause situation as shown in Figure 2d, in

which these nodes are its brothers. As for the first type, the information from target node T can flow

from its ancestors or to its descendants, furthermore, this information decreases with their genetic

relationship. As for type ii, target T and its brothers share some information inherited from their

parents.

The nodes that cannot be reached from Target node T are the nodes separated by a V-Structure

or the nodes are not in the same connected-component, as shown in Figure 2c. These nodes are

independent to target node T. That means the information is truncated from these nodes. Thus the

target node T and unrelated nodes are statistically independent, which means that these MIs are zero.

However, they are actually measurement noises. From what has been discussed above, we can safely

draw the conclusion that the MIs of target node T and the related nodes are distributed differently

with the MIs of target node T and separated nodes. So, based on the analysis and mentioned research

[9,42], we can further assume that there is a breakpoint in the MIs of target T that can be used to

distinguish the related nodes and separated nodes.

At this point, the problem of identifying the related node set Rt of target T (contains all the

node in the propagation boundary) is translated into a breakpoint detection problem, which can be

solved by hypothesis testing. At this point, the main idea of the flooding phase is the same as with

our previous work. The idea is described as follows on target node T.

The MI vector of target node T and all the other nodes   = −
1 2
, ,..., ,= 1

m
x x x m nM is given and

all the MIs are sorted into ascending order. According to the above analysis, the null hypothesis and

the alternative hypothesis are stated as follows:

Figure 2. The relationships between target node T and other nodes.

For the task of BN structure reconstruction, Node Z and its descendants are always not in evidence.
Therefore, the related nodes that can be reached to or from target node T are in two categories: (i) direct
connection and indirect connection situation as shown in Figure 2a,b, in which these nodes are its
descendants and ancestors; (ii) common cause situation as shown in Figure 2d, in which these nodes
are its brothers. As for the first type, the information from target node T can flow from its ancestors
or to its descendants, furthermore, this information decreases with their genetic relationship. As for
type ii, target T and its brothers share some information inherited from their parents.

The nodes that cannot be reached from Target node T are the nodes separated by a V-Structure
or the nodes are not in the same connected-component, as shown in Figure 2c. These nodes are
independent to target node T. That means the information is truncated from these nodes. Thus the
target node T and unrelated nodes are statistically independent, which means that these MIs are zero.
However, they are actually measurement noises. From what has been discussed above, we can safely
draw the conclusion that the MIs of target node T and the related nodes are distributed differently with
the MIs of target node T and separated nodes. So, based on the analysis and mentioned research [9,42],
we can further assume that there is a breakpoint in the MIs of target T that can be used to distinguish
the related nodes and separated nodes.

At this point, the problem of identifying the related node set Rt of target T (contains all the node
in the propagation boundary) is translated into a breakpoint detection problem, which can be solved
by hypothesis testing. At this point, the main idea of the flooding phase is the same as with our
previous work. The idea is described as follows on target node T.

The MI vector of target node T and all the other nodes M = {x1, x2, . . . , xm}, m = n− 1 is given
and all the MIs are sorted into ascending order. According to the above analysis, the null hypothesis
and the alternative hypothesis are stated as follows:

H0: Null hypothesis—no breakpoint exists
H1: Alternative hypothesis—one significant breakpoint exists

Genes 2018, 9, 342 7 of 20

That is, there is a position in vector M that divided the nodes into two parts: related nodes
and others.

Under the null hypothesis, if all the MIs are from the same distribution, then the probability
is log(p(M1:m|δ)). Under the alternative hypothesis, there is a breakpoint at position k k ∈ [1, m] in
M of target node T. Thus, the two types of nodes come from different distributions. The maximum
likelihood can be defined as in Equation (4).

ML(k) = log(p(M1:k|δ1)) + log(p(Mk+1:m|δ2)) (4)

where p(M1:k|δ1), p(Mk+1:m|δ2) in Equation (4) are the probability density function, and δ1, δ2 are the
corresponding parameter.

To detect if there is a breakpoint in M, the testing statistic Q can be constructed as (5):

Q = 2[ML(k)− log(p(M1:m|δ))] (5)

For calculating these probabilities, we should make reasonable assumptions about their probability
distributions. As mentioned above, the MIs of target node T and unrelated nodes are actually noises.
Therefore, a normal distribution is reasonable to model these MIs. We have learned from experience,
however, that a normal distribution is a good choice to model unknown distributions. With this
in mind, all the mentioned possibilities can be calculated correctly.

Usually, a constant c should be selected as a threshold to complete the hypothesis testing. Actually,
to achieve the goal of identifying the best candidate of related nodes, we just need to locate the position
k in relation to maximum Q. At this point, it becomes to an optimization problem, as in Equation (6):

k = argmax(Q) (6)

The nodes on the right side of position k are added into Rt. The nodes in set V are processed one
by one.

Theorem 1. If MIs can be estimated with no errors, the Flooding Phase can identify the related nodes exactly.

Proof of Theorem 1. If the MIs are estimated with no errors, the MIs of target node T and the
statistically dependent nodes (the nodes separated by a V-structure and the nodes in the disconnected
part) will be zero. One can just add all the nodes with non-zeros MI to the Rt set. �

In reality, especially in biological scenes, MIs cannot be estimated exactly due to the noise and the
limitation of data. According to the experiment, the Flooding phase works in practice.

2.3.2. Pruning Phase

So far, we have generated the related node set Rt, which contains neighbors and indirect nodes
(false positives). That is to say, we get a high Type I Error and a low Type II Error. Hence, we designed
a pruning step to reduce the Type I error by removing the indirect nodes.

Recent studies [11,40] indicate that data processing inequality can help to distinguish indirect
regulation relationships. However, it has some potential limitations. Based on this concept, we put
forward the concept of DPI Level to rank all the related nodes of Target T that are identified in the
flooding phase. The pruning phase using DPI Level to prune the false positives of target node T.
The definition of DPI Level for related nodes of target T is shown as follows:

Definition 1. Given target node T and its related node set Rt, in which the nodes are sorted according to MI,
the DPI Level of node Xi ∈ Rt is defined as follows:

1. If Xi is the first node in Rt, the DPI Level of Xi is defined as 1.

Genes 2018, 9, 342 8 of 20

2. If Xi is not the first node in Rt, for each node Xa in front of Xi, triplet < T, Xa, Xi > is constructed
and tested using inequation (3). The DPI Level of Xi is defined as the maximum DPI Level of Xa

that satisfies inequation (3) plus 1.

The DPI Level reflects the affinity between the related nodes and target node T.
According to the concept of DPI Level, we designed a pruning phase to prune the related node

set Rt and then generate the neighbor set Nt.
For target node T, the pruning phase begins from the identified related nodes set Rt which consists

of ordered related nodes. Starting from the second node in Rt, the pruning phase calculates the DPI
Level of each related node in turn until we have traversed the set Rt. Then, we apply this procedure to
all nodes in V to get the hierarchical structure of each node.

By definition, the smaller the DPI Level, the closer the relationship is between target node T and
node Xi. Obviously, the threshold of DPI Level greatly affects the result of pruning phase. Hence,
the key problem is how to select the threshold of DPI Level to determine the nodes, which are the
direct neighbors.

Theorem 2. Given target node T and its related node set Rt, if the subnetwork defined by
G′ = (V′, E′), V′ = {T} ∪ Rt is a tree, the pruning algorithm will construct the underlying structure
correctly, provided there is enough data to estimate MI correctly.

Proof. According to Theorem 1 in ARACNE [11], the underlying undirected network can be
reconstructed exactly, provided the network is a tree and has only pairwise interactions. At this
point, if there is no feed forward control and feedback control in this subnetwork, the underlying
subnetwork defined by G′ = (V′, E′), V′ = {T} ∪Rt is a tree. Hence, we will reconstruct the structure
of this subnet. �

Based on Theorem 2, we derive lemma 1 for the threshold of DPI Level.

Lemma 1 If target node T is not involved in any feed forward or feedback loops, the DPI Level of the directed
neighbors of target node T is 1.

Proof . If target node T is not involved in any feed forward or feedback loops, there are no duplicate
paths from the neighbors to target node T. That is, no triplet < T, Xa, Xi > satisfies Equation (3). Hence,
the DPI Level of neighbors is 1. �

Theorem 1 and Lemma 1 give a solution under ideal circumstances. However, gene regulatory
networks are not restricted to tree structures and feed forward and feedback control schemas are
often observed in GRNs. At this point, applying inequation (3) will break the triples of feedback
or feedforward loops. The DPI Level of neighbors will change with the number of nodes involved
in loops. As mentioned above, a different threshold leads to a different depth of pruning. Moreover,
the sample size and complexity of the network will affect the estimation of MI and then the calculation
of DPI Levels. Details of how to select the threshold will be discussed in the next section.

So far, we have described the whole procedure of FPNS. The pseudo code of FPNS is shown in
Algorithm 1. Here, we use threshold θ to denote the pruning depth in pruning phase. If the DPI Level
of the node is less than this threshold, this node is selected as the neighbor node. If the DPI Level of
the node is bigger than this threshold, this node is pruned.

The full algorithm is as follows.

Genes 2018, 9, 342 9 of 20

Algorithm 1. The Flooding-Pruning Neighbor Selection algorithm (FPNS)

Input: Node Set V = {X1, X2, . . . , Xn}, Discrete Expression data D, threshold θ for pruning depth
Output: Neighbor Set of each node in V, denoted by {NX1, . . . , NXn}

Initialize the neighbor set of each node with null set.
For i = 1 : n
RXi = ∅
// Flooding phase.
Candidate set Ci = V/Xi.
Calculate MI of Xi and all nodes in Ci.
Store the n 1 MIs into M in ascending order.
//locate position k that maximizes statistic Q
k = argmax(Q)

For every node Xc in Ci
RXi = {Xc ∈ Ci|Xc is in the right side of k}
End For
// Pruning phase.
Calculate the DPI Level of each node in RXi
For every node Xr in RXi
NXi = {Xr ∈ RXi|DPI Level of Xr is less than θ}
End for
End for
Return {NX1, . . . , NXn}

2.4. Choice of Tuning Parameter

The major factors that affect the selection of tuning parameter θ are the sample size and the
complexity and size of the network.

(a) Sample size has a significant effect on the estimation of MI.
(b) Network size will affect the power of statistics in the flooding phase.
(c) Network complexity directly affects the calculation and selection of θ.

Moreover, we do not forget that the aim of FPNS is generating the candidate neighbor set for the
following structure learning. As we know, due to the factors mentioned above, the pruning depth will
affect the result of the candidate neighbors. This will directly influence the recall of true neighbors.
The smaller the threshold, the more false positives are excluded. Obviously, if the DPI Level is set
to one, all the false positives will be avoided. However, some true neighbors involved in feedback or
feed forward loops will also be excluded from the true neighbor set.

According to the above analysis, we give some guidance on how to select θ that balances Type I
and Type II errors.

For the same network, having enough data means an accurate estimation of MI. Hence, if only
limited data are available, θ should be appropriately increased to get a reasonable sensitivity.
For the target network of high complexity, θ should be appropriately increased because feedback
or feed-forward loops in a network will affect the DPI calculation of related nodes. For the target
network, one could roughly estimate its complexity according to the possible function to be studied.
According to our experiment results on different networks and different sample sizes, θ = 3 or 4
are suitable in most cases. For larger networks with limited data, θ = 5 may be more suitable.
These suggested settings are drawn on the above analysis and in our experiment results.

Do we have a more general strategy for θ instead? Here, we give a general setting for θ. Set θ as
the mode of the calculated DPI Levels of nodes in Rt but no less than 2. Since MI decreases rapidly as
the signals travel along an active path, we find that the distant relatives on rambling branches will
be ignored. Hence, spindle-shaped shrinkage will occur during the flooding phase. This makes the

Genes 2018, 9, 342 10 of 20

reconstructed structure of Rt (the distribution of the DPI Levels) like a spindle. Hence, the mode is
selected in a natural way to cut this spindle. The setting “no less than 2” is a small trick to increase the
sensitivity due to the complexity of real distribution and the situation of Theorem 1. The results with
this setting are also included in this work.

2.5. Example Trace

We will further illustrate that FPNS runs on target node T by using an example trace shown in
Figure 3. This running example is part of the alarm network with sample size = 200. In this case,
we consider that the data is nearly enough for estimating the MIs correctly. The original network,
part of the alarm network, is shown in Figure 3a. Target node T (LVEDVOLUME) is denoted with a
red circle around it. The circles without node names indicate the rest of the alarm network. Figure 3b is
a schematic diagram in order to denote that MI distribution of T and related nodes are different from
the MI distribution of T and unrelated nodes. In addition, this diagram shows that we cannot decrease
the Type I error and Type II error at the same time without increasing the sample size. According to
the MIs distribution, we do a hypothesis test as described in the flooding phase. That is, to identify all
the nodes that can be reached from target node T, as shown in Figure 2. In Figure 3c, the red arrow
means blocked trails by V-structure, and the green arrow means active trails through which target
node T can reach the other nodes the same as in Figure 2a,b,d. Here, nodes with a red circle around
them are the identified related nodes which can be reached through the active trails. Nodes with black
circles in Figure 3c means these nodes are separated by a V-structure and will be eliminated in the step.
Figure 3d lists the related nodes identified in the flooding phase. Next, as shown in Figure 3e,f, FPNS
will prune the related nodes according to the DPI Level of each node. Here, the pruning depth is set to
1. This means that all the nodes with a DPI Level bigger than 1 will be cut off. Finally, the identified
neighbors are shown in Figure 3g. As we can see from Figure 3g, a sibling node (STROKEVOLUME)
is identified as a neighbor of target node T by mistake. The correlation is over-estimated incorrectly
because of the duplicate path (they share two common cause nodes) from STROKEVOLUME to target
node T, as described in Figure 2 (parallel regulation).

2.6. Flooding-Pruning Hill-Climbing-Structure Learning

In this section, we will illustrate FPHC for network structure learning. Firstly, the neighbors of
each node are obtained by FPNS, and then we perform a greedy hill-climbing search in the restricted
space. The algorithm begins with an empty graph. In each iteration, operators (add-edge, delete-edge,
reverse-edge) will be tried on the graph to find the highest scoring operator. When the total score
is stable, the algorithm returns the highest scoring DAG. Here, in our work, FPHC uses the BDeu
score to evaluate the structure. However, FPHC performs the search in a restricted space. That means,
only the edges that are included in the neighbor set will be considered. It is important to note that
FPNS does not make a distinction between parents and children. Mainly because it is difficult to
distinguish whether neighbor node X is a parent or a child of target node T without knowing the
other nodes of the network. The structure with the highest score will be returned until the algorithm
reaches convergence.

Previous studies [21,38] have shown that constraining the search space can improve the efficiency
over the original greedy search-and-score method. FPHC is presented based on this idea, but an
efficient neighbor selection algorithm (FPNS) is applied. In FPNS, only pairwise relationships need to
be calculated for MI, as powerful metrics. Estimation of pairwise mutual information needs a smaller
sample size than testing conditional independence in MMPC, which is an exponential to the size of
conditioning set. The smaller sample sizes for accurately estimating MI, compared with MMPC, makes
FPHC more suitable and efficient for most practical problems. In addition, the FPNS algorithm is
deterministic rather than heuristic and will lead to reliable and stable outputs. Hence, FPHC is more
efficient and robust.

Genes 2018, 9, 342 11 of 20

Genes 2018, 9, x FOR PEER REVIEW 11 of 20

Figure 3. The example trace of Flooding-Pruning Hill Climbing (FPNS). DPI: data processing

inequality.

2.7. Time Complexity of FPNS Algorithms

According to the analysis, we know that the same procedures are applied to each node. For

target node T, we will check the −| | 1V position to find the position k that maximizes statistic Q in

the flooding phase. Hence, the time complexity is 2(| |)O V . Suppose Rt includes all the other nodes

in the worst case, the times for calculating the DPI Level of each node in Rt will be
−

= =

= = 
| | 1

1 1

,
V i

i
i j

N a ai j . The time complexity in pruning phase will be 3(| |)O V . Hence, in the worst-case

scenario, time complexity is 4(| |)O V . However, the FPNS algorithm runs faster than the estimated

worst time, even if on a very small sample size.

Figure 3. The example trace of Flooding-Pruning Hill Climbing (FPNS). DPI: data processing inequality.

2.7. Time Complexity of FPNS Algorithms

According to the analysis, we know that the same procedures are applied to each node. For target
node T, we will check the |V|−1 position to find the position k that maximizes statistic Q in the flooding
phase. Hence, the time complexity is O(|V|2) . Suppose Rt includes all the other nodes in the worst case,

the times for calculating the DPI Level of each node in Rt will be N =
|V|−1

∑
i=1

ai,ai =
i

∑
j=1

j. The time

complexity in pruning phase will be O(|V|3) . Hence, in the worst-case scenario, time complexity

Genes 2018, 9, 342 12 of 20

is O(|V|4) . However, the FPNS algorithm runs faster than the estimated worst time, even if on a very
small sample size.

3. Data and Performance Measures

3.1. Used Networks and Data Generation

To test the performance of the adaptability of the proposed FPHC method, we selected two types
of networks in the evaluation, including known Bayesian networks from decision support systems
and simulated biological networks from DREAM 3 challenge (Dialogue on Reverse Engineering
Assessment and Methods). The known Bayesian networks include the alarm and Hailfinder network.
For these networks, we generate datasets of different sample sizes (50 to 50,000) and 10 different
datasets are sampled with the same sample size. The biological networks are subnetworks of 100 genes
sampled from a real E. coli network and Yeast network. For these simulated biological networks,
the data of 100 samples were generated following the guidance of the GNW software [43], the same as
with the DREAM multifactorial challenge settings.

3.2. Performance Measures

Fair evaluation of the quality and speed of neighbor nodes selection structure learning is needed
in order to illustrate the performance.

In the neighbor selection phase, we expect to rule out nonadjacent nodes to reduce the search
space as much as possible. Hence, we treat the task as a classification problem and consider two
different performance criteria: (a) Sensitivity (also known as recall) and (b) Specificity. They are defined
as follows:

Sensitivity = TP
TP+FN

Speci f icity = TN
TN+FP

It should be noted that TP is the total identified true positives of all the nodes. Likewise, TN, FP,
and FN are counted in the same way. We can see that sensitivity and specificity have a high correlation
with the search space. Sensitivity, also known as recall, limits the upper bound of following structure
learning. Specificity of neighbor selection phase affects the size of the search space and further affects
the excitation time. Thus, higher sensitivity and specificity means a more exact search space. All the
results are the average of 10 datasets of the same sample size in order to illustrate the stability. Moreover,
in order to compare the execution speed of algorithms, we select runtime as the measurement.

For evaluating the quality of structure learning, we employ several metrics. The first and the
basic one is the F-score. Moreover, we employ structure hamming distance (SHD) as another metric,
which was reported by Ioannis Tsamardinos in Reference [38]. SHD directly calculates the difference
of the learned and the gold-standard networks in terms of the partially directed acyclic graph (PDAG),
including extra edges, missing edges and opposite edges. In addition, an undirected version of
SHD, called USHD, is also used in our work. USHD just compares the skeleton of the learned and
the gold-standard networks. At last, we employ running time as the standard metric in terms of
execution speed.

In the results section, comparison results are normalized with the results of the greedy search
algorithm to clearly show the performance changes across different methods and/or different
sample sizes. Thus, a normalized sensitivity greater than 1 means a better performance than the
original hill climbing method on the same task. Likewise, the specificity and the F-Score are in the
same situation as sensitivity. Instead, the normalized SHD, USHD (aliased as SHD Ratio and USHD
Ratio) and the running time lower than one means better performance.

Genes 2018, 9, 342 13 of 20

4. Results and Discussion

In this section, we will analyze and compare the performance of FPHC algorithm from
four different aspects. The FPNS algorithm restricts the search space and the upper bounds of
structure learning. Its performance highly impacts the following structure learning. So, we first
validate the effectiveness of the proposed neighbor selection method FPNS on different networks and
different sample sizes. Comparison experiments of different situations with MMPC algorithm are also
carried out. Secondly, we analyze the influence of different network and different sample sizes on the
performance of FPHC algorithm. Thirdly, the proposed FPHC algorithm will be compared with the
state-of-the-art MMHC algorithm, previously proposed CAS (Candidate Auto Selection) algorithm,
and the original Hill-Climbing algorithm according to various evaluation metrics and recommended
parameters. Finally, the proposed algorithm will be applied to a simulated biological dataset and
compared with methods mentioned above.

4.1. Effectiveness of FPNS

We first show how the sample size affects the neighbor selection result on the known Bayesian
network. Then, the comparison result with the MMPC under the selected parameters is shown.

Figure 4 shows the sensitivity and specificity of the alarm network changing with sample size
and DPI Levels. In Figure 4, we use ‘–’ to denote no pruning. As we can see from Figure 4: (a) The
increase in the sample size results in a continuous performance boost on each level of DPI. This is
largely due to having enough data that improves the estimation of MI; (b) Given the fixed sample size,
with the increase of DPI Level, the sensitivity has continued to rise and the specificity has continued
to decline; (c) When we do not prune the related node set, that is, when no rambling branch is cut off,
the sensitivity is the highest and the specificity is the lowest. That is, the restriction on the search space
is very loose; (d) If θ is set to 1, we get a very high specificity but a lower sensitivity. This situation leads
to a higher performance penalty; (e) Even if the sample size is very limited, the FPNS algorithm still
shows considerable performance. These results are coincident with the analysis in the method section.

Genes 2018, 9, x FOR PEER REVIEW 13 of 20

effectiveness of the proposed neighbor selection method FPNS on different networks and different

sample sizes. Comparison experiments of different situations with MMPC algorithm are also carried

out. Secondly, we analyze the influence of different network and different sample sizes on the

performance of FPHC algorithm. Thirdly, the proposed FPHC algorithm will be compared with the

state-of-the-art MMHC algorithm, previously proposed CAS (Candidate Auto Selection) algorithm,

and the original Hill-Climbing algorithm according to various evaluation metrics and recommended

parameters. Finally, the proposed algorithm will be applied to a simulated biological dataset and

compared with methods mentioned above.

4.1. Effectiveness of FPNS

We first show how the sample size affects the neighbor selection result on the known Bayesian

network. Then, the comparison result with the MMPC under the selected parameters is shown.

Figure 4 shows the sensitivity and specificity of the alarm network changing with sample size

and DPI Levels. In Figure 4, we use ‘--’ to denote no pruning. As we can see from Figure 4: (a) The

increase in the sample size results in a continuous performance boost on each level of DPI. This is

largely due to having enough data that improves the estimation of MI; (b) Given the fixed sample

size, with the increase of DPI Level, the sensitivity has continued to rise and the specificity has

continued to decline; (c) When we do not prune the related node set, that is, when no rambling branch

is cut off, the sensitivity is the highest and the specificity is the lowest. That is, the restriction on the

search space is very loose; (d) If is set to 1, we get a very high specificity but a lower sensitivity.

This situation leads to a higher performance penalty; (e) Even if the sample size is very limited, the

FPNS algorithm still shows considerable performance. These results are coincident with the analysis

in the method section.

Figure 4. The neighbor selection results with different sample sizes and different DPI Levels. (a)

sensitivity result in the alarm network; (b) specificity result in the alarm network. ‘--’ denotes no

pruning.

4.2. Comparison with Max-Min Parents and Children(MMPC)

We compare the FPNS algorithm to the MMPC algorithm, which is used in the MMHC

algorithm, using the recommended parameters in the method section.

In Figure 5 and the following sections, suffix ‘M2’, ‘D1’, and ‘D3’ represents different DPI Levels

as parameters of the pruning phase: “’Mode bigger than 2’, ‘DPI Level 1’, ‘DPI Level 3’. These

parameters are typical values, as suggested in Section 2.4. The following explanations and discussions



Figure 4. The neighbor selection results with different sample sizes and different DPI Levels. (a)
sensitivity result in the alarm network; (b) specificity result in the alarm network. ‘–’ denotes
no pruning.

4.2. Comparison with Max-Min Parents and Children(MMPC)

We compare the FPNS algorithm to the MMPC algorithm, which is used in the MMHC algorithm,
using the recommended parameters in the method section.

Genes 2018, 9, 342 14 of 20

In Figure 5 and the following sections, suffix ‘M2’, ‘D1’, and ‘D3’ represents different DPI Levels as
parameters of the pruning phase: “’Mode bigger than 2’, ‘DPI Level 1’, ‘DPI Level 3’. These parameters
are typical values, as suggested in Section 2.4. The following explanations and discussions are based
on these typical values to bring about informative clues for reconstructing GRNs using FPHC.

Figure 5 shows the performance of FPNS and MMPC.

Genes 2018, 9, x FOR PEER REVIEW 14 of 20

are based on these typical values to bring about informative clues for reconstructing GRNs using

FPHC.

Figure 5 shows the performance of FPNS and MMPC.

Figure 5. The sensitivity and specificity results in the alarm network.

When the sample size is very limited, FPNS still shows more reasonable results than MMPC.

Especially when the sample size is less than 500, MMPC selects nearly all the nodes as candidates

due to the limitation of sample size as described in its original paper, as shown by the deep blue and

deep green bar. When the DPI Level equals 1, the specificity is highest in all situations of different

sample sizes. This result confirms the previous conclusion in the method part. As we can see from

Figure 5, the typical threshold of D3 and M2 are suitable parameters, with respect to the sensitivity,

as shown by the dark gray and gray bars. We can see that when the threshold is set to M2, the

sensitivity keeps growing with the sample size while maintaining high specificity, as shown by gray

and light yellow bars. Meanwhile, D3 gets a more stable performance with a smaller gap between the

sensitivity and the specificity. When the sample size is bigger than 2000, the sensitivity of MMPC

exceeds the FPNS algorithm. However, the specificity is still lower than FPNS (D1). Hence, we

conclude that the performances of FPNS are better than MMPC with limited samples corresponding

to sensitivity and specificity, and the performance of FPNS is still competitive in specificity.

Table 1 shows the running time of FPNS and MMPC with different sample sizes. We can see that

the FPNS runs much faster than MMPC. At the same time, the runtime of FPNS does not significantly

increase due to its deterministic property.

Figure 5. The sensitivity and specificity results in the alarm network.

When the sample size is very limited, FPNS still shows more reasonable results than MMPC.
Especially when the sample size is less than 500, MMPC selects nearly all the nodes as candidates due
to the limitation of sample size as described in its original paper, as shown by the deep blue and deep
green bar. When the DPI Level equals 1, the specificity is highest in all situations of different sample
sizes. This result confirms the previous conclusion in the method part. As we can see from Figure 5,
the typical threshold of D3 and M2 are suitable parameters, with respect to the sensitivity, as shown
by the dark gray and gray bars. We can see that when the threshold is set to M2, the sensitivity
keeps growing with the sample size while maintaining high specificity, as shown by gray and light
yellow bars. Meanwhile, D3 gets a more stable performance with a smaller gap between the sensitivity
and the specificity. When the sample size is bigger than 2000, the sensitivity of MMPC exceeds the
FPNS algorithm. However, the specificity is still lower than FPNS (D1). Hence, we conclude that the
performances of FPNS are better than MMPC with limited samples corresponding to sensitivity and
specificity, and the performance of FPNS is still competitive in specificity.

Table 1 shows the running time of FPNS and MMPC with different sample sizes. We can see that
the FPNS runs much faster than MMPC. At the same time, the runtime of FPNS does not significantly
increase due to its deterministic property.

Genes 2018, 9, 342 15 of 20

Table 1. The runtime of FPNS and MMPC.

Sample Size FPNS-D1 MMPC

50 54.2 5.17 × 102

100 51.8 2.31 × 103

200 52.3 3.59 × 103

500 52.2 1.15 × 104

1000 54.7 2.87 × 104

2000 52.6 1.19 × 105

5000 52.8 1.05 × 106

10,000 54.2 7.58 × 106

20,000 53.5 3.19 × 107

50,000 53.1 2.64 × 108

4.3. Comparison Results of Structure Learning

In this section, the structure learning results of MMPC, Hill Climbing (HC), and the FPHC are
compared on different networks of various sample sizes. In the following section, we use HC to denote
the Hill Climbing method.

4.3.1. Performance Comparison on Alarm Network and Hailfinder Network

We compare the performance of FPHC and other methods for the alarm network and Hailfinder
network under different sample sizes. Figure 6 shows the comparison results with limited data and
ample data from the Hailfinder networks. When the sample size is limited to 50, FPHCs with slightly
bigger DPI Level (D3) obtain more true edges, and the learned network is better than MMPC. However,
when the sample size is big enough, FPHCs with a slightly smaller DPI Level (M2) obtain truer edges
and better performance.

Genes 2018, 9, x FOR PEER REVIEW 15 of 20

Table 1. The runtime of FPNS and MMPC.

Sample Size FPNS-D1 MMPC

50 54.2 5.17 × 102

100 51.8 2.31 × 103

200 52.3 3.59 × 103

500 52.2 1.15 × 104

1000 54.7 2.87 × 104

2000 52.6 1.19 × 105

5000 52.8 1.05 × 106

10,000 54.2 7.58 × 106

20,000 53.5 3.19 × 107

50,000 53.1 2.64 × 108

4.3. Comparison Results of Structure Learning

In this section, the structure learning results of MMPC, Hill Climbing (HC), and the FPHC are

compared on different networks of various sample sizes. In the following section, we use HC to

denote the Hill Climbing method.

4.3.1. Performance Comparison on Alarm Network and Hailfinder Network

We compare the performance of FPHC and other methods for the alarm network and Hailfinder

network under different sample sizes. Figure 6 shows the comparison results with limited data and

ample data from the Hailfinder networks. When the sample size is limited to 50, FPHCs with slightly

bigger DPI Level (D3) obtain more true edges, and the learned network is better than MMPC.

However, when the sample size is big enough, FPHCs with a slightly smaller DPI Level (M2) obtain

truer edges and better performance.

Figure 6. The performance comparison of different methods when sample size is 50 and 10,000.

Figure 7 shows the overall comparison of all sample sizes on the Hailfinder network. We can see

from Figure 7 that FPHC outperforms the other methods by all the metrics. When the sample size is

50, FPHC(D3) has the highest F-Score. Then it varies with different sample size. When the sample

size is less than 1000, FPHC (D1) outperforms the others according to the F-Score. With the increase

of sample size, FPHC (D1) gets obvious improvements according to SHD. Obviously, FPHC (D1) get

the best performance according to the SHD and USHD metrics. In addition, FPHC with the general

setting M2 outperforms the MMHC method and does not appear to be much different from

FPHC(D1). The growth in the number of nodes brings the improvement of statistical power. That is,

it improves the performance of hypothesis testing in the flooding phase. The running time of FPHC

Figure 6. The performance comparison of different methods when sample size is 50 and 10,000.

Figure 7 shows the overall comparison of all sample sizes on the Hailfinder network. We can
see from Figure 7 that FPHC outperforms the other methods by all the metrics. When the sample
size is 50, FPHC(D3) has the highest F-Score. Then it varies with different sample size. When the
sample size is less than 1000, FPHC (D1) outperforms the others according to the F-Score. With the
increase of sample size, FPHC (D1) gets obvious improvements according to SHD. Obviously, FPHC
(D1) get the best performance according to the SHD and USHD metrics. In addition, FPHC with the
general setting M2 outperforms the MMHC method and does not appear to be much different from

Genes 2018, 9, 342 16 of 20

FPHC(D1). The growth in the number of nodes brings the improvement of statistical power. That is,
it improves the performance of hypothesis testing in the flooding phase. The running time of FPHC is
more stable than other methods due to the exactly reduced search space. The normalized running time
gradually decreases, except for MMHC. This means the neighbor selection phase can indeed accelerate
the structure learning. Nevertheless, the MMHC algorithm does not go through the same situation.
We also find that when the sample size is larger than 500, the running time of MMHC is longer than
the original Hill climbing. This could be because the heuristic procedure in both neighbor selection
and edge orientation finds it hard to converge.

Genes 2018, 9, x FOR PEER REVIEW 16 of 20

is more stable than other methods due to the exactly reduced search space. The normalized running

time gradually decreases, except for MMHC. This means the neighbor selection phase can indeed

accelerate the structure learning. Nevertheless, the MMHC algorithm does not go through the same

situation. We also find that when the sample size is larger than 500, the running time of MMHC is

longer than the original Hill climbing. This could be because the heuristic procedure in both neighbor

selection and edge orientation finds it hard to converge.

Figure 7. The performance comparison of different sample sizes and methods on the Hailfinder

network.

4.3.2. Comparison Results of Insilco Networks

Finally, we test the FPHC algorithm on simulated networks as shown in Figure 8, which are

sampled from real biological networks. The three bars in the middle show the performance of FPHC

with three typical parameters: D1, D3, M2. Firstly, the running time of FPHC is around one fifth, even

less than that of MMPC and HC. We can find that FPHC (D1 or D3) outperforms other methods in

most cases except for the yeast3 network. FPHC (M2) obtains considerable performance compared to

the MMHC algorithm.

We can see from the Figure 8 that FPHC (D1) almost outperforms the other methods by the

metrics of sensitivity, but it is not the best by the SHD and USHD metrics. The main reason is that the

search space is unduly limited under this parameter. FPHC (D3) outperforms the other method by

the metrics of SHD except for the Yeast3 network. At this point, we can look back to the suggestions

in Section 2.4. For complex networks with limited sample size, the users should select a larger

pruning depth.

In the Yeast3 networks, the CAS algorithm gets the best performance by the metrics of sensitivity

and F-Score. However, while according to the metrics of SHD and USHD, the FPHC algorithm gets

Figure 7. The performance comparison of different sample sizes and methods on the Hailfinder network.

4.3.2. Comparison Results of Insilco Networks

Finally, we test the FPHC algorithm on simulated networks as shown in Figure 8, which are
sampled from real biological networks. The three bars in the middle show the performance of FPHC
with three typical parameters: D1, D3, M2. Firstly, the running time of FPHC is around one fifth,
even less than that of MMPC and HC. We can find that FPHC (D1 or D3) outperforms other methods
in most cases except for the yeast3 network. FPHC (M2) obtains considerable performance compared
to the MMHC algorithm.

We can see from the Figure 8 that FPHC (D1) almost outperforms the other methods by the metrics
of sensitivity, but it is not the best by the SHD and USHD metrics. The main reason is that the search
space is unduly limited under this parameter. FPHC (D3) outperforms the other method by the metrics
of SHD except for the Yeast3 network. At this point, we can look back to the suggestions in Section 2.4.
For complex networks with limited sample size, the users should select a larger pruning depth.

Genes 2018, 9, 342 17 of 20

In the Yeast3 networks, the CAS algorithm gets the best performance by the metrics of sensitivity
and F-Score. However, while according to the metrics of SHD and USHD, the FPHC algorithm gets a
comparable performance; the running time of FPHC is only one-third of that of the CAS algorithm.
This is mainly because the Yeast3 network has 551 edges, 3–5 times more of the other networks.
At this point, using DPI Level 3 as the parameter may not be suitable. However, if we rerun FPHC
and set the parameter to 5, the result is nearly equal to the result of CAS and is 20 percent above the
HC algorithm. In addition, more remarkably, while we have made more of a considerable progress
than the original HC and MMHC algorithms, it still has a fair distance between the predicted networks
and golden standard networks for complex networks such as Yeast3.

Genes 2018, 9, x FOR PEER REVIEW 17 of 20

a comparable performance; the running time of FPHC is only one-third of that of the CAS algorithm.

This is mainly because the Yeast3 network has 551 edges, 3–5 times more of the other networks. At

this point, using DPI Level 3 as the parameter may not be suitable. However, if we rerun FPHC and

set the parameter to 5, the result is nearly equal to the result of CAS and is 20 percent above the HC

algorithm. In addition, more remarkably, while we have made more of a considerable progress than

the original HC and MMHC algorithms, it still has a fair distance between the predicted networks

and golden standard networks for complex networks such as Yeast3.

Figure 8. The comparison results on the DREAM networks.

Figure 8. The comparison results on the DREAM networks.

Genes 2018, 9, 342 18 of 20

5. Conclusions

In this paper, we propose a novel hybrid method FPHC based on the Bayesian network for
GRN reconstruction. FPHC follows the idea of the hybrid method, but uses a new neighbor selection
method based on the flooding-and-pruning strategy in a workable and effective way, and then applies
search-and-score approach on the reduced search space to learn the network structure. Especially,
FPHC provides a new way to reduce the search space, which is more sample efficient. With this,
it improves the Bayesian network learning on limited data, which is common in a biological sense
and gives an opportunity to improve GRN reconstruction with less sample size. In particular, FPNS
runs faster than MMPC on all the networks and datasets. In our experiments, FPHC outperforms the
existing methods on small data sets and is comparable to the state-of-the-art methods with enough data.
Furthermore, experiments were carried out on various biological networks. The results show that
FPHC is more suitable in terms of GRN reconstruction.

As a hybrid method, FPHC uses the similar idea as described in Sparse Candidate and MMHC.
However, different with common constraint-based algorithms, FPHC applies a new way to select
the candidate neighbor set by using the flooding-and-pruning strategy. FPHC adopts a deterministic
approach to identify the neighbors of each node and complete it in one iteration. This makes FPHS run
faster than the other method. FPHC is a workable and effective algorithm on different datasets and
alleviates the problems of the sparse candidate and MMPC. Experiments on various networks and
datasets show that it outperforms the previously presented MMPC algorithm in the phase of neighbor
selection and shows significant improvement on small datasets. In addition, the algorithm uses an
adjustable parameter to satisfy different requirements. Especially as we give reasonable and detailed
guidance on selecting the specified parameter.

Finally, the FPHC algorithm is workable and effective for learning a network structure due to the
accurately reduced search space, especially for small datasets and biological scene. In the future, we
would like to study the FPHC algorithm in terms of local learning and consider integrating multiple
genomic data.

Author Contributions: Funding acquisition, M.G., X.L. Additionally C.W.; Methodology, L.X.; Project
administration, M.G.; Resources, C.W.; Software, L.X.; Supervision, M.G. Additionally X.L.; Writing—original
draft, L.X.; Writing—review & editing, L.X., M.G., X.L. Additionally L.Z.

Funding: This work was funded by the Natural Science Foundation of China (Grant No. 61571163, 61532014,
61671189 and 91735306), and the National Key Research and Development Plan Task of China (Grant No.
2016YFC0901902).

Acknowledgments: We thank the members of bioinformatics group in natural computing lab for discussion of
this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Davidson, E.H.; Rast, J.P.; Oliveri, P.; Ransick, A.; Calestani, C.; Yuh, C.H.; Minokawa, T.; Amore, G.;
Hinman, V.; Arenas-Mena, C.; et al. A genomic regulatory network for development. Science 2002,
295, 1669–1678. [CrossRef] [PubMed]

2. Civelek, M.; Lusis, A.J. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 2014,
15, 34–48. [CrossRef] [PubMed]

3. Lee, T.I.; Rinaldi, N.J.; Robert, F.; Odom, D.T.; Bar-Joseph, Z.; Gerber, G.K.; Hannett, N.M.; Harbison, C.T.;
Thompson, C.M.; Simon, I.; et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science
2002, 298, 799–804. [CrossRef] [PubMed]

4. Long, T.A.; Rady, S.M.; Benfey, P.N. Systems approaches to identifying gene regulatory networks in plants.
Ann. Rev. Cell Dev. Biol. 2008, 24, 81–103. [CrossRef] [PubMed]

5. Qin, S.; Ma, F.; Chen, L. Gene regulatory networks by transcription factors and microrRNAs in breast cancer.
Bioinformatics 2015, 31, 76–83. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/science.1069883
http://www.ncbi.nlm.nih.gov/pubmed/11872831
http://dx.doi.org/10.1038/nrg3575
http://www.ncbi.nlm.nih.gov/pubmed/24296534
http://dx.doi.org/10.1126/science.1075090
http://www.ncbi.nlm.nih.gov/pubmed/12399584
http://dx.doi.org/10.1146/annurev.cellbio.24.110707.175408
http://www.ncbi.nlm.nih.gov/pubmed/18616425
http://dx.doi.org/10.1093/bioinformatics/btu597
http://www.ncbi.nlm.nih.gov/pubmed/25189779

Genes 2018, 9, 342 19 of 20

6. Kaern, M.; Blake, W.J.; Collins, J.J. The engineering of gene regulatory networks. Annu. Rev. Biomed. Eng.
2003, 5, 179–206. [CrossRef] [PubMed]

7. D’Haeseleer, P.; Liang, S.; Somogyi, R. Genetic network inference: From co-expression clustering to reverse
engineering. Bioinformatics 2000, 16, 707–726. [CrossRef] [PubMed]

8. Meyer, P.; Lafitte, F.; Bontempi, G. Minet: A R/bioconductor package for inferring large transcriptional
networks using mutual information. BMC Bioinform. 2008, 9, 461. [CrossRef] [PubMed]

9. Zhang, X.; Zhao, X.M.; He, K.; Lu, L.; Cao, Y.; Liu, J.; Hao, J.K.; Liu, Z.P.; Chen, L. Inferring gene regulatory
networks from gene expression data by path consistency algorithm based on conditional mutual information.
Bioinformatics 2012, 28, 98–104. [CrossRef] [PubMed]

10. Zhang, X.; Zhao, J.; Hao, J.K.; Zhao, X.M.; Chen, L. Conditional mutual inclusive information enables accurate
quantification of associations in gene regulatory networks. Nucleic Acids Res. 2015, 43, e31. [CrossRef]
[PubMed]

11. Margolin, A.A.; Nemenman, I.; Basso, K.; Wiggins, C.; Stolovitzky, G.; Dalla Favera, R.; Califano, A.
Aracne: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context.
BMC Bioinform. 2006, 7 (Suppl. 1), S7. [CrossRef] [PubMed]

12. Butte, A.J.; Kohane, I.S. Mutual information relevance networks: Functional genomic clustering using
pairwise entropy measurements. In Proceedings of the Pacific Symposium on Biocomputing, Honolulu, HI,
USA, 4–9 January 2000; pp. 415–426.

13. Werhli, A.V.; Grzegorczyk, M.; Husmeier, D. Comparative evaluation of reverse engineering gene regulatory
networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics 2006,
22, 2523–2531. [CrossRef] [PubMed]

14. Thompson, D.; Regev, A.; Roy, S. Comparative analysis of gene regulatory networks: From network
reconstruction to evolution. Annu. Rev. Cell Dev. Biol. 2015, 31, 399–428. [CrossRef] [PubMed]

15. Huang, Y.; Tienda-Luna, I.M.; Wang, Y. A survey of statistical models for reverse engineering gene regulatory
networks. IEEE Signal Process. Mag. 2009, 26, 76–97. [CrossRef] [PubMed]

16. Shen, B.; Allen, W.B.; Zheng, P.; Li, C.; Glassman, K.; Ranch, J.; Nubel, D.; Tarczynski, M.C. Expression of
ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol. 2010, 153, 980–987. [CrossRef]
[PubMed]

17. Gardner, T.S.; di Bernardo, D.; Lorenz, D.; Collins, J.J. Inferring genetic networks and identifying compound
mode of action via expression profiling. Science 2003, 301, 102–105. [CrossRef] [PubMed]

18. Barman, S.; Kwon, Y.K. A novel mutual information-based Boolean network inference method from
time-series gene expression data. PLoS ONE 2017, 12, e0171097. [CrossRef] [PubMed]

19. Higa, C.H.; Andrade, T.P.; Hashimoto, R.F. Growing seed genes from time series data and thresholded
Boolean networks with perturbation. IEEE/ACM Trans. Comput. Biol. Bioinform. 2013, 10, 37–49. [CrossRef]
[PubMed]

20. Li, P.; Zhang, C.; Perkins, E.J.; Gong, P.; Deng, Y. Comparison of probabilistic Boolean network and dynamic
Bayesian network approaches for inferring gene regulatory networks. BMC Bioinform. 2007, 8 (Suppl. 7), S13.
[CrossRef] [PubMed]

21. Friedman, N.; Nachman, I.; Peér, D. Learning Bayesian network structure from massive datasets: The “Sparse
Candidate” algorithm. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,
Stockholm, Sweden, 30 July–1 August 1999; Morgan Kaufmann Publishers Inc.: Stockholm, Sweden, 1999;
pp. 206–215.

22. Friedman, N.; Linial, M.; Nachman, I.; Pe’er, D. Using Bayesian networks to analyze expression data.
J. Comput. Biol. 2000, 7, 601–620. [CrossRef] [PubMed]

23. Murphy, K.; Mian, S. Modelling Gene Expression Data Using Dynamic Bayesian Networks; Technical Report;
Computer Science Division, University of California: Berkeley, CA, USA, 1999.

24. Friedman, N.; Koller, D. Being Bayesian about network structure. A Bayesian approach to structure discovery
in Bayesian networks. Mach. Learn. 2003, 50, 95–125. [CrossRef]

25. Chen, T.; He, H.L.; Church, G.M. Modeling gene expression with differential equations. In Proceedings of
the Pacific Symposium on Biocomputing, Mauna Lani, HI, USA, 4–9 January 1999; pp. 29–40.

26. Li, Z.; Li, P.; Krishnan, A.; Liu, J. Large-scale dynamic gene regulatory network inference combining
differential equation models with local dynamic Bayesian network analysis. Bioinformatics 2011,
27, 2686–2691. [CrossRef] [PubMed]

http://dx.doi.org/10.1146/annurev.bioeng.5.040202.121553
http://www.ncbi.nlm.nih.gov/pubmed/14527313
http://dx.doi.org/10.1093/bioinformatics/16.8.707
http://www.ncbi.nlm.nih.gov/pubmed/11099257
http://dx.doi.org/10.1186/1471-2105-9-461
http://www.ncbi.nlm.nih.gov/pubmed/18959772
http://dx.doi.org/10.1093/bioinformatics/btr626
http://www.ncbi.nlm.nih.gov/pubmed/22088843
http://dx.doi.org/10.1093/nar/gku1315
http://www.ncbi.nlm.nih.gov/pubmed/25539927
http://dx.doi.org/10.1186/1471-2105-7-S1-S7
http://www.ncbi.nlm.nih.gov/pubmed/16723010
http://dx.doi.org/10.1093/bioinformatics/btl391
http://www.ncbi.nlm.nih.gov/pubmed/16844710
http://dx.doi.org/10.1146/annurev-cellbio-100913-012908
http://www.ncbi.nlm.nih.gov/pubmed/26355593
http://dx.doi.org/10.1109/MSP.2008.930647
http://www.ncbi.nlm.nih.gov/pubmed/20046885
http://dx.doi.org/10.1104/pp.110.157537
http://www.ncbi.nlm.nih.gov/pubmed/20488892
http://dx.doi.org/10.1126/science.1081900
http://www.ncbi.nlm.nih.gov/pubmed/12843395
http://dx.doi.org/10.1371/journal.pone.0171097
http://www.ncbi.nlm.nih.gov/pubmed/28178334
http://dx.doi.org/10.1109/TCBB.2012.169
http://www.ncbi.nlm.nih.gov/pubmed/23702542
http://dx.doi.org/10.1186/1471-2105-8-S7-S13
http://www.ncbi.nlm.nih.gov/pubmed/18047712
http://dx.doi.org/10.1089/106652700750050961
http://www.ncbi.nlm.nih.gov/pubmed/11108481
http://dx.doi.org/10.1023/A:1020249912095
http://dx.doi.org/10.1093/bioinformatics/btr454
http://www.ncbi.nlm.nih.gov/pubmed/21816876

Genes 2018, 9, 342 20 of 20

27. Henriques, D.; Rocha, M.; Saez-Rodriguez, J.; Banga, J.R. Reverse engineering of logic-based differential
equation models using a mixed-integer dynamic optimization approach. Bioinformatics 2015, 31, 2999–3007.
[CrossRef] [PubMed]

28. Shmulevich, I.; Dougherty, E.R.; Kim, S.; Zhang, W. Probabilistic Boolean networks: A rule-based uncertainty
model for gene regulatory networks. Bioinformatics 2002, 18, 261–274. [CrossRef] [PubMed]

29. Koivisto, M.; Sood, K. Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res. 2004,
5, 549–573.

30. De Campos, C.P.; Zeng, Z.; Ji, Q. Structure learning of Bayesian networks using constraints. In Proceedings of
the 26th Annual International Conference on Machine Learning, ICML’09, Montreal, QC, Canada, 14–18 June
2018; ACM: New York, NY, USA, 2009.

31. Yehezkel, R.; Lerner, B. Bayesian network structure learning by recursive autonomy identification. J. Mach.
Learn. Res. 2009, 10, 1527–1570. [CrossRef]

32. Fan, X.; Malone, B.M.; Yuan, C. Finding optimal Bayesian network structures with constraints learned
from data. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI’14),
Quebec City, QC, Canada, 23–27 July 2014; Zhang, N., Tian, J., Eds.; AUAI Press: Quebec City, QC, Canada,
2014; pp. 200–209.

33. Yao, T.S.; Choi, A.; Darwiche, A. Learning Bayesian network parameters under equivalence constraints.
Artif. Intell. 2017, 244, 239–257. [CrossRef]

34. Cooper, G.F.; Herskovits, E. A Bayesian method for the induction of probabilistic networks from data.
Mach. Learn. 1992, 9, 309–347. [CrossRef]

35. Chickering, D.M. Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2002,
2, 445–498. [CrossRef]

36. Heckerman, D.; Geiger, D.; Chickering, D.M. Learning Bayesian networks—The combination of knowledge
and statistical-data. Mach. Learn. 1995, 20, 197–243. [CrossRef]

37. Nair, A.; Chetty, M.; Wangikar, P.P. Improving gene regulatory network inference using network topology
information. Mol. Biosyst. 2015, 11, 2449–2463. [CrossRef] [PubMed]

38. Tsamardinos, I.; Brown, L.E.; Aliferis, C.F. The Max-Min Hill-Climbing Bayesian network structure learning
algorithm. Mach. Learn. 2006, 65, 31–78. [CrossRef]

39. Xing, L.L.; Guo, M.Z.; Liu, X.Y.; Wang, C.Y.; Wang, L.; Zhang, Y. Reconstructing gene regulatory network
based on candidate auto selection method. In Proceedings of the 2016 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18 December 2016; pp. 235–241.

40. Polyanskiy, Y.; Wu, Y. A note on the strong data-processing inequalities in Bayesian networks. Statistics 2015,
17, 448–454.

41. Jang, I.S.; Margolin, A.; Califano, A. Haracne: Improving the accuracy of regulatory model reverse
engineering via higher-order data processing inequality tests. Interface Focus 2013, 3, 20130011. [CrossRef]
[PubMed]

42. De Campos, L.M. A scoring function for learning Bayesian networks based on mutual information and
conditional independence tests. J. Mach. Learn. Res. 2006, 7, 2149–2187.

43. Schaffter, T.; Marbach, D.; Floreano, D. Genenetweaver: In silico benchmark generation and performance
profiling of network inference methods. Bioinformatics 2011, 27, 2263–2270. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/bioinformatics/btv314
http://www.ncbi.nlm.nih.gov/pubmed/26002881
http://dx.doi.org/10.1093/bioinformatics/18.2.261
http://www.ncbi.nlm.nih.gov/pubmed/11847074
http://dx.doi.org/10.1007/11815921_16
http://dx.doi.org/10.1016/j.artint.2015.05.007
http://dx.doi.org/10.1007/BF00994110
http://dx.doi.org/10.1162/153244302760200696
http://dx.doi.org/10.1007/BF00994016
http://dx.doi.org/10.1039/C5MB00122F
http://www.ncbi.nlm.nih.gov/pubmed/26126758
http://dx.doi.org/10.1007/s10994-006-6889-7
http://dx.doi.org/10.1098/rsfs.2013.0011
http://www.ncbi.nlm.nih.gov/pubmed/24511376
http://dx.doi.org/10.1093/bioinformatics/btr373
http://www.ncbi.nlm.nih.gov/pubmed/21697125
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Mutual Information
	Data Processing Inequality and the Concept of DPI Level
	The Flooding-Pruning Neighbor Selection Algorithm
	Flooding Phase
	Pruning Phase

	Choice of Tuning Parameter
	Example Trace
	Flooding-Pruning Hill-Climbing-Structure Learning
	Time Complexity of FPNS Algorithms

	Data and Performance Measures
	Used Networks and Data Generation
	Performance Measures

	Results and Discussion
	Effectiveness of FPNS
	Comparison with Max-Min Parents and Children(MMPC)
	Comparison Results of Structure Learning
	Performance Comparison on Alarm Network and Hailfinder Network
	Comparison Results of Insilco Networks

	Conclusions
	References

