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Abstract: Cellular senescence is a tumor suppressive response that has become recognized as a major
contributor of tissue aging. Senescent cells undergo a stable proliferative arrest that protects against
neoplastic transformation, but acquire a secretory phenotype that has long-term deleterious effects.
Studies are still unraveling the effector mechanisms that underlie these senescence responses with
the goal to identify therapeutic interventions. Such effector mechanisms have been linked to the
dramatic remodeling in the epigenetic and chromatin landscape that accompany cellular senescence.
We discuss these senescence-associated epigenetic changes and their impact on the senescence
phenotypes, notably the proliferative arrest and senescence associated secretory phenotype (SASP).
We also explore possible epigenetic targets to suppress the deleterious effects of senescent cells that
contribute towards aging.
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1. Cellular Senescence: A Double-Edged Sword against Cancer

Cellular senescence was originally identified as a cellular aging phenomenon, but is now
recognized as an intrinsic tumor suppressive mechanism that is accompanied by distinct phenotypic
changes, such as epigenetic and chromatin remodeling of nuclear architecture. Hayflick and Moorhead
first identified cellular senescence when they found that primary human fibroblasts undergo a finite
number of divisions before entering a stable proliferative arrest in culture, now termed replicative
senescence [1,2]. Replicative senescence was eventually identified as a consequence of telomere attrition
following repeated cell divisions, which is thought to reflect aging at the cellular level [3–5]. Cellular
senescence was shown to apply in vivo with tissue aging after senescent cells were identified in aged
tissue and at sites of age-related pathologies [6]. Cellular senescence can also be induced by a variety of
potentially tumorigenic stimuli, including genotoxic stress, oncogene activation, and oxidative stress.
These stressors cause persistent DNA damage and activate the DNA damage response [7]. Besides
DNA damage, studies have found other stressors can initiate cellular senescence, such as in the case of
metabolic stress-induced senescence [8]. Studies have indicated cellular senescence as a barrier for
tumorigenesis in vivo by the presence of senescent cells at pre-malignant lesions, but not at malignant
tumors [9]. Collectively, these findings established the hypothesis that cellular senescence serves a
tumor suppressive role and prevents the proliferation of stressed cells harboring oncogenic potential.

Cellular senescence has long-term deleterious effects that mediate tissue aging, despite mounting
a protective tumor suppressive response. Senescent cells are thought to exert these deleterious effects
through cell-autonomous and non-autonomous mechanisms. To avoid neoplastic transformation,
senescent cells undergo a cell-autonomous proliferative arrest, which is maintained by the tumor
suppressive p53 and cyclin dependent kinases 4 and 6 (CDK4/CDK6) inhibitor p16 (p16INK4A)
pathways. The p53 pathway is predominantly activated through the DNA damage response following
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genomic damage, including double strand DNA breaks and telomere dysfunction. DNA damage is
sensed through the ataxia-telangiectasia mutated (ATM) kinase that signals to stabilize and activate
p53. p53 relays the signal of genomic stress by transcriptionally upregulating p21CIP1/WAF1 [10,11].
p21CIP1/WAF1 functions in concert with p16INK4A to promote hypophosphorylation of retinoblastoma
and stably arrest the cell cycle at the G1 phase [12]. Unlike p21, studies have not identified a principal
activator of p16INK4A but found that it is activated by several stress-related pathways, including
the p38 MAP kinase pathway [13]. Under the growth-arrested state, senescent cells resist cell death
and persist for prolonged periods of time [14]. Consequently, senescent cells accumulate in tissue
and are suspected of exhausting tissue of proliferation-competent cells and renewable stem cells
over time, diminishing homeostasis and regenerative capacity of the tissue [15–17]. This idea is
supported by evidence that p16INK4A expression is elevated and associated with reduced regeneration
in multiple stem cell compartments in mice, including in the bone marrow, pancreas, and brain [18–20].
Senescent cells can also disrupt tissue homeostasis in a cell-non-autonomous fashion by acquiring a
senescence-associated secretory phenotype (SASP). The SASP encompasses a wide range of factors
that promote different aspects of the senescence phenotype. These factors include pro-inflammatory
cytokines and chemokines, proangiogenic factors such as matrix metalloproteinases and vascular
endothelial growth factor (VEGF), and other soluble factors that assist the senescence phenotype,
including plasminogen activator inhibitor and prostaglandin E2 [21]. The SASP has been shown to
have autocrine and paracrine effects. For instance, interleukin (IL)-6 and 8 have been shown to function
in an autocrine manner to promote the DNA damage response and proliferative arrest of senescent
cells [22–24]. Additionally, transforming growth factor beta has been recently shown to promote
cellular senescence of neighboring cells [25]. However, the most profound cell non-autonomous effects
are mediated by paracrine signaling that stimulates chronic inflammation [26].

Chronic tissue inflammation is not only a major contributor of age-related degeneration, but
also cancer phenotypes by creating a pro-tumorigenic microenvironment [7,26,27]. Thus, targeting
the proinflammatory effects of senescent cells is a strategy to suppress the aging process and the
development of a myriad of pathologies. The deleterious role senescent cells play during aging and
disease was demonstrated using transgenic INK-ATTAC mice that allow for the selective elimination
of senescent cells, which entailed apoptosis induction of high p16INK4A expressing cells. Using this
system, studies showed that selectively eliminating senescent cells improved the healthspan and
suppressed the pathologic features of progeriod and naturally-aged mice [15,28]. The success of
these studies led many to research pharmacological drugs that induce apoptosis of senescent cells,
which has been termed senolytic compounds [16]. Such senolytic compounds have been shown to
eliminate senescent cells by inhibiting resistance to apoptosis that is integral to the program of cellular
senescence [29,30]. However, not all senescent cell types respond to senolytic compounds, which has
been found in the case of senescent preadipocytes [31]. Although the selectivity for senescent cells
is still being improved, studies using senolytic compounds have shown overall positive effects on
attenuating disease pathology and restoring tissue function [32,33].

Senescent cells undergo distinct phenotypic changes, including an enlargement in cellular
morphology and elevated lysosomal β-galactosidase activity, which is detected by histochemical
staining [34,35]. It is important to note that cellular senescence is not identified by a single characteristic,
but a combination of markers with the most common being proliferation arrest and elevated p16
expression and β-galactosidase activity [16]. Thus, the lack of a single universal marker of cellular
senescence has posed an obstacle for the detection of senescent cells in vivo. Senescent cells also
undergo nuclear phenotypic changes wherein the epigenetic and chromatin landscape undergo
widespread alterations. Such changes have been linked to the altered gene expression and effector
mechanisms that play a role in the proliferative arrest and acquisition of the SASP during cellular
senescence. Recent studies have indicated the prospect of therapeutically targeting epigenetic changes
to suppress the deleterious effects of senescent cells. Here, we will review these possibilities and
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the impact of chromatin and epigenetic changes in regulating cellular senescence and susceptibility
for aging.

2. Epigenetic Changes during Cellular Senescence and Aging

2.1. Heterochromatin Changes Accompany Cellular Senescence

The most striking nuclear phenotype of cellular senescence is the formation of facultative
heterochromatin domains, termed senescence-associated heterochromatic foci (SAHF). The SAHF
are easily visible following diamidino-2-phenylindole (DAPI) staining as distinct DNA foci [36]. The
foci reflect compacted chromatin and are enriched in a variety of heterochromatic markers, such
as hypoacetylated histones, histone H3 lysine 9 and 27 trimethylation (H3K9me3 and H3K27me3),
heterochromatin protein 1 (HP1) family proteins, and the histone variant macroH2A. These epigenetic
marks repress the transcription of key proliferation-related genes, linking SAHF to the tumor
suppressive proliferative arrest of senescent cells [36,37]. The SAHF can also recruit effectors to
aid in the senescence arrest, which has found to be the case in the recruitment of the chromatin
remodeling enzyme ATRX by H3K9me3 and HP1γ following therapy-induced senescence [38]. Several
lines of evidence indicate the appearance of these epigenetic marks that reflect the SAHF during
tissue aging and cellular senescence in vivo [17,39–42]. The SAHF has additional roles in addition to
supporting cell cycle arrest during cellular senescence. For instance, the SAHF has been shown to
protect oncogene-induced senescent cells from apoptosis by dampening the DNA damage response.
Consequently, apoptosis can be activated following disruption of the SAHF by treatment with a histone
deacetylase inhibitor [43]. However, the outcome of inhibiting the SAHF may be context specific. For
example, disrupting a key histone methyltransferase Suv39h1 that contributes to the SAHF promotes
tumor progression, particularly T cell lymphomagenesis, in a neuroblastoma Ras viral oncogene
homolog (N-ras) transgenic mouse model [44].

Formation of the SAHF does not merely depend on the redistribution of repressive epigenetic
marks, but requires key molecular and chromatin changes. Such a molecular change that promotes
SAHF formation is activation the p16INK4A retinoblastoma pathway and, therefore, strongly correlates
with cell cycle arrest [36,45,46]. However, several studies have challenged the requirement of the
SAHF for cellular senescence and demonstrated that it is not universal among all senescent cell
types and senescence-inducing stimuli. For instance, the SAHF are most prominently observed
during oncogene-induced senescence, but also form during replicative senescence [36,47]. However,
fibroblasts derived from patients afflicted with Hutchinson-Gilford progeria syndrome (HGPS) that are
intrinsically prone to cellular senescence do not develop features of the SAHF [47,48]. Studies have used
high-throughput whole-genome conformation capture methods to interrogate formation of the SAHF
during cellular senescence [49,50]. Following senescence induction, chromatin become reorganized
causing heterochromatin to dissociate from the nuclear periphery. Therefore, the heterochromatin that
is incorporated into the SAHF is not newly formed, but a result of heterochromatin redistribution [36].
The dissociation of heterochromatin from the nuclear periphery is mediated by loss of lamin B1, a
nuclear lamin protein that associates with lamina-associated domains within heterochromatin [46,51].
Interestingly, lamin B1 abundance is decreased in multiple senescent cell types and in mice tissue
following irradiation-induced senescence [52]. Lamin B1 appears to be downregulated at the
transcriptional level during the induction of cellular senescence, and silencing lamin B1 is also sufficient
to induce cellular senescence [53]. In addition to being downregulated, lamin B1 preferentially binds
H3K27me3-enriched sites that are associated with transcriptional repression and the SAHF during
cellular senescence [46]. Loss of lamin B1 also appears to cause a redistribution of histone marks,
including an enrichment in H3K27me3 and H3K4me marks within lamin B1-associated domains and
depletion in H3K27me3 marks in enhancers and genes. Interestingly, the particular genes lacking
H3K27me3 marks that were upregulated were found to be senescence-related genes, including SASP
genes [51].
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Following loss of lamin B1, heterochromatin undergoes the subsequent steps of decondensation
and spatial clustering to form the SAHF [50]. Although the mechanism behind spatial heterochromatin
clustering to form the SAHF remains unknown, the identification of heterochromatin decondensation
during cellular senescence is consistent with the progressive loss of heterochromatin that is observed
during aging and in diseases of premature aging, including HGPS and Werner syndrome [54–56].
It is also unknown if the progressive loss of heterochromatin is linked to the reduction in histone
biosynthesis that appears to influence the redistribution in epigenetic marks during replicative
senescence [57]. Such deregulations in heterochromatin structure may allow for expression of
retrotransposable elements that have been shown to drive genomic instability during cellular
senescence and tissue aging [58–60].

2.2. Senescence-Associated Distention of Satellites Is a Senescence-Associated Heterochromatic Foci
-Independent Epigenetic Change

Epigenetic changes are not limited to facultative heterochromatin regions that form the SAHF.
The SAHF are actually distinct from constitutive heterochromatin that are present in telomeres and
pericentromeres [61]. However, pericentric satellite DNA has been shown to undergo a dramatic
decondendation during cellular senescence, independently from SAHF formation [58]. This nuclear
phenotype has been termed senescence-associated distention of satellites (SADS) and appears to be
exclusively formed in senescent cells and not in non-senescent cells and cancer cell lines [62]. Unlike
SAHF formation, SADS formation is conserved among senescent cell types and senescence-inducing
stimuli, including HGPS fibroblasts. Additionally, SADS formation has been identified in vivo and
suspected to promote tissue aging [47,63]. Attempts to identify the role for SADS formation showed
that it is an early event during senescence induction and precedes other nuclear changes, including
nuclear enlargement and SAHF formation [62,64]. Additionally, SADS formation may be linked
to hypomethylation and expression of pericentric satellite DNA that has been observed during
cellular senescence [65,66]. However, the exact function of SADS during cellular senescence remains
unknown [62]. Interestingly, pericentric satellite transcripts can promote mitotic errors and genomic
instability, leading to the induction of cellular senescence. This particular study showed that sirtuin-6
(SIRT6) prevents these genomic stressors by silencing pericentric satellite transcripts and protects
against cellular senescence [67]. It is possible that the expression of pericentric satellite transcripts
is an early event during senescence induction that promotes genomic instability to help activate cell
cycle arrest.

3. Epigenetic Effectors of Cellular Senescence

3.1. The Senescence-Associated Heterochromatic Foci and High Mobility Group Proteins Cooperate for the
Senescence Phenotype

The SAHF appears to function in concert with and, in some cases, rely on other epigenetic
effectors during cellular senescence. Key examples are proteins of the high mobility group (HMG)
family, particularly HMGA1 and HMGB2. The HMG proteins are non-histone chromatin-binding
proteins that remodel chromatin architecture, resulting in altered gene expression [68]. The HMGA
proteins consist of HMGA1 and HMGA2. These have been shown to accumulate in the chromatin of
senescent cells, binding the same site and causing displacement of linker histone H1, and structurally
support the SAHF [69]. In this manner, HMGA proteins cooperate with p16INK4A to maintain the
proliferative arrest of the senescent cells [70]. This tumor suppressive function of the HMGA proteins
was surprising considering that the HMGA proteins were previously associated with gene activation
under proliferative states, such as embryogenesis and cancer [68,71]. Unlike members of the HMGA
proteins, studies have found members of the HMGB proteins to have dissimilar mechanisms of action
during cellular senescence. The HMGB1 protein is secreted in a p53-dependent manner and functions
as an extracellular alarmin that activates nuclear factor-κB (NF-κB) and proinflammatory signaling
pathways [72]. The HMGB2 protein also has a proinflammatory role during cellular senescence, but
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through a mechanism that is distinct from HMGB1. The HMGB2 protein binds the loci of key SASP
genes and prevents their incorporation into transcriptionally repressive SAHF regions, providing a
chromatin landscape that is conducive for SASP gene expression. Interestingly, inhibition of HMGB2
limits the SASP without affecting the senescence proliferative arrest. These results indicate that the
deleterious, pro-tumorigenic, SASP can be uncoupled from the SAHF, which is associated with the
beneficial tumor suppressive proliferative arrest of the senescent cells [73].

3.2. Epigenetic Regulators of the Senescence Associated Secretory Phenotype

Similar to what has been found following inhibition of HMGB2, several studies have found
it is possible to target epigenetic mechanisms that specifically drive the SASP, as a therapeutic
means [73]. It has become clear that senescent cells can transcriptionally regulate the SASP through
other epigenetic mechanisms and effectors in addition to the HMGB2. For instance, super-enhancers
are formed adjacent to key SASP genes following remodeling in the enhancer chromatin landscape
during cellular senescence. These super-enhancers are enriched in H3K27 acetylation and recruit
the bromodomain and extra-terminal domain (BET) protein BRD4 to promote SASP gene expression.
An important aspect of this study is that inhibition of BRD4 suppressed SASP gene expression without
affecting the proliferative arrest of the senescent cells. Moreover, BRD4 inhibition was also shown
to have therapeutic efficacy against senescent cells in vivo by suppressing the SASP along with its
subsequent immune surveillance response [74]. Expression of the SASP is also directly regulated by
the histone variant macroH2A1, a component of the SAHF. Interestingly, macroH2A1 was found to
be not only required for SASP gene expression, but also DNA damage response signaling during
cellular senescence. This led to the identification of a negative feedback loop whereby macroH2A1
activates DNA damage response signaling that leads to the removal of macroH2A1 from SASP gene
loci, resulting in a dampened SASP [75]. Expression of the SASP was also found to be negatively
regulated by sirtuin-1 (SIRT1) in a direct manner. In the event of SIRT1 knockdown or decreased
expression, which is observed during cellular senescence, this study found acetylation of H3K9 and
H4K16 is increased at the promoters of IL-6 and IL-8, resulting in the transcriptional activation of these
cytokines. Therefore, SIRT1 was proposed to deacetylate H3K9 and H4K16 in the promoter regions of
the SASP factors IL-6 and IL-8, causing their transcriptional repression under normal non-senescent
conditions [76].

Epigenetic factors can also activate pro-inflammatory signaling that underlies activation of the
SASP, as opposed to directly modifying SASP gene loci as discussed above. This was found in the
case of the methyltransferase mixed-lineage leukemia 1 (MLL1) during cellular senescence. The MLL1
protein activates the expression of proliferation-related cell cycle genes during senescence induction,
causing hyper-replicative stress that triggers the DNA damage response. This results in activation
of the NF-κB pro-inflammatory signaling pathway that drives SASP gene expression. Importantly,
this study showed that inhibiting MLL1 suppresses SASP gene expression without causing senescent
cells to escape the proliferative arrest, indicating the therapeutic potential to intervene with MLL1.
This point was further highlighted by the fact that MLL1 inhibition was able to suppress the SASP
and inflammation associated with cancer in vivo [77]. Separate from activating proinflammatory
signaling, the DNA damage response has been shown to induce epigenetic changes that activate SASP
gene expression during cellular senescence. Mechanistically, the DNA damage response activates
proteasomal degradation of the histone methyltransferases G9a and G9a-like protein (GLP). This
results in a decrease in transcriptionally repressive H3K9 dimethylation marks at key SASP gene
promoters, leading to enhanced gene expression [78]. Interestingly, the DNA damage response
can also become activated and promote the SASP following chromatin remodeling, independent of
physical breaks in the DNA. In particular, inhibition of histone deacetylase 1 (HDAC1), which leads
to hyperacetylation of histone and non-histone proteins, has been shown to increase the expression
of a key proinflammatory SASP factor, osteopontin. Consequently, HDAC1 inhibition promotes a
protumorigenic microenvironment and tumor growth in vivo [79].



Genes 2017, 8, 343 6 of 12

4. Conclusions

Senescent cells undergo distinct epigenetic changes that serve several effector functions, which
are summarized in Figure 1 and Table 1. Such examples are the SAHF and SADS, which are formed
following the remodeling in facultative and constitutive heterochromatin, respectively. The SAHF are
formed following exit from the cell cycle and aid in senescence induction by stabilizing the proliferative
arrest [36,45]. The SAHF may also ensure cell survival during senescence induction by suppressing
apoptosis [43]. It appears that senescent cells develop SADS prior to SAHF formation, although the
link between these two epigenetic events is not completely understood. A possible role for the SADS
may be to upregulate the expression of pericentric satellite transcripts that promote genomic instability
and activate the DNA damage response to arrest proliferation [62]. Thus, SADS and SAHF formation
appear to serve tumor suppressive roles of senescent cells. However, it may be beneficial to augment
the function of the SAHF during cellular senescence. For instance, the SAHF may be augmented to
silence SASP genes in addition to proliferation-related genes following inhibition of HMGB2 [73]. It is
also possible that inhibition of HMGB1 along with HMGB2 may yield a greater suppression of the
SASP, considering the distinct pro-inflammatory role of HMGB1 [72]. In support of this notion, a small
molecule inhibitor of HMGB1 and HMGB2 was shown to have anti-inflammatory effects in the context
of microglia-mediated neuroinflammation [80]. However, the effects of such a compound remain to be
determined under different contexts.

Figure 1. Overview of the epigenetic events and effectors during cellular senescence. Key epigenetic
changes are development of the SADS and SAHF. The formation of SADS is an early epigenetic change
that may aid in the growth arrest by promoting genomic instability. The SAHF collaborates with other
epigenetic effectors and has several functions. The HMGA proteins structurally support the SAHF and
aid in the repression of proliferation-promoting genes, resulting in the proliferative arrest. The HMGB2
protein prevents the incorporation of SASP gene loci into the transcriptionally repressive SAHF, thereby
promoting the SASP. Transcriptionally repressive marks to SASP gene loci can be made by SIRT1 and
G9a/GLP. The expression of the SASP is promoted by proinflammatory signaling mediated by MLL1,
macroH2A1, HDAC inhibition, and HMGB1. Senescent cells also undergo remodeling in the enhancer
landscape that promotes the expression of the SASP, which is mediated by BRD4. These epigenetic
mechanisms support the proliferative arrest of senescent cells, which accumulate and impair tissue
function, leading to aging. Another long-term deleterious effect of senescent cells is the SASP that
activates chronic inflammation and promotes both aging and cancer. SAHF: Senescence-associated
heterochromatic foci; SADS: Senescence-associated distention of satellites; SASP: Senescence-associated
secretory phenotype; HMGA1/2: High mobility group A 1/2; HMGB1/2: High mobility group B
1/2; MLL1: Mixed-lineage leukemia 1; BRD4: Bromodomain-containing 4; SIRT1: Sirtuin-1; HDAC1:
Histone deacetylase 1; GLP: G9a-like protein; DDR: DNA damage response.
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Table 1. Epigenetic changes and effectors of cellular senescence.

Heterochromatin
Modification or

Activated Effector

Mode of Cellular
Senescence

Function during
Cellular Senescence Cell Type Reference

SAHF Replicative
Oncogene Proliferative Arrest Human Fibroblasts [36,37,61]

SADS
Replicative
Oncogene

HGPS
Not Defined Human Fibroblasts [58,62]

Loss of Lamin B1

Replicative
Oncogene

HGPS
Genotoxic Stress: Irradiation

Proliferative Arrest Human Fibroblasts [51–53]

HMGA1/2 Replicative
Oncogene Proliferative Arrest Human Fibroblasts [70]

HMGB1
Replicative
Oncogene

Genotoxic stress: Irradiation
SASP Activation Human Fibroblasts [72]

HMGB2 Oncogene SASP Activation Human Fibroblasts [73]

HDAC1
Genotoxic stress: Bleomycin
HDAC Inhibitors: Sodium
butyrate and Trichostatin A

SASP Activation Human Fibroblasts [79]

Enhancer
Remodeling: BRD4

Oncogene
Genotoxic stress: Etoposide SASP Activation Human Fibroblasts [74]

MLL1 Oncogene
Genotoxic stress: Etoposide SASP Activation

Human Fibroblasts
MCF7 human breast

cancer cell line
[77]

MacroH2A1 Oncogene SASP Activation Human Fibroblasts [75]

G9a/GLP Replicative
Oncogene SASP Inhibition Human Fibroblasts [78]

SIRT1 Genotoxic stress: Irradiation SASP Inhibition Human Fibroblasts [76]

HGPS: Hutchinson–Gilford progeria syndrome.

Several epigenetic mechanisms mediate the SASP during cellular senescence. Interestingly, many
of the epigenetic effectors associated with these mechanisms have previously been shown to play
a role in tumorigenesis and may lie at the interface between cancer and aging. For instance, many
of the HMG proteins are overexpressed and support transcriptional reprogramming in different
cancer cell types, and are associated with a poor prognosis [68,81,82]. The MLL1 protein undergoes
chromosomal translocations and aberrantly upregulates genes related to development and the cell cycle,
promoting tumorigenesis of several leukemias [83,84]. The BRD4 protein plays several roles in cancer
by upregulating oncogenes, such as c-myc, and genes related to proliferation, apoptosis suppression,
and inflammation [85,86]. Clinical trials using inhibitors against BRD4 and MLL1 in cancer are still
underway and, if successful, will be interesting to determine if attenuation of the protumorigenic effects
of senescent cells is part of the success, such as inhibition of the SASP. Additionally, the targeting of
senescent cells may be enhanced by combining epigenetic inhibitors with senolytic compounds, which
has yet to be explored. Moreover, these types of studies will raise the possibility of targeting epigenetic
mechanisms of cellular senescence not only to treat cancer, but also pathologic states associated with
tissue aging.
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