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Abstract: The wheat head blight disease caused by Fusarium graminearum is a major concern for
food security and the health of both humans and animals. As a pathogenic microorganism, F.
graminearum produces virulence factors during infection to increase pathogenicity, including various
macromolecular and small molecular compounds. Among these virulence factors, secreted proteins
and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. gramin-
earum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection
process of F. graminearum and is indispensable for the emergence and spread of wheat head blight.
Over the last ten years, there have been notable breakthroughs in researching the virulence factors
and sexual reproduction of F. graminearum. This review aims to analyze the research progress of
sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of
sexual reproduction and DON synthesis. We also discuss the application of new gene engineering
technologies in the prevention and control of wheat head blight.
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1. Introduction

Wheat head blight, also called Fusarium head blight (FHB), is a destructive disease in
wheat worldwide which leads to considerable decreases in crop productivity as well as the
quality of the gathered crops due to the presence of mycotoxins in the infected grains [1,2].
The mycotoxins that form in cereals not only adversely affect the nutritional quality of the
grains, but also endanger the well-being of both individuals and animals that ingest food
tainted with these mycotoxins [3]. Major wheat producers situated in FHB-prone regions
face a significant risk from FHB. Significant losses occur in these areas due to frequent and
severe FHB outbreaks [4,5]. For decades, cereal crops in the United States have faced the
most significant danger from FHB. Between 1993 and 2014, the United States experienced
a staggering loss of USD 17 billion as a result of FHB impacting wheat [3,4,6]. Since 1950,
China has experienced 30 FHB epidemics, following more than 10% loss of the total acreage
every time. The major epidemic in 2012 led to the destruction of around 10 million hectares
of wheat cultivation and a loss of over 2 million tons in yield [2]. Since 2016, FHB has
been gradually spreading northwards and is increasingly becoming a common disease
affecting wheat in the Huang Huai Plain (HHP) of China [7]. The occurrence of FHB
epidemics has been influenced by changes in the planting conditions and the rise in global
temperatures [8]. Fluctuations in temperature and humidity significantly influence the
spread of FHB infection [2].
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The infection process of F. graminearum in wheat starts when ascospores are released
from the perithecia and then land on wheat spikelets through the air [9]. Except for
the ascospore, there is another spore type, conidia, and both of them play key roles in
disease initiation and propagation. However, it is believed that ascospores, which are
forcefully released into the atmosphere, act as the primary inoculum of infection in the
disease cycle [10]. Hence, the process of sexual maturation and the release of ascospores
play a crucial role in the survival of fungi and the onset of diseases [10]. The ascospores
adhere to the surface of the host and initiate the growth of germ tubes. Subsequently, these
germ tubes transform into distinct non-branching filaments known as runner hyphae (RH).
Multicellular infection cushions (IC) differentiate from RH; they penetrate the plant cuticles
and generate multiple sites for infection initiation [11–13]. Following the initial infection,
the fungus spreads into the inner tissues of the growing grains using the invasive hyphae
(IH), which extend throughout the spikelet, reaching the rachial node. Eventually, FHB
symptoms become evident in various spikelets as the IH spreads upwards or downwards
along the rachis [3,14–16]. Through RNA-seq and transcriptome analysis, it was discovered
that infection-related genes were up-regulated in the IC in comparison to the RH. These
genes encompassed carbohydrate-active enzymes (CAZymes), potential effectors, and
clusters of genes associated with secondary metabolism [17]. The existing evidence proves
that deoxynivalenol (DON), biosynthesized by F. graminearum, is crucial for the spread of
fungus from spikelet to rachis during infection [18].

It is not possible to effectively manage FHB by relying on a single control strategy
due to their individual limitations. In practical terms, employing a combination of control
strategies, including cultural practices, biological methods, chemical treatments, and host
plant resistance, can contribute to effectively managing FHB to some extent [3]. Moreover,
cultivars with strong resistance would offer the most effective approach to decrease FHB
outbreaks [19]. Identifying genes associated with FHB resistance and incorporating them
into the breeding of disease-resistant varieties is an effective and cost-efficient solution for
managing FHB [19]. Presently, there is a considerable amount of documented quantitative
trait loci (QTL) or genes that provide resistance against FHB, and relevant reviews are
available on the resistance genes and control strategies for FHB [3,19]. In this review, we
focus on two aspects closely related to F. graminearum infection and FHB occurrence: the
primary inoculum and the virulence factors (secreted proteins and deoxynivalenol) during
the infection process. Additionally, we discuss new technologies related to FHB prevention
and control.

2. Sexual Reproduction of F. graminearum Provides the Primary Inoculum for FHB

Like other eukaryotic creatures, fungi rely on sexual reproduction to promote genetic
variation and eliminate detrimental mutations [20]. Sexual development is essential for the
disease cycle of FHB. In diseased wheat, the initial stage of perithecium, along with the
binucleate hyphae from which they originate, are linked to the plant’s stomata and silica
cells; these structures serve as overwintering sites. In the field, the perithecia are short-
lived; F. graminearum depends on forcibly ejecting ascospores from sexual reproduction
to infect wheat flowers. The primary inoculum of infection for the disease is the airborne
ascospores [21]. Therefore, sexual reproduction of F. graminearum provides the primary
inoculum for FHB.

2.1. The Sexual Development Processes of F. graminearum

The sexual development of F. graminearum starts with the formation of hyphae that
contain binucleate cells, which have two genetically identical nuclei and are responsible
for sexual reproduction. The binucleate cells then develop into small, coiled cells known
as fruiting body initials. In culture, the initial fruiting bodies progress without interrup-
tion and ultimately transform into structures resembling flasks, which are referred to as
perithecia [9,22]. Perithecia have different tissue types that are produced at specific stages
of perithecium development, including the formation of perithecium initials, the outer
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wall, paraphyses, asci, and ascospores [21]. The asci extend vertically within the perithe-
cium, producing ascospores in two rows, each containing eight ascospores per ascus. The
ascospores are discharged via an opening situated at the tip of the ascus, which traverses
the ostiole [21]. Sexual reproduction in ascomycetes is regulated by transcription factor
genes (TFs) at the mating type (MAT) locus. In Saccharomyces cerevisiae, MAT-encoded
TFs regulate genes involved in pheromone production and receptor activity [20]. When
pheromones bind to the Ste2 and Ste3 G protein-coupled receptors (GPCRs), they trigger
the pheromone response pathway by activating the downstream cascade involving Ste11,
Ste7, and Fus3/Kss1 [20]. MAT transcription factors in F. graminearum are not necessary
for the early stages of mating, but they are essential for the formation and expansion of
dikaryotic hyphae as well as the later phases of sexual reproduction [23]. Nonetheless,
the presence of pheromones and pheromone receptors does not play a crucial role in the
sexual reproduction of F. graminearum [24]. The factors that trigger the formation of croziers,
meiosis, and ascus development in filamentous ascomycetes are still unknown [25]. How-
ever, previous research has discovered different genes that impact sexual processes in F.
graminearum, including non-pheromone GPCRs [26] (Figure 1).
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Figure 1. Genes involved in the regulation of sexual reproduction in F. graminearum. Proteins
such as G protein-coupled receptors Gip1, Gα subunits of heterotrimeric G proteins Gpa1, RGS
(regulator of G protein signaling) proteins FgFlbA, and components of velvet protein complex FgVelB
are essential for the formation of perithecium. FgBud14, Fg10228, and Fg08635 play critical role in
the ascus development. The proteins FgAma1, FgCsn12, FgGia1, and others have varying effects on
the development of the ascus and ascospore. FgAmd1; Gea1; and protein kinases Fg01506, Fg13318,
Fg08906, Fg01842, Fg06957, and Fg10095 have been shown to be essential in ascospore release.

2.2. Genes Involves in the Formation of Perithecia

The development of perithecia is closely connected to intracellular signaling. Het-
erotrimeric G proteins are highly conserved in model filamentous fungi. The essential
components of the G protein signaling complex include G protein-coupled receptors, G
proteins (comprising Gα, Gβ, and Gγ subunits), and downstream effectors [27]. A non-
pheromone GPCR Gip1 (Fg05239) has been identified as crucial for perithecium formation
in F. graminearum. ∆fg05239 mutants are capable of forming protoperithecia but cannot
progress to develop mature, melanized perithecia [26]. A recent study verified that Gip1
orthologs have a conserved role in the development of perithecium in both heterothallic
and homothallic species [25]. Deletion of the Gα subunits Gpa1 in heterotrimeric G proteins
leads to defects in the development of the perithecium in F. graminearum, indicating the
essential role of GPA1 in regulating sexual reproduction [28]. Regulators of G protein sig-
naling (RGS) are crucial in the regulation of heterotrimeric G protein signaling [29]. FgFlbA
is an RGS protein that interacts with the Gα subunit. The fgflbA mutants are unable to
produce perithecia through self-fertilization, resulting in the loss of their ability for female
fertility [30].

The formation of perithecium is influenced not only by the G protein signaling com-
plex, but also by various downstream signaling pathways. Eukaryotic organisms heavily
depend on mitogen-activated protein kinase (MAPK) pathways to respond to both abiotic
and biotic stresses [31]. F. graminearum possesses three MAPKs (Gpmk1/Map1, Mgv1,



Genes 2024, 15, 475 4 of 19

and FgHog1) [13]. MGV1 acts as the MAPK pathway for the cell wall integrity (CWI).
Mutants lacking MGV1 are unable to produce perithecia under selfing conditions. A recent
study examined the composition and role of the striatin-interacting phosphatases and
kinases (STRIPAK) complex in F. graminearum. It was found that STRIPAK mutants did
not show any perithecia formation in the same environment as the wild type. Additional
discoveries indicated that the STRIPAK complex manages the coordination of cell wall
integrity signaling to control the fungal growth and virulence of F. graminearum [32]. Dele-
tion of another MAPK GPMK1 also resulted in defects in sexual reproduction, ∆gpmk1
mutants failed to produce any perithecia [33]. FgSte12 and FgMcm1 are two transcription
factors downstream of Gpmk1. The deletion mutant of FgSTE12 produced significantly less
perithecia than the wild type [34]. Loss of FgMCM1 led to infertility, as well as a notable
decrease in virulence and DON production [35]. The involvement of RAS2, a GTPase, in
the activation of Gpmk1 has been confirmed to be crucial for sexual reproduction in F.
graminearum, as evidenced by the mutant defect of ras2 in female fertility [36]. FgHOG1
is crucial for infection in F. graminearum, while its ortholog in Magnaporthe oryzae is not
required for virulence. The FgSsk2–FgPbs2–FgHog1 MAPK cascade was also found to be
essential for female fertility [37]. To determine the MAPK-less effects in F. graminearum,
deleted mutants of all three MAPK genes were generated in a study. The gpmk1 mgv1 fghog1
triple mutants were unable to engage in sexual reproduction as a result of the loss of female
fertility [38]. A systematic study of protein kinases in F. graminearum showed that 20 mu-
tants were unable to produce perithecia. Among these, six mutants belonged to the Mgv1
and Gpmk1 MAPK pathway [39]. These results indicate that the three MAPK pathways
are indispensable for the development of perithecia in the sexual reproduction process of
F. graminearum. Inhibition of another important signaling pathway in F. graminearum, the
cAMP-PKA signaling pathway, also affects the formation of perithecia, as evidenced by
the blocked perithecium development observed in the pkr (the regulatory subunit of PKA)
mutant [40].

In addition to these signaling pathways, numerous other genes exert pivotal functions
in the development of perithecia in F. graminearum (Figure 1). The FGK3 gene, which
encodes glycogen synthase kinase, was found to be a crucial determinant of virulence in
F. graminearum [39]. The ∆fgk3 mutant resulted in the inability to generate perithecia and
protoperithecia, indicating the vital involvement of FGK3 in the initial stages of sexual
development in F. graminearum [41]. The velvet protein complex formed a heterotrimeric
complex comprising VelB–VeA–LaeA proteins. In F. graminearum, the fgvelB mutant failed
to produce fruiting bodies [42]. FgEps1 is a protein disulfide isomerase of F. graminearum,
and it was found that ∆fgeps1 produced no perithecia on the medium [43]. The AP1
complex, a clathrin adaptor that is highly conserved, includes FgAP1σ as one of its subunits
in F. graminearum. The absence of FgAP1σ in F. graminearum resulted in the complete
elimination of perithecia formation [44]. The RNA lariat debranching enzyme Dbr1 is
essential for intron turnover. fgdbr1 mutants produced limited immature perithecia in F.
graminearum [45]. Fgporin was characterized as a yeast mitochondrial porin orthologue in F.
graminearum, and the ∆fgporin mutant was unable to generate perithecia until 20 days after
fertilization [46]. FgErv14 was identified as an endoplasmic reticulum (ER) cargo receptor
in F. graminearum. Two weeks after fertilization, the ∆fgerv14 mutant showed a complete
absence of perithecia production [47]. Systematic investigation of Phox homology domain-
containing proteins in F. graminearum revealed that FgBem1 plays a crucial role in both
sexual development and virulence. The fgbem1 mutant was unable to form perithecium [48].
Sgh1 is a serine/arginine (SR)-like protein that participates in pre-mRNA processing in
F. graminearum. The ∆sgh1 mutant did not produce any protoperithecia or perithecia on
mating plates [49] FgExosc1 and FgExoscA are part of the RNA exosome complex in F.
graminearum. The deletion mutant of Fgexosc1 was unable to form perithecia. Although the
deletion mutant of FgexoscA exhibited normal perithecia formation, it showed a significant
reduction in the quantity of ascospores generated compared to the wild-type strain PH-
1 [50] (Supplementary Table S1).
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The deletion defects of some genes are manifested by reduced production or delayed
maturation of perithecia rather than no perithecia. FgSFL1 and FgATF1 were identified as
downstream effectors of the PKA signaling pathway and the HOG1 signaling pathway,
respectively. Deletion mutants of fgsfl1 exhibited a decrease in the quantity of perithecia
formed, while mutants of fgatf1 exhibited delayed perithecium development [51,52]. MES1
is a gene involved in cell-surface organization, and mes1 mutants consistently produced
fewer perithecia in F. graminearum. Although the mes1 mutants showed a decrease in
perithecium formation, the ascospores they produced were morphologically indistinguish-
able from those produced by the wild-type strain PH-1 [53]. FgMet3 and FgMet14 are
two proteins related to the synthesis of cysteine and methionine in F. graminearum. The
progression of perithecium formation was delayed in the fgmet3 and fgmet14 mutants
compared to PH-1 [54]. FgCapA and FgCapB, the two actin-capping proteins (CAPs), were
identified as two components of toxisomes. The ∆FgcapA and ∆FgcapB mutants exhibited a
reduced number of perithecia in comparison to the wild type [55]. The deletion mutants of
these genes all affect perithecia formation, but they may have roles beyond the perithecia
formation stage. To confirm this, stage-specific silencing experiments are necessary.

2.3. Genes Involves in Ascosporogenesis

The perithecia contain numerous asci, which are elongated sac-like structures that con-
tain eight haploid ascospores each. The asci are formed through meiosis [9]. Although the
regulatory mechanism of ascosporogenesis in filamentous fungi remains unclear, existing
research suggests that the regulation of meiosis and ascosporogenesis is closely associated
with surface receptors and downstream signaling pathways. Recent research has shown
that Gia1, a G protein-coupled receptor that is not involved in pheromone signaling, regu-
lates the initiation of meiosis and ascosporogenesis through the Gpmk1 MAPK signaling
pathway in F. graminearum and other filamentous ascomycetes [25]. FgSwi6 and Fgp1 are
two transcription factors downstream of the CWI signaling pathway in F. graminearum.
∆fgswi6 show reduced perithecium production and size, as well as a decreased produc-
tion of asci and ascospores [56]. The perithecia of ∆fgp1 resembles the wild type, but
ascospore formation is delayed by one week, and only a limited number of ascospores are
released from the perithecia [57]. CPK1 and CPK2, as regulatory subunits of PKA protein,
function in the cAMP-PKA signaling pathway. The cpk1 mutant shows deficiencies in
ascospore maturation and release while the cpk2 mutant does not show any noticeable
phenotypes [58].

The ascosporogenesis is also influenced by genes other than the signaling pathway
(Figure 1), such as the previously mentioned FgExoscA [50]. The systematic analysis of
kinases found that deletions of protein kinases FgDBF1 and FgSWE1 were shown to be
aborted in ascus development, while mutants of Fg08468, Fg07344, Fg06878 (Cmk1/2), and
Fg10095 showed significant decreases in ascospore formation [39]. Deletion of FgKIN1, a
gene encoding MARKs (microtubule affinity-regulating protein kinases), led to decreased
virulence and compromised ascospore germination and dissemination [59]. The COP9
signalosome (Csn) complex is a highly conserved protein complex that plays a role in
regulating various essential cellular processes across evolution [60]. The subunit of COP9
signalosome FgCsn12 is also involved in regulating ascosporeogenesis and sexual devel-
opment [61]. FgBUD14 encodes a protein with homology to yeast Bud14, and deleting
FgBUD14 greatly decreases the formation of croziers and the development of asci [62].
FgLEU1 encodes an isopropylmalate isomerase in F. graminearum. The ∆leu1 mutant fails to
generate ascospores [63].

In the life cycle of F. graminearum, the discharge of ascospores is crucial for the survival
of the fungus and the initiation of disease [64]. The release of ascospores is driven by the
turgor pressure created through ion fluxes, particularly potassium (K+) and calcium (Ca2+),
along with the buildup of mannitol [64]. High humidity levels and low air temperatures
have been proven to be linked to ascospore discharge [65]. Apart from physiological
factors, certain genes are also closely related to the discharge of ascospores (Supplementary
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Table S1). The systematic analysis of kinases found that deletions of protein kinases Fg01506,
Fg13318, Fg08906, Fg01842, Fg06957, and Fg10095 were shown to be defective in ascospore
release [39]. ROA (ORF round ascospore) has been identified as a new gene that performs
various functions in preserving the correct morphology and release of ascospores in F.
graminearum [66]. The deletion of the calcium ion channel gene CCH1 was found to stop
ascospore discharge while not influencing spore or ascus morphology [67]. FgSRP1, a
serine/arginine-rich protein, is crucial for conidiation, pathogenesis, alternative splicing,
perithecium pigmentation, and ascospore discharge [68]. lncRsp1 is a long noncoding
RNAs positioned +99 bp upstream of the putative sugar transporter gene, FgSP1. Both
∆lncRsp1 and ∆Fgsp1 mutants exhibit normal growth and conidiation, but show deficiencies
in ascospore discharge and pathogenicity on wheat coleoptiles [69]. FgATF1 is a stress-
related transcription factor gene. A mutant of fgatf1 exhibits a notable decrease in virulence
and a delay in ascospore release [70]. GEA1 is a gene that plays a critical role in the
development of the ascus wall in F. graminearum. Deleting GEA1 leads to the formation of
abnormal ascus walls that collapse before ascospore discharge [71].

2.4. Epigenetic Regulation during Sexual Reproduction in F. graminearum

Sexual reproduction involves a complex interplay of genetic and metabolic processes,
which are likely to be finely regulated in terms of timing and location at every stage of
sexual development [72]. In this process, epigenetic regulation also plays an important role,
such as repeat-induced point mutation (RIP), meiotic silencing by unpaired DNA (MSUD),
and A-to-I RNA editing [73–76]. RIP is a genome mutation process specific to certain
fungal taxa, targeting repeated DNA sequences. Before meiotic prophase, it identifies
and alters duplicated transposable elements, resulting in the formation of transposons
that are not functional [77]. The mechanism of RIP remains unknown, but one common
result of its happening is the occurrence of methylation. DNA sequence analysis indicates
that the methylated portion of the genome primarily comprises remnants of transposons
that underwent RIP [78]. The genome of F. graminearum is characterized by a scarcity of
repetitive DNA sequences and a notable absence of active transposable elements when
compared to other similar fungi, largely due to its homothallic nature and the presence of
the RIP system during each meiosis [76]. Following karyogamy, unpaired DNA during
meiosis leads to the silencing of all DNA sequences homologous to it, including genes
that are already paired; this mechanism is referred to as MSUD [79]. MSUD functions
by recognizing and inhibiting the replication of repetitive sequences, thus averting the
activation of transposons in meiotic cellular division [79]. Although F. graminearum is
homothallic, MSUD is still active in this species, albeit at a lower level compared to
Neurospora crassa. The reduced activity of meiotic silencing in F. graminearum seems to be an
evolutionary adaptation to minimize fitness costs during sexual reproduction [80]. A-to-I
RNA editing is a crucial post-transcriptional alteration that transforms adenosine (A) into
inosine (I) in RNA molecules [81]. The initial discovery of fungal A-to-I mRNA editing
occurred in the mRNA of Puk1 within F. graminearum [74]. PUK1 has a distinct function in
the formation and discharge of ascospores [74]. In addition to PUK1, several genes related
to A-to-I editing have been discovered in F. graminearum. FgAMA1 is a gene that encodes a
meiosis-specific activator of APC/C31, which is a protein complex that regulates cell cycle
progression and chromosome segregation during meiosis. It has been demonstrated that
the A-to-I RNA editing of FgAMA1 is important for ascospore formation and discharge in
F. graminearum [82]. AMD1 is a gene with a premature stop codon that relies on A-to-I RNA
editing to produce a complete functional protein. AMD1 might have a crucial function in
preserving ascus wall integrity during ascus maturation [83]. During sexual reproduction
of F. graminearum, FgBUD14 plays crucial roles in ascus development, with its transcripts
undergoing both specific alternative splicing and RNA editing [62]. Feng et al. conducted
a pioneering study that revealed key RNA sequence and structure features influencing
editing. Their research identified cis-sequence elements with different roles in editing
specificity and efficiency in F. graminearum [84]. The study conducted by Xin et al. on
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missense editing sites provided compelling experimental proof of the adaptive benefits of
RNA editing in fungi and possibly in animals [85]. A recent study indicated that restorative
RNA editing functions as an adaptive mechanism that allows for the reconciliation of
genetic trade-offs [86].

In addition to these three mechanisms, the sex-induced RNA interference (RNAi)
mechanism has also been identified as playing crucial roles in sexual reproduction of F.
graminearum [87]. RNA interference (RNAi) is a preserved process activated by double-
stranded (ds)RNA. It offers defense against external genetic material, controls gene activity
that codes for proteins during and after gene expression, and maintains genome stability
by suppressing transposons [88–90]. In this process, Dicers, which belong to the RNase III
family of nucleases, cleave double-stranded RNA (dsRNA) precursors to produce siRNA
and miRNA duplexes [91]. The resulting siRNA or miRNA duplexes are then integrated
into an RNA-induced silencing complex (RISC), where Argonaute serves as the central
component and acts as an sRNA-guided endonuclease [91]. RISC is activated following
the removal of the passenger strands of sRNA duplexes. The guide RNA integrated into
RISC is subsequently employed to identify matching mRNA for suppression via mRNA
degradation or inhibition of translation [92,93]. F. graminearum has two Dicers and two
Argonautes. Research has revealed that the regulation of Argonaute genes is influenced
by the mating-type gene and is crucial for sexual maturation in F. graminearum [94]. Son
et al. confirmed that F. graminearum employs the ex-siRNA-mediated RNAi pathway
exclusively for sexual development, which is mainly regulated by FgDCL1 and FgAGO2 [87].
Meanwhile, through the use of sRNA and transcriptome sequencing, 143 new microRNA-
like RNAs (milRNAs) were identified in wild-type perithecia, with the majority of them
being dependent on FgDCL1. These milRNAs specific to perithecia could potentially be
involved in sexual development, as they are predicted to target 117 genes [95].

3. Virulence Factors Secreted by F. graminearum during Wheat Infection
3.1. F. graminearum Secretes a Variety of Enzymes and Effectors to Facilitate Infection

Pathogenic fungi employ a diversity of small secreted proteins (SSPs) or molecules
that modulate host cell structure, metabolism, defense responses, and other cellular pro-
cesses to facilitate infection (Figure 2) [96]. An analysis comparing the transcriptome of
wheat tissues infected by F. graminearum, with and without symptoms, demonstrated
a significant up-regulation of genes encoding cell-wall-degrading enzymes (CWDEs) in
both asymptomatic and symptomatic wheat tissues. This suggests the vital importance
of these genes in various stages of infection [97]. In the dicot Nicotiana benthamiana, two
glycoside hydrolase 12 (GH12) family proteins, Fg05851 and Fg11037, are recognized as
targets of LRR receptor-like protein response to XEG1 (RXEG1). Introducing RXEG1 into
wheat enhances resistance to F. graminearum by targeting Fg05851 and Fg11037, leading to
reduced mycotoxin levels in wheat grains [98]. Enzymes such as tomatinase-like enzyme,
arabinanase, catalase-peroxidase, and ribonuclease, encoded by FgTOM1, ARB93B, KATG2,
and Fg12, respectively, were identified as pathogenicity determinants contributing to F.
graminearum virulence [99–102]. In addition to CWDEs, other enzymes such as lipases
and proteases are also secreted into the extracellular space to breach the primary plant
cell defense barrier [103]. FGL1, a lipase secreted by F. graminearum, acts as a virulence
factor facilitating pathogen infection through its enzymatic activity. The fgl1 mutant elicits
a strong wheat defense response involving callose deposition [104].
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Figure 2. Model of interaction between virulence factors secreted by F. graminearum and targets.
Fg-sRNA1 interacts with chitin elicitor binding protein (TaCEBiP). Cell-wall-degrading enzymes
(CWDEs) secreted by F. graminearum degrade plant tissues. Fusaoctaxin A and B alter chloroplast
localization and distribution to facilitate infection. Lipase FGL1 suppresses callose deposition. The
cytoplasmic effector Osp24 competes with the resistance protein TaFROG for binding with the
immunity-related kinase TaSnRK1a, and thereby accelerates TaSnRK1a degradation. TaFROG and
the UDP-glycosyltransferase TaUGT3 contribute to host resistance to DON.

Additionally, various works have found that F. graminearum deploys many effectors
for suppressing host immunity and promoting infection in the process of the interaction
between the pathogen and wheat [105–107]. The orphan secreted protein Osp24 suppresses
Bax- or INF1-induced cell death, and the osp24 deletion mutant affects the expansion of
invasive hyphae in wheat rachis tissues. Osp24 interacts with TaSnRK1α and promotes its
degradation by facilitating TaSnRK1α binding with ubiquitin-26S proteasomes, thereby
reducing wheat’s resistance to Fusarium head blight [108]. A small secreted protein gene
was found to have increased expression during infection of wheat heads by F. graminearum.
Deleting Fg02685 slowed down expansion of F. graminearum in wheat spikes. The 32-amino-
acid N-terminus peptide of Fg02685 has been shown to play a key role in inducing oxidative
burst, callose deposition, and activating MAPK signaling in plants [109]. F. graminearum
secretes a group of cysteine-rich proteins common in the fungal extracellular membrane
(CFEM) domain that specifically target the interacting protein of ZmWAK17, a receptor
kinase associated with the cell wall. This interaction has a negative regulatory effect on
ZmWAK17-mediated immunity [110].

3.2. DON Is a Crucial Virulence Factor Necessary for the Proliferation of Infections on Wheat Heads

The release of mycotoxins by FHB pathogens is a significant concern, as it can have
detrimental effects on wheat grains. These mycotoxins not only impact the nutritional
quality of the grains, but also pose a risk to the health of humans and livestock who
consume food contaminated with mycotoxins [2]. As the most common mycotoxin in cereal
grains worldwide, DON inhibits protein synthesis and causes various harmful effects in
mammals, such as emetic effects, anorexia, and immune dysregulation [111,112]. DON is
also a critical virulence factor of F. graminearum [113]. DON biosynthesis is strongly induced
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when F. graminearum infects spikelets of wheat and spreads throughout the entire head [114].
Deleting the initial trichodiene synthase gene, TRI5, leads to decreased virulence. ∆tri5
mutants are restricted to the inoculated wheat spikelets and unable to pass through the
rachis node [115].

3.3. Genes Involves in DON Production

The 15 TRI genes encode the necessary biosynthetic enzymes for the production of
trichothecene. Following the discovery of the TRI5, which codes for trichodiene synthase,
a total of 10 biosynthesis genes were found within the TRI5 gene cluster. TRI101, TRI1,
and TRI16 were discovered situated outside the gene cluster of TRI5 [116,117]. TRI6 and
TRI10 function as global transcriptional regulators within the TRI gene cluster, stimulating
the transcription of additional TRI genes [118,119]. A recent study discovered that TRI10
and TRI6 mutually control each other’s expression and play a crucial role in inhibiting
the expression of a long non-coding RNA (RNA5P) [120]. In addition to TRI genes, the
regulation of DON production is also related to intracellular signaling (Figure 3). The
target of rapamycin (TOR) pathway is a conserved signaling mechanism found in organ-
isms ranging from yeast to humans. It serves as a connection between external stimuli,
such as nutrients and growth factors, and internal processes involved in development
and metabolism [121]. TOR may also regulate DON production via biogenesis of lipid
droplets in F. graminearum [117,122]. Deletion of CPK1 results in a significant decrease in
DON synthesis, while the cpk2 mutant shows no observable phenotypes [58]. Deletion of
PDE2 encoding cAMP phosphodiesterase and PKR leads to an elevation in DON produc-
tion [40,119]. The adenylate-binding protein FgCap1 interacts with adenylate cyclase Fac1,
influencing DON production through cAMP signaling, and is under feedback regulation
by TRI6 [123]. In F. graminearum, the CWI signaling pathway comprises FgBck1, FgMkk1,
and FgMgv1 as the MAPK components. The ∆fgmgv1 mutant exhibits a substantial de-
crease in trichothecene accumulation in wheat heads after inoculation, as well as reduced
levels of ∆FgBck1 and ∆FgMkk1 [39,124,125]. Deletion mutants of the FgSte11-Ste7-Gpmk1
signaling cascade lead to decreases in the expression of TRI genes and reduced DON
production [39,126,127]. Deletion of the response regulators FgOs1 and FgRrg1, as well as
the response factor FgAtf1 in the HOG pathway, results in a significant decrease in DON
production [37,52,128–130].

In recent years, many other genes controlling DON synthesis beyond TRI genes and sig-
naling pathways have been identified (Supplementary Table S2). Under the induction con-
ditions of DON, transcription factor FgStuA recruits the Spt-Ada-Gcn5-Acetyltransferase
(SAGA) complex to the TRI6 promoter, leading to increased TRI6 transcription [131].
FgPex13 and FgPex14 are peroxisomal docking machinery components. ∆fgpex13 and
∆fgpex14 cause a deficiency in acetyl-CoA, which is critical for trichothecene biosynthesis;
as a result, the production of deoxynivalenol (DON) decreases [132]. The subtilisin-like pro-
tease FgPrb1 and long non-coding RNA (lncRNA) lncRsp1 both exert an influence on DON
synthesis [69,133]. Moreover, epigenetic mechanisms also play a crucial role in regulating
DON production. These mechanisms involve the regulation of heterochromatin, histone
methylation, and acetylation [13,117]. Various proteins such as Hep1, Kmt6, FgGcn5, Elp3,
and FgSas3, which are associated with heterochromatin, histone methylation, and acety-
lation, have been identified to be involved in regulating the expression of TRI genes and
the biosynthesis of deoxynivalenol [13,134,135]. The inhibitor of growth (ING) proteins
Fng1 and Fng3, which are associated with histone acetyltransferase (HAT) and histone
deacetylase (HDAC) complexes, are required for the biosynthesis of DON [13,136,137].
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Figure 3. Genes and environmental factors involved in the regulation of DON synthesis. Factors of
the environment, such as oxidative stress and nutrition, induce DON synthesis during F. graminearum
infection. The transmembrane protein FgSho1 is required for deoxynivalenol (DON) biosynthesis
in F. graminearum. FgSho1 physically interacts with the MAPK module FgSte50-Ste11-Ste7. Gpa1
and Gpb1 act as negative regulators of DON production. FgCap1 interacts with adenylate cyclase
Fac1 and modulates DON production via cAMP signaling. Cpk1 is the major PKA catalytic subunit
gene involved in DON synthesis. The cAMP phosphodiesterase Pde2 and the regulatory subunit
of PKA (PKR) also negatively regulate DON production. DON biosynthesis is blocked when all
three MAPKs are deleted in F. graminearum. Tri6 activates the expression of most genes in the
DON biosynthetic pathway. TRI10 has been suggested to act upstream of TRI6. AreA mediates
the regulation of deoxynivalenol (DON) synthesis by cAMP signaling. AreA is involved in the
transcriptional regulation of TRI genes through its interaction with Tri10. FgSR and FgRrg-1 are closely
related to the synthesis of DON and the expression of DON synthesis-related genes. Deleting the
heterochromatin protein Hep1 suppresses the expression of TRI5 and TRI6. FgSet1-mediated histone
3 lysine 4 methylations (H3K4me) modulate the expression of TRI genes. Histone acetyltransferase
(HAT) and histone deacetylase (HDAC) complexes have been shown to be associated with DON
synthesis. Tri5 cyclizes farnesyl pyrophosphate (FPP) to trichodiene (TDN). TDN is then converted
to calonectrin (CAL) by nine reactions sequentially catalyzed by Tri4, Tri101, Tri11, and Tri3. CAL
is hydroxylated by Tri1 and deacetylated by Tri8, leading to the formation of either 3-ADON or
15-ADON, followed by DON. Tri1 and Tri4 are localized to toxisome which is formed through
remodeling of the endoplasmic reticulum (ER) and involved in the early and late steps of DON
biosynthesis. Tri12 facilitates the transport of trichothecene metabolites across a membrane barrier
and confers toxin resistance.

TRI genes are highly expressed and translated into proteins under DON induction
conditions. A portion of these proteins are situated in a perinuclear organized smooth
endoplasmic reticulum (OSER), the site where DON biosynthesis takes place, commonly
known as the ‘toxisome’ [138]. In recent years, some genes related to the formation of
toxisomes have been discovered. FgSUR2 encodes sphinganine C4-hydroxylase. The dele-
tion of FgSUR2 results in a defect in toxisome formation, leading to a significant reduction
in DON biosynthesis [139]. FgCdc25 is characterized as the only Ras GTPase guanine
nucleotide exchange factors (RasGEFs) protein in F. graminearum, and an fgcdc25 mutation
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led to reduced toxisome formation and DON production [140]. FgMYO1, encoding a class
I myosin, interacts with Tri1 and actin in F. graminearum. Toxisome formation is signifi-
cantly reduced when FgMyo1 is inhibited by the small molecule phenamacril or when
actin polymerization is disrupted by latrunculin A [141]. In F. graminearum, FgMyo1 and
Tri1 directly interact with FgCapA and FgCapB, which are actin-capping proteins (CAPs).
The mutants of ∆FgcapA and ∆FgcapB significantly disrupt toxisome formation and DON
production [55]. In F. graminearum, the assembly of the functional toxisome relies on the
α1-β2 tubulin heterodimer as the supporting structure [142].

3.4. DON Production and Plant Infection Are Affected by Environment Factors

Besides regulators that are specific to certain pathways, the biosynthesis of the DON
toxin is also affected by various host and environmental factors (Figure 3). These fac-
tors, known as global regulators, include light, carbon, nitrogen, and pH [117]. Light
controls the synthesis of trichothecenes through the regulation of the velvet complex.
When the velvet complex is disrupted, it leads to a notable decrease in the production of
DON [143,144]. The studies have revealed that sucrose is more effective at stimulating
trichothecene production compared to glucose [145,146]. Polyamine biosynthesis is cru-
cial for both plants and their pathogens, as it plays a significant role in enhancing stress
tolerance and pathogenicity [147]. The infection of F. graminearum in wheat heads triggers
the activation of pathways involved in the production of polyamines, which in turn trig-
gers the biosynthesis of DON [148]. Deletion of FgSPE3, a gene involved in spermidine
biosynthesis in F. graminearum, shows significantly decreased production of the DON and
weak virulence in host plants [149]. FgAreA, a master regulator of nitrogen assimilation,
modulates DON biosynthesis and undergoes nuclear translocation under nitrogen-limiting
conditions or in response to putrescine [150]. Deletion of fgareA abrogates TRI5, TRI6, and
TRI10 expression and attenuates DON production upon arginine stimulation [151]. The
acidic environment is essential for the transcription of TRI genes and the production of tri-
chothecenes in F. graminearum, aligning with the acidification of the extracellular pH during
fungal cultivation in mycotoxin-inducing media [117,152]. Conversely, neutralizing or alka-
lizing the environment inhibits trichothecene production and suppresses TRI genes [153]. In F.
graminearum, FgPac1 serves as a negative regulator of trichothecene production. The mutant
∆fgpac1 displays stunted growth in neutral and alkaline pH environments, but demonstrates
accelerated TRI gene activation and trichothecene buildup in acidic conditions [154]. When F.
graminearum infects a host, it causes the host to create an alkaline environment. This leads to
FgPacC being cleaved into its functional form, called FgPacC30 [155].

Defense-related H2O2 generated in plants also contributes to the biosynthesis of DON
during infection [156]. In the biotrophic stage of F. graminearum infection, the host plant is
stimulated to produce a significant amount of H2O2 quickly. The additional H2O2 triggered
by salicylic acid (SA) signaling can be advantageous for the fungus by promoting DON
production [157]. When F. graminearum culture is exposed to either external H2O2 or the
fungicide prothioconazole, which induces H2O2, the TRI4 and TRI5 genes are expressed
at higher levels [158]. The stress-related transcription factor FgSkn7 is conscientious for
H2O2-induced TRI gene expression. Mutants of fgskn7 show decreased DON production
and defection of TRI gene expression induced by H2O2 [70].

4. Perspectives
4.1. Disease Control Based on Virulence Gene

These genes summarized above are intimately involved with important stages of F.
graminearum, and provide new additional sources for FHB control. Host-induced gene
silencing (HIGS) and spray-induced gene silencing (SIGS) are emerging biotechnologi-
cal approaches that use double-stranded RNA (dsRNA) to target essential fungal genes
and suppress their expression. Several studies have demonstrated that HIGS and SIGS
can effectively reduce FHB symptoms and mycotoxin accumulation by targeting genes
involved in fungal growth, virulence, and toxin biosynthesis [159,160]. HIGS and SIGS
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offer several advantages over other control methods, such as specificity, durability, safety,
and compatibility with existing breeding programs. Furthermore, the use of mycovirus-
induced hypovirulence also shows promise in managing fungal diseases. Recently, a VIGS
(virus-induced gene silencing) vector, p26-D4, derived from F. graminearum gemytripvirus
1 (FgGMTV1), has been effectively developed to transform the cereal FHB pathogen into a
less virulent strain [161]. The p26-D4-VIGS system offers a novel approach for managing
FHB and presents an extra method for preventing fungal diseases in various crops [162].

4.2. Molecular Design Breeding Based on F. graminearum Effectors

Fungal effectors, serving as vital tools for infection, target a wide array of plant genes,
such as proteins involved in signal transduction, metabolic pathways, and plant immunity.
These effectors play crucial roles in manipulating plant responses and facilitating fungal
colonization by interfering with various aspects of plant physiology and immunity [108].
As more secreted proteins are characterized in F. graminearum, utilizing advanced tools
such as the CRISPR/Cas9 system could enable the development of new, FHB-resistant
wheat varieties. Some effectors interact with susceptibility genes to promote the expansion
of F. graminearum, and disrupting these susceptibility genes through gene editing would
probably increase the resistance of wheat to FHB. In contrast, some effectors decrease plant
defense responses by targeting resistance genes. Overexpressing these resistance genes
may also achieve the effect of FHB resistance [117].
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