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Abstract: Productivity of wheat (Triticum aestivum) is markedly affected by high temperature and
nitrogen deficiency. Identifying the functional proteins produced in response to these multiple stresses
acting in a coordinated manner can help in developing tolerance in the crop. In this study, two wheat
cultivars with contrasting nitrogen efficiencies (N-efficient VL616 and N-inefficient UP2382) were
grown in control conditions, and under a combined stress of high temperature (32 ◦C) and low
nitrogen (4 mM), and their leaf proteins were analysed in order to identify the responsive proteins.
Two-dimensional electrophoresis unravelled sixty-one proteins, which varied in their expression in
wheat, and were homologous to known functional proteins involved in biosynthesis, carbohydrate
metabolism, energy metabolism, photosynthesis, protein folding, transcription, signalling, oxidative
stress, water stress, lipid metabolism, heat stress tolerance, nitrogen metabolism, and protein
synthesis. When exposed to high temperature in combination with low nitrogen, wheat plants
altered their protein expression as an adaptive means to maintain growth. This response varied
with cultivars. Nitrogen-efficient cultivars showed a higher potential of redox homeostasis, protein
stability, osmoprotection, and regulation of nitrogen levels. The identified stress-responsive proteins
can pave the way for enhancing the multiple-stress tolerance in wheat and developing a better
understanding of its mechanism.
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1. Introduction

The burgeoning global population, on one hand, and a decrease in plant productivity, on the other,
have led the world to a situation of food crisis [1]. Anthropogenic turbulences in the environment are
the main setbacks to the global food production, among which elevated temperature deserves special
mention [2–4]. Atmospheric temperature has been estimated to rise by 0.2 ◦C per decade, attaining a
rise of 1.8–4.0 ◦C by the end of this century [5]. As per the recent report of Intergovernmental Panel on
Climate Change, a temperature rise of only 1 ◦C above pre-industrial era is likely to have a negative
impact on the yield of major crops (wheat, rice, and maize) in both tropical and temperate regions [6].

Genes 2017, 8, 356; doi:10.3390/genes8120356 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-1273-9158
https://orcid.org/0000-0003-4099-7338
http://dx.doi.org/10.3390/genes8120356
http://www.mdpi.com/journal/genes


Genes 2017, 8, 356 2 of 23

It is estimated that Indian lowlands, that produce almost 15% of global production, will change into
heat-stressed and short-season production places [7].

Deficiency of inorganic nitrogen is another key limiting factor in agricultural productivity.
The increased crop productivity has been associated with a 20-fold increase in the global use of
nitrogen (N) fertilizer during the past five decades [8], and this is expected to increase by 3-fold by the
year 2050 [9].

Although increase in cereal productivity has matched population growth during the past years,
it is a matter of concern how the predicted environmental conditions will affect crop production in
future [10,11]. The problems associated with plant productivity are due to multiple stresses acting in a
coordinated manner. Studies have focused largely on response mechanisms of plants to single-stress
conditions [12,13], and the combinational effects of different stresses are still poorly understood.

Stress-responsive genes are often identified by expression profiling, following exposure to high
level of stresses, leading to identification of numerous signalling components and downstream
effectors [14–17]. Abiotic stress experiments have identified processes, and genes involved in plant
survival under extreme conditions [18,19]. Despite these successes, there are few examples of extension
of such research to crop species [20,21].

Wheat is the most widely grown crop of the world in terms of the total harvested area [22], and
currently fulfils about 20 per cent of the human calorie consumption [23]. Production of wheat is
affected markedly by high temperature [24–26], and low nitrogen [27]. Asseng et al. [28] reported
about 6% decrease in global wheat production for each degree of temperature increase. Elevated
temperature alters uptake and allocation of N, thus intensifying N deficiency in plants [29]. Nitrogen
stress also restricts biomass accumulation and overall growth in wheat [30]. It is therefore desirable to
examine the response of wheat plants to the combined stress at different levels, in order to develop
multiple-stress-tolerant smart plants This study is focused on proteins expressed in wheat cultivars
exposed to a combined stress of high temperature and low nitrogen, with a hope that it will help in
determining a regulatory network and developing tolerance to stress conditions in this crop.

2. Materials and Methods

2.1. Plant Culture and Treatments

In an earlier experiment, N-efficient and N-inefficient genotypes of wheat were identified on
the basis of physiological and biochemical analyses [31]. Healthy and authenticated seeds of the
N-efficient (Triticum aestivum cv. VL616) and N-inefficient (T. aestivum cv. UP2382) wheat cultivars were
procured from Vivekanand Parvatiya Krishi Anusandhan Sansthan (Almora, India) and Gobind
Ballabh University of Agriculture and Technology (Pantnagar, India), respectively. These were
surface-sterilized with 0.1% mercuric chloride for 1–3 min, rinsed thoroughly with distilled water,
and germinated in plastic pots filled with soil up to 7 cm below their mouth. Plants were grown in
pots in open top chambers at Indian Agricultural Research Institute, New Delhi, India. Nine pots
were kept in each chamber with 10 plants in every pot. A control set of potted plants was provided
with an optimum level of N (10 mM) and ambient temperature (26 ◦C), while the treatment set was
grown under conditions of low N levels (4 mM) and high temperature (32 ◦C). The temperature was
regulated by infrared heating tubes. Sampling of leaf with three biological and thee technical replicates
was done in morning hours at 45-day growth stage (Figure 1). The sampled leaves were immediately
dipped in liquid nitrogen and stored at −80 ◦C until proteomic analysis.
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Figure 1. Plants of wheat cultivar VL616 grown under (a) control, and (b) treatment conditions, and 
cultivar UP2382 grown under (c) control, and (d) treatment conditions at the time of sampling. 
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Proteins were extracted from leaf samples by the phenol method of Isaacson et al. [32]. Two 
grams of leaf material was ground to fine powder in liquid nitrogen and suspended in 10 mL of 
extraction buffer containing 50 mM HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid], 2% 
β-mercaptoethanol, 700 mM sucrose, 1 mM PMSF (Phenylmethanesulfonyl fluoride), 50 mM EDTA 
(Ethylenediaminetetraacetic acid) and 100 mM KCl, with pH adjusted to 7.5. Fifteen millilitres of 
phenol was added, and the solution mixed in a cold room rocker for 30 min. The solution was then 
subjected to centrifugation at 3000× g for 10 min at 4 °C. The top phenolic phase was carefully 
recovered in a separate tube, and incubated at −20 °C overnight for precipitation after adding 15 mL 
of ice-cold 0.1 M ammonium acetate solution. Proteins were pelleted by centrifuging at 6000× g for 15 
min at 4 °C, and the pellet washed first by methanol, then two times with acetone. The resultant pellet 
was centrifuged at 3000× g after each washing step, then dried and solubilised in buffer containing  
2 M thiourea, 7 M urea, 4% CHAPS (3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate 
hydrate), and 50 mM DTT (Dithiothreitol). Proteins in the samples were quantified by the Bradford 
method, using bovine serum albumin (Sigma-Aldrich, USA) as standard. 
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Figure 1. Plants of wheat cultivar VL616 grown under (a) control, and (b) treatment conditions, and
cultivar UP2382 grown under (c) control, and (d) treatment conditions at the time of sampling.

2.2. Protein Extraction

Proteins were extracted from leaf samples by the phenol method of Isaacson et al. [32].
Two grams of leaf material was ground to fine powder in liquid nitrogen and suspended in 10 mL
of extraction buffer containing 50 mM HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid],
2% β-mercaptoethanol, 700 mM sucrose, 1 mM PMSF (Phenylmethanesulfonyl fluoride), 50 mM
EDTA (Ethylenediaminetetraacetic acid) and 100 mM KCl, with pH adjusted to 7.5. Fifteen millilitres
of phenol was added, and the solution mixed in a cold room rocker for 30 min. The solution was
then subjected to centrifugation at 3000× g for 10 min at 4 ◦C. The top phenolic phase was carefully
recovered in a separate tube, and incubated at −20 ◦C overnight for precipitation after adding 15 mL of
ice-cold 0.1 M ammonium acetate solution. Proteins were pelleted by centrifuging at 6000× g for 15 min
at 4 ◦C, and the pellet washed first by methanol, then two times with acetone. The resultant pellet
was centrifuged at 3000× g after each washing step, then dried and solubilised in buffer containing
2 M thiourea, 7 M urea, 4% CHAPS (3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate
hydrate), and 50 mM DTT (Dithiothreitol). Proteins in the samples were quantified by the Bradford
method, using bovine serum albumin (Sigma-Aldrich, USA) as standard.

2.3. Two-Dimensional Gel Electrophoresis

Two-dimensional electrophoresis was carried out following the method of O’Farrel [33].
An immobiline dry strip gel (11 cm, pH 4–7; Bio-Rad Laboratories, Inc., Hercules, CA, USA) was
rehydrated at 20 ◦C for 14 h in 200 µL of sample containing 400 µg protein. Isoelectric focusing was
carried out in a isoelectric focusing apparatus (PROTEAN® IEF system, Bio-Rad Laboratories, Inc.,
Hercules, CA, USA). The voltages applied were 250 V for 1 h, 500 V for 1 h, 1000 V for 2 h, 2000 V for
2 h, linear increase of 8000 V for 18 h and 500 V for 1 h. After the completion of isoelectric focusing, the
strips were subjected to reduction by the reduction buffer containing 50 mM Tris (pH 8.8), 8 M urea,
20% glycerol, 2% SDS (Sodium Dodecyl Sulfate) and 130 mM DTT and then alkylated for 15 min by
alkylation buffer containing Tris (pH 8.8), 8 M urea, 20% glycerol, 2% SDS and 135 mM iodoacetamide.
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The SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis) was carried out in
vertical large format electrophoresis cell (PROTEAN® Plus Dodeca Cell, Bio-Rad Laboratories, Inc.,
Hercules, CA, USA) for separation of proteins and focusing, using 12% SDS at constant voltage of
250 V. Gels were stained with Coomassie Brilliant Blue dye, and then destained by washing several
times with MilliQ water (Milli-Q® Reference, Merck Millipore, Billerica, MA, USA).

2.4. Gel Analysis

Images of the gel were digitised using gel documentation system (GS-900™ Calibrated
Densitometer, Bio-Rad Laboratories, Inc., Hercules, CA, USA) for further analysis based on spot
density, relative abundance, and location (for pH and mass). The image analysis was performed
with image master PDQuest software (version 8.0, Bio-Rad Laboratories, Inc., Hercules, CA, USA).
The optimized parameters were as follows: saliency 2.0, partial threshold 4 and minimum area 50.
Normalization of each spot value was done in terms of percentage of the total volume of all the gel
spots for rectification of unevenness, due to quantitative disparity in spot intensities. Spots were
quantified on the basis of their relative volume, which was determined by the ratio of the volume
of a single spot to the whole set of spots. Spots with more than 2-fold change in volume during the
treatment or with significant variation between the control and other treatments, as determined by the
paired Student’s t-test (p ≤ 0.05), were regarded as the treatment-responsive proteins.

2.5. In-Gel Digestion and Protein Identification

Protein spots with more than two-fold change in their intensity were excised from gels and
dehydrated with 50 µL of solution, containing acetonitrile and 50 mM ammonium bicarbonate in
2:1 ratio, for 5 min. The dehydrated protein spots were reduced with 15 mM DTT at 60 ◦C for 1 h
and subjected to alkylation by 100 mM isoamyl alcohol in dark for 15 min, rehydrated with 50 mM
ammonium bicarbonate and then dried in a speed vac. Dried gel slices were subjected to rehydration
with 15 µL of working trypsin (Sequencing grade, Promega, Madison, WI, USA) at 37 ◦C overnight.
Supernatant was taken, and 20% acetonitrile + 1% formic acid were added to the remaining gel slice
for further extraction. Final supernatant was dried in a speed vac, until the volume was reduced to
25–50 µL. The final volume was analysed with mass spectrometer (4800 MALDI TOF/TOF™, Applied
Biosystems/MDS SCIEX, Foster City, CA, USA), with the peptide tolerance of 150 ppm and peptide
charge of 1+. Significant hits, as defined by MASCOT server probability analysis (p < 0.05), were
accepted. Peptides were searched with NCBInr database, taxonomy of green plants, trypsin of the
digestion enzyme, one missed cleavage site, partial modification of cysteine carboamidomethylated
and methionine oxidized. NCBI [34] and UniProt [35] databases were used to assemble the functional
information of identified proteins. On the other hand, pTARGET and UniProt databases were used to
recognize the sub-cellular location of identified proteins [36]. Identified proteins were categorized on
the basis of their biological functions.

2.6. Statistical Analyses

All experiments in the present study were performed from pool of three biological and three
experimental replicates. A two-tailed Student’s t-test with significance of 95% was performed on
normalised value of protein spots, with the help of SPSS software (SPSS for Windows, Version 16.0.
SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Protein Profiling and Spatial Categorization of Differential Protein Expression

During two-dimensional gel electrophoresis (2-DE), leaf proteins of the two wheat varieties were
distributed throughout the gel. The staining of gels detected 484 protein spots. Of these, 61 (12%)
proteins were differentially expressed with more than two-fold change from the control; 42 (69%) of
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them were upregulated and 19 (31%) downregulated. These differentially expressed proteins, along
with their position in 2-DE profiles, are illustrated in Figure 2. They belonged to different subcellular
sites (Figure 3); most of them to chloroplast (34%), then to cytosol (20%), nucleus (17%), mitochondrion
(12%), and ribosome (10%). A few of them also belonged to peroxisome (2%), membrane (2%), cell
wall (2%), and endoplasmic reticulum (ER) (1%).
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3.2. Functional Cataloguing and Expression-Profile Analysis

Among the 61 identified proteins, 55 (76%) exhibited homology with proteins of known functions,
while the rest 6 (24%) were unknown. Based on their association with physiological processes,
these proteins were categorized into eleven major groups (Figure 4), viz., nitrogen metabolism
(7%), translation and protein degradation (14%), transcription (9%), fatty acid metabolism (2%),
energy metabolism (4%), carbohydrate metabolism (13%), oxidative stress (13%), osmoprotection
(5%), photosynthesis (15%), protein stabilization (9%), and unclassified function (9%). Details of these
proteins, including the relative spot intensities, are shown in Table 1.
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4. Discussion

4.1. Proteins Related to Nitrogen Metabolism

Nitrogen metabolism often correlates with the nutritional status of field crops, and plants with
higher nitrogen-use efficiency (NUE) normally have higher yields and protein contents [37]. Nitrogen
limitation, as well as high temperature, affects all components related to NUE, including morphology
of root systems, soil mineral uptake, and symbiotic nitrogen fixation [38]. Plants thus need to
maintain nitrogen homeostasis within the body under such stressful conditions. In our study, proteins
involved in nitrogen sensing and assimilation exhibited diverse expression patterns during treatments.
One of the differentially-expressed proteins was identified as PII-like protein, an important signal
transduction protein that senses and regulates N and C assimilation [39]. This (spot 6) increased in
intensity with maximal upregulation in the N-efficient cultivar, possibly to regulate N levels under
low N conditions for maintaining an optimal plant growth. In addition, two N-assimilating proteins,
glutamine synthetase (spot 1) and ferredoxin-dependent glutamate synthase 2 (spot 11), exhibited
a change in abundance. These enzymes catalyse two primary steps of the ammonia-assimilation
pathway; the former accelerates the condensation of ammonia and glutamate to form glutamine,
while the latter catalyses the synthesis of glutamate from glutamine and 2-oxoglutarate through
transamidation reaction. Both of them were upregulated, probably to maintain N levels in leaves and
achieve osmotic homeostasis via glutamate-based synthesis of proline. Our results are consistent with
earlier works that showed increased level of these enzymes under low N [40–42] and drought [43]
conditions. The overexpression of genes encoding these N-assimilating proteins has been associated
with tolerance of plants under salinity [44] and drought stress [45]. Another N-regulatory protein,
glucosamine-fructose-6-phosphate amino-transferase, which plays a key role in glutamine metabolic
process and in the cell wall-chitin biosynthesis process, was upregulated (spot 28) in the stressed
wheat plants.
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Table 1. Identification, sub-cellular localization and quantitative analysis of differentially-expressed leaf proteins of nitrogen-efficient (VL616) and nitrogen-inefficient
(UP2382) cultivars of wheat under the combined effect of high temperature (32 ◦C) and low nitrogen (4 mM).

S.N. Accession No. Name of Protein Mr (Da) Pi M. SCO
No. of

Matched
Peptides

Location Process
Mode of

Regulation
Relative Spot Intensity

UP2382 VL616

1 Q45NB2 Glutamine synthetase 46,852 5.96 120 9 Chloroplast
Mitochondria

Nitrogen
metabolism Upregulated
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Table 1. Cont.

S.N. Accession No. Name of Protein Mr (Da) Pi M. SCO
No. of

Matched
Peptides

Location Process
Mode of

Regulation
Relative Spot Intensity

UP2382 VL616

9 P52589 Protein disulfide isomerase 56,921 5.01 149 3 ER Protein
stabilization Upregulated
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ribonucleoprotein A, 
chloroplast precursor 

28,326 4.75 165 5 Nucleus 
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Downregulated 

 

10 G9BRR4 Heme oxygenase 4 32,415 5.81 62 6 Chloroplast Oxidative
stress Upregulated
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Table 1. Cont.

S.N. Accession No. Name of Protein Mr (Da) Pi M. SCO
No. of

Matched
Peptides

Location Process
Mode of

Regulation
Relative Spot Intensity

UP2382 VL616

18 P34791 Chloroplast-localised
cyclophilin 26,527 8.48 146 6 Chloroplast Protein

stability Upregulated
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Nucleus 
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Triosephosphate 
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31,955 6.00 148 14 

Chloroplast, 
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Ribosome, 
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Translation elongation 

factor-Tu 
52,275 5.09 99 9 

Plastid, 
Mitochondria, 

Cytosol 
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Upregulated 

 

25 -- Unknown 9,371 6.25 58 3 - - Upregulated 

 

26 -- Predicted protein 6,649 4.62 42 2 - - Downregulated 

 

19 Q95H51 Ribosomal protein L14 13,716 9.11 54 8 Ribosome Protein
synthesis Downregulated
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23 P60577 Ribosomal protein S19 10,589 11.0 50 15
Ribosome,

Chloroplast,
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27 P46285 Sedoheptulose-1,7-bisphosphatase 42,068 6.26 153 15 Chloroplast Calvin cycle Downregulated
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27 
P46285 

 
Sedoheptulose-1,7-

bisphosphatase 
42,068 6.26 153 15 Chloroplast Calvin cycle Downregulated 

 

28 
M7ZTK2 

 

Glucosamine-fructose-
6-phosphate 

aminotransferase 
73,834 6.98 47 6 Cytosol 

Nitrogen 
metabolism 

Upregulated 

 

29 
Q9ZSR6 

 
Small heat shock 

protein 
25,622 9.20 61 7 Nucleus 

Protein 
stabilization 

Upregulated 

 

30 
C1K2Q2 

 
Heat shock responsive 

transcription factor 
38,362 5.21 54 5 Nucleus 

Protein 
stabilization 

Upregulated 

 

31 
A5YVV3 

 

Glyceraldehyde 3-
phosphate 

dehydrogenase 
42,766 7.62 141 4 

Plastid, 
Mitochondria 

Glycolysis Downregulated 

 

32 Q9FKW6 

RecName: 
Full=Ferredoxin--
NADP reductase, 

chloroplastic 

41,322 8.54 139 7 Chloroplast  Photosynthesis Upregulated 

 

33 
P11383 

 

Ribulose-1,5-
bisphosphate 

carboxylase/oxygenase 
large subunit 

53,901 6.22 351 18 Chloroplast Photosynthesis Downregulated 

 

34 
W5G9W6 

 
Chlorophyll a-b 

binding protein 1 
24,836 5.11 112 6 Chloroplast Photosynthesis Upregulated 

 

35 
A0A1D5TQL0 

 
Cu/Zn superoxide 

dismutase 
20,352 5.35 130 4 Cytosol Oxidative stress Upregulated 

 

28 M7ZTK2 Glucosamine-fructose-6-
phosphate aminotransferase 73,834 6.98 47 6 Cytosol Nitrogen

metabolism Upregulated
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34 W5G9W6 Chlorophyll a-b binding
protein 1 24,836 5.11 112 6 Chloroplast Photosynthesis Upregulated
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Rubisco activase 

chloroplast precursor 
51,786 5.43 138 4 Chloroplast Photosynthesis Upregulated 

 

39 P83970 
 

ATPase 110,868 6.50 169 9 
Plasma 

membrane, 
tonoplast 

Energy 
metabolism 

Upregulated 
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P11383 

 

Ribulose-1,5-
bisphosphate 

carboxylase/oxygenase 
small subunit 

52,235 6.41 45 8 Chloroplast Photosynthesis Downregulated 

 

41 A5BMQ9 
Hypothetical protein 

VITISV_041859 
50,670 6.25 38 5 - - Downregulated 

 

42 D0TZF0 Isoamylase precursor 75,052 6.40 52 2 Cytosol Carbohydrate 
metabolism 

Upregulated 

 

43 P69326 Ubiquitin 4,693 8.90 72 6 Cytosol 
Protein 

degradation 
Upregulated 

 

37 P56765 Acetyl-CoA carboxylase
β subunit 40,207 9.02 53 5 Cytoplasm,

plastid
Fatty acid

metabolism Upregulated
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4.2. Proteins Related to Photosynthesis

Photosynthesis is the key process that determines growth and development of plants, and
encompasses reactions catalysed and regulated by proteins in the chloroplast. Four proteins
related to photosynthesis varied in expression during the combined stress. One of them was
identified as chlorophyll a/b binding protein, which confers stability to light-harvesting complexes
(LHC) of photosystems. This protein (spot 34) increased in abundance under stress conditions,
substantiating some earlier findings with reference to abiotic stresses [46,47]. The stress also affected
the oxygen-evolving complex (OEC) involved in photo-oxidation rate of water. Photosystem II
oxygen-evolving complex protein 1 (spot 5) increased, possibly to maintain stability of the complex.
Parallel results were reported earlier in food crops, including rice [48], barley [49,50], wheat [50,51],
and tomato [52] exposed to different abiotic stresses. Further, electron transport in chloroplast
was also affected; spot intensity of FNR (spot 32), an enzyme that catalyses transfer of electrons
from photosystem I (PSI) to ferredoxin, besides contributing to antioxidant defence, N fixation, and
isoprenoid biosynthesis [53], was also increased.

Combined stress of high temperature and low nitrogen affected both the abundance and mode
of regulation of Rubisco, which catalyses CO2 fixation and is one of the primary determinants of
photosynthetic rate. The decrease in its spot intensity (spots 40, 46, 52) could be due to its degradation.
Our results are in line with some previous findings in wheat grown under high temperature [54]
and drought conditions [55]. Environmental stress, particularly high temperature, not only degrades
Rubisco, but also accelerates its inactivation by addition of inhibitory sugars to its active site. Moreover,
Rubisco has a relatively low turnover number, compared with the other Calvin cycle enzymes. Activity
of Rubisco is mainly regulated by a catalytic chaperone (Rubisco activase), which catalyses removal
of inhibitory sugars from its active site, switching the enzyme to active mode [56]. In the present
study, Rubisco activase increased significantly in abundance under stressful conditions signifying its
potential to regulate Rubisco activity (spot 38). These results substantiate the earlier ones dealing with
the effect of high temperature on rice [57] and Carissa spinarum [58], and of N deficiency on wheat [59].

4.3. Proteins Associated with Osmoregulation

One of the primary effects of high temperature is alteration of turgor within cells, often reducing
plant growth and productivity. Plants synthesise compatible solutes that help in maintaining cell
turgor, regulating redox homeostasis and stabilising proteins and other cell contents [60]. Proline
functions in plants as an osmoprotectant, besides assisting in protein stabilization and buffering of
redox potential [61]. It is synthesized mainly from glutamate by enzyme pyrroline-5-carboxylate
synthetase, which catalyses conversion of glutamate to glutamic-γ-semialdehyde, which is reduced by
pyrroline-5-carboxylate reductase to proline [62]. Pyroline-5-carboxylate synthetase enzyme was found
to increase, implying accumulation of proline to decipher stress tolerance (spot 4). Histidine kinase
(CRE1), a cytokinin receptor involved in cytokinin signalling and regarded as an osmosensor [63],
was also upregulated (spot 8), possibly to confer osmotic balance during water-deficient conditions.
Another protein with a role in osmoprotection [64] was identified as abscisic acid-inducible protein
kinase (spot 16).

4.4. Proteins Related to Antioxidant Defense System

Overproduction of reactive oxygen species (ROS) due to abiotic stress can oxidize life-supporting
biomolecules, such as lipids, proteins, carbohydrates, and nucleic acids. To regulate the oxidative
homeostasis, plants possess a well-organised antioxidant defence system that helps in scavenging
of ROS. Six differentially-expressed proteins, namely, superoxide dismutase (spot 35), ascorbate
peroxidase (spot 15), glutathione transferase (spot 2), glyoxalase (spot 14), heme oxygenase (spot
10), and flavonol synthase (spot 20), were involved in antioxidant defence. Superoxide dismutase
forms the first line of defence against oxidative stress by catalysing dismutation of superoxide ions to
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hydrogen peroxide. Ascorbate peroxidase scavenges H2O2 molecules formed by the action of SOD,
and glutathione transferase catalyses conjugation of glutathione with toxic electrophiles generated
as by-products of oxidative damage caused by hydroxyl radicals. Glutathione transferase helps
in generating ascorbate from dehydroascorbate, besides safeguarding proteins from ROS-induced
damage, by reducing hydroperoxides to less damaging alcohols [65]. Glyoxalase regulates glutathione
homeostasis during abiotic stress [66], and is implicated in detoxification of methylglyoxal, a
highly reactive dicarbonyl aldehyde compound, which accumulates in plants under stress as a
glycolytic intermediate [67]. The fifth differentially expressed protein involved in oxidative defence
was recognised as heme oxygenase, which also regulates various cellular processes, including
iron acquisition and mobilization, stomatal opening and closure, and phytochrome chromophore
synthesis [68]. In addition, flavonol synthase protein with a key role in biosynthesis of antioxidant
flavonols [69] showed differential expression (spot 20). All these antioxidant proteins showed increase
in spot intensity in the stressed material, compared to the control.

4.5. Proteins Related to Carbohydrate Metabolism

Starch degradation in plants serves as an effective means to tolerate stress by meeting energy
demands and strengthening antioxidant defence system through production of NADPH, and by
diverting substrates to oxidative pentose phosphate pathway [70]. In this study, three starch-degrading
proteins, viz. sucrose phosphate synthase (spot 3), alpha-1,4-glucan phosphorylase (spot 7) and
isoamylase (spot 42), increased in abundance due to stress.

Moreover, combined stress affected the primary carbohydrate metabolic pathways, glycolysis,
and tricarboxylic acid (TCA) cycle. Expression of two glycolytic enzymes; triosephosphate
isomerase (spot 22) and glyceraldehyde 3-phosphate dehydrogenase (spot 31) decreased significantly.
The former catalyses interconversion of dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde
3-phosphate (GAP), while the latter facilitates conversion of glyceraldehyde 3-phosphate into
1,3-bisphosphoglycerate. Besides, two Krebs cycle enzymes, sedoheptulose-1,7-bisphosphatase (spot
27) and malate dehydrogenase (spot 61) were downregulated, possibly due to decreased CO2 uptake
or as a strategy to save energy under stressful conditions [71].

4.6. Proteins Related to Energy Metabolism and Fatty Acid Metabolism

The combined stress induced overexpression of two proteins related to energy metabolism, viz.
ATPase F1 α subunit (spot 12) and ATPase (spot 39). ATPase catalyses dissociation of ATP into ADP,
and its upregulation in the stressed wheat plants possibly conferred energy expenditure required to
cope with the stress.

Acetyl-CoA carboxylase catalyses carboxylation of acetyl-CoA to form malonyl-CoA during fatty
acid synthesis. This cytosolic enzyme has a role in membrane stability and biosynthesis of flavonoids,
which act as ROS scavengers [72]. The enzyme showed a significant increase (spot 37) in spot intensity,
with expression levels relatively higher in N-efficient cultivar than in N-inefficient one. Our results
go in line with earlier findings in peanut, where abundance of protein increased significantly under
water-deficit conditions [73].

4.7. Proteins Related to Transcription and Protein Synthesis

Plant response to abiotic stress includes biosynthesis of tolerance-conferring proteins, and
degradation or inactivation of unwanted or interfering ones. Transcription and protein synthesis are
fine-tuned under stress. A marked decrease in transcription rate was evident from downregulation of
RNA polymerase (spot 36). Other transcription-related proteins were histone acetyltransferase complex
component (spot 44), SnRK1-interacting protein 1 (spot 47), zinc finger family protein (spot 51), and
ABA (abscisic acid)-responsive element-binding protein 3 (spot 49), which help (i) in making DNA more
accessible to transcription factors by reducing its interaction with histone proteins, (ii) in sensing low
cellular glucose levels and enhancing metabolic signalling and carbon partitioning, (iii) in regulating
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transcription, protein–protein interaction and RNA binding, and (iv) in regulating ABA-dependent
signalling systems that mediate stress adaptation. Spot intensity of all these transcription-related
proteins markedly increased in stressed plants.

Abiotic stress inhibits translation in plants [74,75]. Intensity of five structural ribosomal proteins,
viz. ribonucleoprotein A (spot 17), ribosomal protein L14 (spot 19), ribosomal protein S19 (spots 23
and 54), ribosomal protein S4 (spot 56), and ribosomal protein L23 (spot 60), including a translational
factor 5A1 (spot 48), significantly declined in stressed plants, compared to the control. However,
elongation factor-Tu (EF-Tu), the main protein synthesis elongation factor of plant organelles, which is
also involved in chaperone activity, facilitation of protein renaturation, protein disulfide isomerase
activity and degradation of N-terminally blocked proteins via the action of proteasome [76], was
upregulated (spot 24). It has been shown that accumulation of EF-Tu in plants confers tolerance against
environmental stress [76–78].

4.8. Changes in Proteins Involved in Protein Stabilization and Degradation

Most of the proteins are thermo-labile, and likely to get denatured under high temperature.
Maintaining proteins in stable and functional conformations and preventing their aggregation
are essential for survival of cells under high temperature. Various molecular chaperones are the
basic components of innate immunity of plants. Five proteins; viz. disulfide isomerase (spot 9),
chaperonin 60b (spot 13), cyclophilin (spot 18), heat-shock protein (spot 29), and heat shock-responsive
transcription factor (spot 30), related to protein stabilization, were differentially expressed. Protein
disulfide isomerase (PDI) is a chaperone engrossed in protein folding in endoplasmic reticulum via
disulfide bond formation and isomerisation. Upregulation of PDI has been reported in bent grass and
sorghum in response to drought stress [79,80]. Chaperonin 60b is another folding protein involved in
protecting rubisco activase from denaturation and acclimating photosynthesis under heat stress [81].
Cyclophilins are ubiquitous proteins with an intrinsic peptidyl-prolyl cis-trans isomerase activity,
and assist in protein folding and stability [82]. In the chloroplast, cyclophilins assist proteins such
as oxygen-evolving complex proteins, to sequester and protect unassembled and degradation-prone
lumenal proteins [83]. Two more proteins involved in protein stabilization were identified as small
heat shock protein and heat shock-responsive transcription factor, which are involved mainly in heat
tolerance. All these stabilising proteins were overexpressed, implying efficient protein repair systems
and general protein stability that possibly facilitated plant survival under stressful conditions.

One of the efficient responses by plants to environmental stress is ubiquitination that involves
alterations of proteome, including “switch on” of regulatory proteins, removal of malformed proteins
and regulation of signalling proteins [84]. In this study, ubiquitin protein (spot 43) was upregulated in
stressed plants, compared to the control.

4.9. Unclassified Proteins

During the period of stress, some proteins, the functions of which were neither clear nor directly
related to stress conditions, were also expressed differentially. Osmotin-like protein (spot 21) is
possibly involved in cell wall modifications. The functions of transposon protein, CACTA, En/Spm
subclass (spot 45), and PR (Pathogenesis-related) -10 protein (spot 50) are still obscure. Inorganic
pyrophosphatase family protein (spot 57) plays a key role in pyrophosphate metabolism, and regulates
phosphorus levels within the cells. Methionine synthase (spot 59) regulates the synthesis of methionine,
an amino-acid, which involves in the initiation of mRNA translation and regulation of molecular
processes in the form of S-adenosylmethionine (SAM).

5. Conclusions

In conclusion, the combined stress of low N and high temperature alters different growth processes
in wheat, the response of the plant being cultivar-dependent. Most of the proteins associated with
defence mechanisms against heat, water deficit, N deficit, and oxidative stresses were upregulated; the
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degree of defence was higher in N-inefficient cultivar UP2382 than in N-efficient VL616. The majority
of proteins involved in photosynthesis (RuBiSCo) and carbohydrate metabolism were downregulated
with a more prominent setback in UP2382 than in VL616. On the basis of relevant biological function
and increasing trend of expression, we could identify stress-responsive proteins (schematically
represented in Figures 5 and 6), which may be used as suitable candidates for increasing the tolerance
of wheat under stress, and hence contributing to food security during harsh environmental conditions.
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Figure 5. Schematic representation of differentially-expressed leaf proteins in wheat under combined
stress of high temperature and low nitrogen. Proteins in green boxes were upregulated, whereas
those in orange boxes were downregulated. OEC, oxygen evolving complex; POECP1, photosystem II
oxygen-evolving complex protein 1; CABP, chlorophyll a/b binding protein; FNR, ferredoxin NADP
reductase; Fd, ferredoxin; RuBP, ribulose-1,5-bisphosphate; 3PGA, 3-phosphoglycerate; 1,3-BGA,
1,3-bisphosphoglycerate; G3P, glyceraldehyde 3-phosphate; R5P, ribulose-5-phosphate; SPS, sucrose
phosphate synthase ; GP, alpha-1,4-glucan phosphorylase; IA, isoamylase; TiM, triosephosphate
isomerase; GPD, glyceraldehyde 3-phosphate dehydrogenase; SOD, superoxide dismutase; APX,
ascorbate peroxidase; GT, glutathione transferase; GO, glyoxalase; HO, heme oxygenase; FS, flavonol
synthase; ACC, acetyl-CoA carboxylase; P5CR, pyroline-5-caboxylate synthetase; PDI, protein disulfide
isomerase; C60b, chaperonin 60b; hsp, heat shock protein; 5A1, translational factor 5A1; RNPA,
ribonucleoprotein A; HACC, histone-acetyltransferase complex component; SnRKIP, SnRK1-interacting
protein 1; ZFFP, zinc finger family protein; AREP3, ABA-responsive element-binding protein 3.
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