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Abstract: Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is involved in DNA repair pathways as it mends
the topoisomerase [—DNA covalent complexes. In plants, a small Tdp1 gene family, composed by
Tdpla and Tdplp genes, was identified, but the roles of these genes in abiotic stress responses are
not fully understood. To investigate their specific stress response patterns, the present study made
use of bioinformatic and molecular tools to look into the Tdp18 gene function, so far described only
in the plant kingdom, and compare it with TdpIla gene coding for the canonical, highly conserved
o isoform. The expression profiles of Tdpla and TdplfB genes were examined under abiotic stress
conditions (cold, heat, high osmolarity, salt, and UV-B) in two model species, Arabidopsis thaliana
and Medicago truncatula. The two isoforms of topoisomerase I (TOP1x and TOP1B) were also
taken into consideration in view of their known roles in DNA metabolism and cell proliferation.
Data relative to gene expression in Arabidopsis were retrieved from the AtGenExpress microarray
dataset, while quantitative Real-Time PCR was carried out to evaluate the stress response in
M. truncatula cell cultures. These analyses revealed that TdplpB gene expression was enhanced
during the first hour of treatment, whereas Tdpla enhanced expression succeeded at subsequent
timepoints. In agreement with the gene-specific responses to abiotic stress conditions, the promoter
regions of Tdplx and Tdp1p genes are well equipped with stress-related cis-elements. An in-depth
bioinformatic characterization of the HIRAN motif, a distinctive feature of the Tdp1p protein, showed
its wide distribution in chromatin remodeling and DNA repair proteins. The reported data suggests
that Tdp1pB functions in the early response to abiotic stresses.

Keywords: abiotic stress; Arabidopsis thaliana; HIRAN domain; Medicago truncatula; tyrosyl-
DNA phosphodiesterase

1. Introduction

Tyrosyl-DNA phosphodiesterase 1 (Tdp1, EC: 3.1.4.-) breaks the covalent 3’-phosphotyrosyl
bond between the DNA termini and the catalytic tyrosine residue of DNA topoisomerase I (topo I),
removing the highly cytotoxic stabilized topoisomerase [-DNA covalent complexes that impair DNA
replication and transcription [1]. Differently from animals, two distinct Tdp1 isoforms are found in
plants, as reported by Macovei et al. [2] in the model legume Medicago truncatula. The MtTdplo amino
acid sequence shows similarity with the animal Tdp1 enzyme, while the MtTdp1{ protein contains
a HIRAN (HIP116 Rad5p N-terminal) domain whose function is still poorly understood [2]. The two
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isoforms are encoded by MtTdpla and MtTdplp genes, which are upregulated in M. truncatula plants
in response to heavy metal and osmotic stresses as well as during seed imbibition [2—-4]. Additional
work provided further information on the possible involvement of the Tdp1p gene in the plant stress
response. Santos et al. [5] showed the upregulation of Tdp1B gene in Medicago sativa suspension
cultures exposed to genotoxic doses of CdSe/ZnS quantum dots, highlighting a strong correlation with
DNA damage accumulation/repair kinetics. An RNA-Seq analysis carried out in MtTdpla-depleted
M. truncatula plants revealed that the MtTdp1 gene does not play a redundant function since the
isoform was not able to compensate for the lack of MtTdpla gene in planta [6]. Even though the Tdp1p
gene was upregulated in the depleted lines, the overall Tdp1(« + 3) transcript was reduced, leading to
the dwarf phenotype resulted from the Tdpla depletion [6].

The specific role of the Tdp1f gene in plants remains unclear. Here, we propose to investigate
the expression profiles of the Tdpl gene family in response to multiple abiotic stress agents in two
model plants, Arabidopsis thaliana (thale cress) and Medicago truncatula (barrel medic). The two different
model species, belonging to Brassicaceae and Leguminosae families, respectively, were used to evaluate
the conservative response among species. The promoter regions of Tdpla and Tdp1p genes were also
examined with bioinformatic tools. Additionally, the presence and distribution of the HIRAN domain
in the plant kingdom were investigated.

2. Materials and Methods

2.1. Plant Material and Treatments

Suspension cultures of M. truncatula cv. Jemalong, M9-10a genotype were propagated in liquid
Murashige-Skoog (MS) medium [7] containing 3% (w/v) sucrose, 0.5 mg L1 2,4-dichlorophenoxyacetic
acid (2,4-D, Micropoli, Milan, Italy), and 0.5 mg L~ kinetin (Micropoli), at pH 5.7. The suspension
cultures were sub-cultured every eight days and maintained at 23 °C, in agitation (80 rpm) under dark
conditions. Highly proliferating four-day-old suspension cultures were used for further treatments.
To perform the stress treatments, 10 mL suspension culture was transferred to 50 mL Falcon tubes,
maintained in agitation. The following treatments were imposed to the cell suspensions: salt (NaCl,
250 mM), high osmolarity (PEG6000, 150 g L), cold (4 °C), heat (42 °C), and UV-B (15 min exposure
to 280-315 nm). For the NaCl and PEG treatments, the solutions were added to the liquid MS medium.
For the cold and heat treatments, the tubes were incubated at the indicated temperatures. Exposure to
UV-B was performed in opened Petri dishes, containing the same volume of suspension, which was
circularly moved every 2 min during the time of exposure. For all treatments, samples were collected
at0h, 0.5h (30 min), 1 h, 3 h, and 6 h following exposure.

2.2. Detection of Cell Death

Loss of plasma membrane integrity was assessed through Evans Blue staining, as previously
described [8]. Proliferating M. truncatula cell cultures subjected to the abovementioned treatments
for 6 h were used for this analysis. Briefly, Evans Blue (Sigma—Aldrich, Milan, Italy) stock solution
(10 mg/mL) was added to cell suspension samples (1 mL) to a final concentration of 0.025% (v/v).
After 10 min of incubation at room temperature, the culture was extensively washed with distilled
water to remove excess and unbound dye. Subsequently, Evans Blue bound to dead cells was extracted
using 50% (v/v) methanol with 1% (w/v) SDS at 60 °C for 30 min and the absorbance was read
at 600 nm using a Jasco 7800 UV /Vis Spectrophotometer (JASCO, Easton, MD, USA). Non-treated
samples and cells subjected to heat-shock (HS, 65 °C for 10 min) were used and positive and negative
controls, respectively. Images were recorded using an Olympus SZX9 Stereomicroscope (Olympus
Italia S.R.L., Milan, Italy). For each treatment combination, three independent and two biological
replicas were used. Results are presented as % of cell death, where absorbance of heat-shock (HS)
treated cells is considered as 100%. The results were statistically evaluated by t-test (*, p < 0.05),
with a non-treated control taken as a reference.
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2.3. Gene Expression Analysis

The AtTdpla (GB# FJ858738) and AtTdplpB (GB# BT006446.1) gene expression profiles were
retrieved from the AtGenExpress microarray abiotic stress dataset [9]. This data provides the global
transcriptome of Arabidopsis shoots challenged with cold (TAIR accession ME00325), heat (TAIR
accession ME00338), high osmolarity (TAIR accession ME00327), salt (TAIR accession ME(00328),
and UV-B light (TAIR accession ME00329).

To evaluate the expression of MtTdpla (GB# AC122166), MtTdplB (GB# AC141864.7),
and MtTOPla (GB# CA919655), MtTOP1B (GB# CX526330), RNA extraction, cDNA synthesis,
and qRT-PCR analysis were carried out. The M. truncatula ELF1a (GB# EST317575) was used as
a reference gene [6,10,11]. Total RNA was isolated as previously described [12]. One microgram of
RNA was reverse-transcribed using the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher,
Monza, Italy). gqRT-PCR was carried out using the Maxima SYBR Green qPCR Master Mix
(Thermo Fisher, Monza, Italy). The gene-specific oligonucleotide primers used in this study were:
FW 5-ACGAGTTGGGAGTGCTCTTT-3/, REV: 5-GGGATTTATCCTTCGATTGTTT-3' for MtTdpla,
FW: 5-GGTTGGTTTGAGCCATCTTT -3/, REV: 5'- GCAGGCACATTGTGATTTCT-3' for MtTdp1p;
FW: 5-AAACTGACATCGGGAGGAAC-3', REV: 5-TTCTGCTTCACCCAGTCATC-3' for MtTOP1x;
FW: 5-ATACACGTGGGCTATTGTCG-3', and REV: 5'-TCACTTGGATGAATGCGTT-3' for MtTOP1p;
and FW: 5'-GACAAGCGTGTGATCGAGAGATT-3/, REV: 5'-TTTCACGCTCAGCCTTAAGCT-3' for
MELF1a. For each oligonucleotide set, a no-template control was used. Amplification conditions
were as follows: initial denaturation step at 95 °C for 30 s, and subsequently 95 °C for 5 s, 60 °C
for 30 s, and 72 °C for 30 s (40 cycles). C; values and qRT-PCR efficiency values, obtained by the
Rotor-Gene 6000 Series Software 1.7 (Corbett Robotics, Brisbane, Australia), were analyzed and
statistically validated using the REST2009 Software V2.0.13 (Qiagen GmbH, Hilden, Germany).

For both Arabidopsis and Medicago collected data, the selected timepoints per treatment were
0h, 0.5 h (30 min), 1 h, 3 h, and 6 h after treatment. The data is presented as fold change to control
(untreated samples), with each timepoint being normalized to its corresponding control. The data
not normalized to the untreated control is provided in Supplementary Tables S1 and S2, respectively.
MeV (Multiple Experiment Viewer) software (http:/ /mev.tm4.org) was used to represent the data.

2.4. Promoter Analysis

The PlantCARE database [13] was used for the in silico analysis of promoter sequences.
Sequences corresponding to 1500 bp upstream of the start codon were retrieved from NCBI for
each gene. The percentage of stress-related cis-elements was calculated based on the total number of
elements identified for each promoter region. A Venn diagram (http://bioinformatics.psb.ugent.be/
webtools/Venn /) analysis was used to assess the number of common vs. specific elements for each
promoter sequence.

2.5. Phylogenetic Tree Analysis

To investigate the occurrence of HIRAN domain in the plant kingdom, the Tdp1B amino acid
sequences were compared using the ExPaSy SIB BLAST Network Service (http:/ /www.expasy.ch/
tools/blast/ /) and the EMBL-EBI Clustal W2 Multiple Sequence Alignment (http://www.ebi.ac.uk/
tools/msa/clustalw2) tools. The phylogenetic tree was built using the Plaza 2.5 tool (bioinformatics.
psb.ugent.be/plaza/) [14].

3. Results

3.1. Effect of Treatments on Cell Viability

M. truncatula cell cultures treated with cold, heat, PEG, NaCl, UV-B, and respective positive
(CTRL NT) and negative (CTRL HS) controls, were subjected to Evans Blue staining to evaluate cellular
mortality (Figure 1). Measurements were taken after 6 h of treatment, because this is indicated as the
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minimum threshold required for the induction of programmed cell death [15]. The treatments that
most affected cell viability were heat, NaCl, and UV-B, while PEG and cold treatments did not show
significant changes compared to the non-treated control (CTRL NT) (Figure 1a). M. truncatula M9-10a
suspension cultures are composed mainly of microcalli (Figure 1b), in accordance with a previous
description defining them as highly embryogenic cell aggregates of small spherical cells [16].
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Figure 1. Evaluation of cellular damage and deterioration of membrane permeability by Evans Blue
staining. (a) Percentage of cell death in Medicago truncatula cultures treated with cold, heat, NaCl,
PEG, and UV-B for 6 h; CTRL NT, non-treated control; CTRL HS, heat-shock treated negative control;
(b) Morphology of M. truncatula cell aggregates (upper image) and cells stained with Evans Blue
(lower image).

3.2. The Expression Profiles of Both Tdp1p and Tdpla Genes Change during Abiotic Stress Treatments

The expression levels of Tdpla and Tdp1 genes were evaluated in response to various abiotic
stress conditions in two different model plants, A. thaliana and M. truncatula (Figure 2). The analysis of
Arabidopsis gene expression in shoots shows that the strongest expression (green colour) of AtTdpla
corresponds to 6 h following exposure to heat and high osmolarity, and 3-6 h after treatment with
salt (Figure 2a, AtTdpla; Supplementary Table S1). Conversely, the lowest expression (red colour) is
observed at 3 h following exposure to heat and UV-B. When considering the expression profiles of
AtTdplB, the strongest expression is evident mostly within the first hours of treatment (0.5 h high
osmolarity, salt, cold, UV-B, and 1 h salt stress). The lowest gene expression is associated with exposure
to heat stress (at 0.5 h, 1 h, and 3 h), as well as at later timepoints after cold (3 h and 6 h) and UV-B (3 h)
treatments (Figure 2a, AtTdp1p; Supplementary Table S1).

To assess whether the early response to abiotic stress observed in Arabidopsis is a conserved
feature of the plant Tdp1S gene, the expression profiles of the Tdpl gene family were analyzed in
a different system, namely actively proliferating M. truncatula in vitro cell cultures. Also in this case,
the MtTdp1B gene expression is strongest soon after the beginning of the treatment (0.5 and 1 h) with
salt, high osmolarity agent, and UV-B, while heat stress resulted in the lowest expression (Figure 2b,
MtTdp1B; Supplementary Table S2). The MtTdpla gene expression was induced after 1 h (cold, PEG,
NaCl, UV-B), 3 h (UV-B) and 6 h (cold) of treatment (Figure 2b, MtTdpla; Supplementary Table S2).

The early (30 min to 1 h) expression profiles of the TdplS gene are thus maintained in both
A. thaliana and M. truncatula model systems. Differences in the expression patterns in response to time
and treatments could be due to the use of different methods to quantify gene expression (microarray
in Arabidopsis and qRT-PCR in barrel medic) and different plant material (shoots vs. cell suspensions).
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To assure that the chosen treatments affect DNA metabolism and cell proliferation, the expression
of topoisomerase I « and  isoforms was also evaluated. In the Arabidopsis system, AtTOPl«
is mostly downregulated, while upregulation is evident only after 6 h of treatment with heat,
NaCl, and UV-B (Figure 2a, AtTOP1wa; Supplementary Table S1). AtTOP1B is highly expressed
both at 3 and 6 h after treatment with PEG, NaCl, and UV-B (Figure 2a, AtTOP1p; Supplementary
Table S1). When considering the cell suspension system, both MtTOP1x and MtTOP1p were highly
expressed after 1 h of treatment, and mostly downregulated following the 1 h time point (Figure 2b,
Supplementary Table S2). In is important to note that the MtTdpl and MtTOP1 genes followed
similar patterns of expression in M. truncatula cell cultures (e.g., upregulation during the first hours of
treatment vs. downregulation at later timepoints). Another point is that all genes were downregulated
during treatment with heat, which also resulted in high cell mortality rates, indicating that high
temperature is the most repressive affliction in our cell culture system.
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Figure 2. Expression profiles of the Tdpl and TOP1 gene families in Arabidopsis thaliana (a) and
M. truncatula (b). The heatmaps were generated using MeV (Multiple Experiment Viewer) online
software (http://mev.tm4.org). Data are presented as fold change to the untreated control for
each timepoint.

3.3. In Silico Analysis of Tdp1p and Tdpla Promoter Sequences Reveals Abundant Stress-Related cis-Elements

The cis-elements found in the four promoter regions (1500 bp upstream from the start codon) of
AtTdpla, AtTdplB, MtTdpla, and MtTdplB genes are quite diverse. Nonetheless, all four promoters
are well equipped with stress-related cis-elements (Figure 3). Among these, the light-responsive and
hormone-responsive elements are the most abundant. Another well-represented class belongs to the
defense and stress response, accounting for 15.4% and 13.4% of the overall cis-elements in AtTdplx and
MtTdp1p (Figure 3a). To assess the number of common and different cis-elements per promoter, a Venn
diagram was constructed. The analysis showed that 10 cis-elements are common to all four promoters
(Figure 3b). These include cis-elements involved in anaerobic induction (ARE), light response (Box 4,
Box I, G boxes), heat stress (HSE), salicylic acid response (TCA-element), endosperm-specific expression
(Snk1_motif), as well as cis-regulatory elements which act as enhancer (CAAT-box) and transcription
factors binding sites (TATA-box) (Supplementary Table S3). When considering the elements specific to
each promoter region, the MtTdpla has the highest number of specific elements (10) when compared
with the other promoter regions. These include elements involved in auxin response (TGA-element,
AuxRR-core), meristem-specific expression (CAT-box), low temperature (LTR) and light response
(3-AF1 binding site, GATA-motif, GTGGC-motif, I-box), the binding site of AT-rich DNA binding
protein (ATBP-1) (AT-rich element), and the cis-acting regulatory element, the OBP-1 site. In the
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AtTdpla promoter region, the six specific elements are involved in abscisic acid (ABA) and viviparousl
(VP1) responsiveness (CE3), lignin biosynthesis (AC I, AC II), and light response (GA-motif, Gap-box,
Box II). The detected elements specific only to AtTdp1p include cis-elements involved in gibberellin
response (GARE-motif), differentiation of the palisade mesophyll cells (HD-Zip I), control of leaf
morphology (HD-Zip 2), and light response (4cl-CMA2b, CATT-motif, MRE). Lastly, the specific
cis-elements encountered in the MtTdp1B promoter regions are involved in gibberellin (P-box) and
light response (chs-CMA2a, GAG-motif, ATCT-motif, AT1-motif).

Overall, the promoter region of the four genes investigated are both similar and diverse,
considering the type and number of cis-elements present, respectively.
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Figure 3. Distribution of cis-elements in the promoter region (1500 bp upstream the start codon) of
AtTdpla, AtTdplB, MtTdpla, and MtTdp1 genes. (a) Percentage of stress-related cis-elements; (b) Venn
diagram presenting the number of common and different elements per promoter region.

3.4. The HIRAN Domain is Ubiquitously Distributed in Plants

A detailed bioinformatic investigation of the HIRAN domain was performed to gain
insights into its distribution in plants (Figure 4). The schematic representation of MtTdplx and
MtTdpp protein sequence evidences the presence of the HKD (HxKx(4)-D-x(6)-G-5-x-N) catalytic
sites in both proteins, while the HIRAN domain is found only in the  isoform (Figure 4a);
in addition, a nuclear localization signal (NLS) is also present only in the (3 isoform within the
ForkHead-Associated (FHA) domain. Three different domain organizations of the HIRAN motif
(HIRAN-HKD, HIRAN-SMARCA, HIRAN-VRR-NUC) are distributed throughout the plant kingdom
(Figure 4b). In the HIRAN-HKD structure, present in the plant Tdp1p protein, the HIRAN motif
is flanked by two interacting HKD motifs, producing an active site for the phosphodiesterase
activity [1]. The HIRAN-HKD organization includes also an FHA motif, present in several eukaryotic
nuclear proteins, which mediates phosphorylation-dependent protein-protein interactions [17].
The FHA domain recognizes phosphopeptides arising from hyperphosphorylation mediated by
cell-cycle checkpoint kinases in response to DNA damage [17]. The HIRAN-SMARCA domain
organization is typical for the A-SMARC (SWI/SNF-Related, Matrix-associated, Actin-dependent
Regulator Chromatin) group of proteins, represented by DNA-dependent ATPases able to modify
histone-DNA interactions and modulate chromatin organization [18]. It also includes other domains,
e.g., the SNF2 involved in transcription regulation, recombination, and chromatin remodeling [19],
and the C3HC4 type zinc-finger motif with functions in the ubiquitination pathway [20]. Additionally,
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the HIRAN-SMARCA domain organization is found in the Helicase C-terminal motif, typical
for the SF1 and SF2 superfamilies [21]. The HIRAN-VRR-NUC domain, poorly characterized in
plants, is found in human cells within the highly conserved protein KIAA1018/FAN1 (Fanconi
anemia-Associated Nuclease 1), a DNA repair nuclease recruited to damaged DNA [22] which localizes
to stalled replication forks coordinating S-phase arrest and DNA repair [23]. In plants, this domain is
present in the KIAA1018-like protein in association with an N-terminal Rad18 zinc finger region and
C-terminal tetratricopeptide repeats (TPRs) [24].

The phylogenetic analysis shows that the HIRAN-HKD domain organization is detected in
Dicots, such as the model plant A. thaliana, the legumes M. truncatula and Glycine max, and some
tropical species (Figure 4c). The HIRAN-HKD domain organization is also present in monocots but
absent in the moss Physcomitrella patens. Both the HIRAN-SMARCA and HIRAN-VRR-NUC domain
organizations are widely distributed in the plant kingdom. Indeed, the most widespread domain
structure involving the HIRAN motif in eukaryotes is found in the N-terminus of the SWI2/SNF2
ATPases required for the activation of cell-cycle checkpoints [25].
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Figure 4. In silico analysis of the HIRAN (HIP116 Rad5p N-terminal) domain in plants. (a) Schematic
representation of MtTdpla and MtTdplpB proteins; NLS, nuclear localization signal; (b) Different
domain organizations of the HIRAN motif; (c) Phylogenetic distribution of the HIRAN-HKD,
HIRAN-SMARCA, and HIRAN-VRR-NUC domain organizations in the plant kingdom.

4. Discussion

Plant Tdp genes are far less studied when compared with their human counterparts. Moreover,
the presence of multiple Tdp1 genes in plants [2] further expands the need to design dedicated studies
to investigate their implication in plant development and stress response. In human cells, Tdp1 is
strongly linked with complex functions in DNA repair [26], whereas mutations in its catalytic sites are
associated with serious diseases (e.g., spinocerebellar ataxia) [27]. Studies conducted so far in plants
have proven the involvement of the Tdpla gene in DNA damage repair and stress response [2,6,28].
Moreover, the lack of the canonical Tdp1 isoform (Tdpla) was associated with phenotypic defects
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(e.g., dwarfism) in both Arabidopsis [28] and M. truncatula [6]. On the other side, the Tdp1 gene is
far less characterized. In M. truncatula, it was shown to be ubiquitously expressed in all plant tissues
and developmental stages [2,3]. As the MtTdp1p gene was not able to compensate for the deficiency
of MtTdpla gene in M. truncatula transgenics [6], we hypothesize that the two genes might not have
an overlapping function, although both of them play certain roles in response to abiotic stresses [2].
To further assess this hypothesis, here we investigated the expression profiles of the Tdp1p gene,
alongside the canonical Tdpla gene, in two model species, A. thaliana and M. truncatula. Several abiotic
stress conditions (cold, heat, salinity, osmotic stress, and UV-B) were imposed. Our analysis showed
that while Tdp1p is strongly expressed at the earliest timepoints (0.5-1 h) following exposure to stress
in both Arabidopsis and M. truncatula (Figure 2), the expression of the Tdpla gene is more variegated
between the two species. The early stress response pattern of Tdp1f gene is conserved between the two
species in spite of the different methods used to quantify gene expression (microarray in Arabidopsis
and qRT-PCR in M. truncatula) and different plant material (shoots vs. cell suspensions generated
from aerial parts). The use of microarrays to evaluate gene expression levels is quite widespread,
while this often requires validation by qRT-PCR. Nonetheless, most studies using both methods agree
on a high level of equivalency among them [29-31]. When considering the different type of material
used, a recent study showed the occurrence of similar mitotic indexes and gene expression profiles in
M. truncatula leaves grown in a greenhouse and calli-cultured in vitro [32]. Likewise, our work using
M. truncatula overexpressing the MtTdp2« gene revealed a high degree of similarity in the expression
pattern of several DNA repair genes in both plants grown in vitro and cell suspension cultures [10,33].
Hence, the differences encountered in the expression levels of Tdpla and Tdp1B among Arabidopsis and
M. truncatula are most likely species-specific.

The percentage of cellular mortality and expression of TOP1 isoforms were assessed to gain
more insight into cell behaviour during treatments. As DNA topoisomerase I is involved in solving
the conformational changes in DNA topology, it plays essential roles in several cellular processes
(e.g., replication, transcription, recombination) [34] as well as in the response to stress agents [35-37].
It can also act as a damage sensor and cofactor in DNA repair pathways [38,39]. Moreover, the topo
I—DNA covalent complexes represent the substrate for the activity of Tdp1 [26,40]. Due to their central
role in DNA metabolism, decreased activity of the TOP1 gene negatively influences cell culture growth
and vitality [15]. The results presented here corroborate with this finding well, as enhanced cellular
mortality (Figure 1) corresponded to a decrease in MtTOP1ax and MtTOP1p gene expression (Figure 2)
at 6 h following treatments. Downregulation of TOP1 could be associated with a temporary block
of cell-cycle progression to allow more time for DNA repair. In M. truncatula cell cultures, higher
expression of TOP1 genes after 1 h of treatment was observed in parallel with higher expression of
Tdp1 genes, suggesting for an early and coordinated activation of these genes under stress conditions.
It is reasonable to hypothesize that these may be acting as damage sensors rather than repair activities,
as further exposure to stress (e.g., subsequent timepoints) resulted in decreased gene expression.

The activation or suppression of gene expression is tightly regulated at the transcriptional level
through the activity of gene promoters and related cis-acting elements. As a consequence, the regulation
of gene transcription revolves around the type, number, position, and combination of regulatory
elements present inside and around the promoter [41]. As we detected different expression patterns
in Tdpla and Tdp1pB genes in response to stress, we investigated their promoter regions in the two
model species. In agreement with the gene-specific responses to abiotic stress conditions, the promoter
regions of all four genes are adequately equipped with stress-related cis-elements (Figure 3). Common
as well as divergent cis-elements are encountered in the promoter regions of the four genes. Focusing
on the different types of cis-elements, the hormone-responsive elements are worth specifying because
abiotic stress responses are strongly correlated with hormonal signaling [42]. Our analysis showed
that ABA-responsive elements are present only in AtTdpla, and auxin-responsive elements are present
only in MtTdpla, while gibberellin-responsive elements are common to both AtTdp1p and MtTdp1p
promoter sequences. On the other hand, salicylic acid-responsive cis-elements are encountered in all
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four promoter regions. It is well established that phytohormones and their corresponding cross-talk
pathways play pivotal roles during plant development and stress response [43]. Another point to be
raised is the presence of cis-elements with roles in lignin biosynthesis in the AtTdplx promoter region.
This is important because lignin, as the main structural component of the cell wall, is involved in the
overall plant stress management [44]. Moreover, we showed that in M. truncatula, MtTdpla-depleted
plants have a reduced permeability of the cell wall and ticker cuticula than their wild-type counterparts,
and this was associated with altered expression of defense genes and high susceptibility to stress [45].
A recent study showed the presence of common metabolites in the formation of lignin and cuticular
biopolymers in mosses, suggesting that the pre-lignin pathway may be crucial for the formation of
cuticular elements [46]. However, despite the fact that the cis-element promoter analysis represents
an informative tool to figure out differences in gene expression profiles, future promoter validation
studies are required to corroborate the in silico investigation.

To further unfold the reasons of Tdplp early stress response, we investigated the presence
and distribution of the HIRAN domain (conserved in many DNA processing proteins) in plants.
This analysis showed that the HIRAN-HKD domain, specific to the Tdp1 protein, along with the
HIRAN-SMARCA and HIRAN-VRR-NUC conformations, are ubiquitously found in plants (Figure 4).
The structure of the HIRAN domain was recently reported to be composed of six -strands and
two o-helices, forming an OB (oligonucleotide/oligosaccharide binding)-fold structure commonly
found in single strand DNA (ssDNA) binding proteins [47], while the DNA binding site of the free
domain displayed high degrees of conformational heterogeneity [48]. It has been hypothesized that
the HIRAN motif might act in the recruitment of repair/remodeling enzymes to specific DNA sites,
playing a role in cell cycle-checkpoints arising from stalled replication forks and post-replication
damage [49]. In human cells, the filling-in of gaps in damaged DNA during replication, carried out
by the HLTF (helicase-like transcription factor) function, is dependent on the HIRAN domain [50],
which also promotes the HLTF-dependent fork reversal, playing roles in DNA damage tolerance [51].
One of the main tasks of the DNA damage tolerance pathway is to minimize fork stalling, pushing
for the bypass of replication blocks [52]. In plants, the HIRAN domain was investigated in relation to
AtRAD5SA, a DNA translocase that catalyzes the fork regression, and was shown to be able to bind to
branched DNA structures and promote DNA repair [53]. However, all the cited literature refers to
the HIRAN-SMARCA type of architecture, while no information on the HIRAN-HKD is available in
plants. Based on the assumption that the HIRAN domain could act as a sensor to initiate the repair
processes at damaged DNA checkpoints [49], we hypothesize that the presence of this motif in the
Tdp1p protein might sustain the early response of the gene to abiotic stress conditions. Nonetheless,
further experimental studies, such as targeted modifications of the Tdp1B HIRAN domain, are needed
to prove this theory.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/11/305/s1,
Table S1: Arabidopsis thaliana AtTdpla, AtTdplB, and AtTOP1a, AtTOP1B gene expression profiles retrieved from
the AtGenExpress microarray abiotic stress dataset. Data are presented as the mean of three replicates + standard
deviation, Table S2: Medicago truncatula MtTdpla, MtTdplB, and MtTOP1a, MtTOP1B gene expression profiles
obtained from gRT-PCR analysis. Data are presented as the mean of three replicates + standard deviation, Table S3:
Promoter cis-elements identified using the PlantCARE online tool. The function of each cis-element is specified,
alongside with the frequency of presence in the promoter regions of AtTdpla, AtTdplB, MtTdpla, and MtTdplp.
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