Supplemental Information for:

Chromosomal Evolution in Mole Voles Ellobius (Cricetidae, Rodentia): Bizarre Sex
Chromosomes, Variable Autosomes and Meiosis

Sergey Matveevsky ${ }^{1 *}$, Oxana Kolomiets ${ }^{1}$, Alexey Bogdanov ${ }^{2}$, Mikhayil Hakhverdyan ${ }^{3}$, Irina
Bakloushinskaya ${ }^{2}$

Figure S1. Bayesian inference for the data of the Eif2s3y sequences of five Ellobius species was evaluated in MrBayes ver. 3.2 (Ronquist et al. 2012). Final phylogenetic trees images were rendered in FigTree 1.4.3. The data were executed with 1 million generations, sampling every 1000 generations, with four independent chains and a burn-in of 25%. Bayesian inference revealed a well-supported tree for all Ellobius species, joined into two subgenera.

Reference

Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A; Huelsenbeck, J.P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 2012 61(3), 539-542.

Table S1. Specificity of the Sry, Eif2s3x and Eif2s3y genes in 5 species of Ellobius and GenBank accession numbers

Species	Voucher number	Sex	Genes			
			Sry full HMGbox predicted length 202 bp	Sry fragment of HMG-box, predicted length 144 bp	Fragment of Eif2s3x, predicted length 163 bp	Fragment of Eif2s3y
$\begin{aligned} & \frac{0}{3} \\ & \frac{0}{E} \\ & \frac{1}{5} \end{aligned}$	26910	0^{7}	-	-	+ 161 bp	452 bp PCR product was represented by two bands after visualization in gel: major fast, with predicted product size 160 bp and minor slow, with predicted product size 700 bp . The sequence is clearly divided into two parts, major is Eif2s3y, and minor is Eif2s3y with intron, like in E. fuscocapillus. Intron includes fragment of SINEs B2-B4. GenBank accession number MF796853
	26915	¢	-	-	+ 161 bp	521 bp PCR product looked as in 26910 GenBank accession number MF796852
$\begin{aligned} & \text { ָ̈ } \\ & \text { U } \\ & \text { U } \\ & \text { i } \end{aligned}$	24913	0^{*}	-	-	+ 161 bp	653 bp PCR product looked as in 26910 GenBank accession number MF796855
	24889	¢	-	-	+ 161 bp	589 bp PCR product looked as in 26910 GenBank accession number MF796854
	25611	0^{7}	-	-	+ 161 bp	537 bp PCR product looked as in 26910 GenBank accession number MF796857
	25605	¢	-	-	+ 161 bp	397 bp BLAST to Tokudaia muenninki LC066213.1T, EIF2S3Y pseudogenes: 84.2 max score, 74% identity GenBank accession number MF796856

$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline & & & & & & \begin{array}{c}\text { 616 bp } \\ \text { The structure of PCR product was } \\ \text { similar to that in 26910, but }\end{array} \\ \text { sequences of both parts had many } \\ \text { changes }\end{array}\right]$

Table S2. Fragments of sequences of Sry gene for sex-determining region Y protein and Eif2s3x, gene for eukaryotic translation initiation factor 2 subunit 3

Genes	Species, voucher numbers	Sequences
Sry- HMG box 138 bp	E. fuscocapillus $21463 _1-4,22576$	GTTGTGGTCTCGTGGTCAGAGGCGCAAGTTGGCCCTGGAGAACCCCAGC ATGCAAAACACAGAAATCAGCAAACAACTGGGATACCAGTGGAAACGCC TTACAGAAGCCGAAAAAAGGCCATTTTTCCAGGAGGCACA
Eif2s3x 162 bp	E. fuscocapillus $21463,21463 _1-4,22576$	AGATCGACCCCACTTTGTGCAGAGCTGACAGGATGGTGGGTCAAGTGCT TGGTGCAGTTGGAGCTTTACCTGAAATATTCACGGAACTGGAAATTTCC TATTTCCTGCTGAGACGTCTCTTGGGTGTACGAACTGAAGGAGACAAGA AAGCAGCAAAGGTCC
Eif2s3x 161 bp	E. lutescens 26776, 25155, 25157 E. talpinus 26910, 26915 E. tancrei 24913, 24889 E. alaicus 25611, 25605	GATCGACCCCACTTTGTGCAGAGCTGACAGGATGGTGGGGACAAGTGCTT GGTGCAGTTGGAGCTTTACCTGAAATATTCACGGAACTGGAAATTTCCT ATTTCCTGCTGAGACGTCTCTTGGGTGTACGAACTGAAGGAGACAAGAA AGCAGCAAAGGTCC

