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Abstract: Copy number alterations (CNAs) are significant in tumor initiation and progression.
Identifying these aberrations is crucial for targeted therapies and personalized cancer diagnostics.
Next-generation sequencing (NGS) methods present advantages in scalability and cost-effectiveness,
surpassing limitations associated with reference assemblies and probe capacities in traditional lab-
oratory approaches. This retrospective study evaluated CNAs in 50 FFPE tumor samples (breast
cancer, ovarian carcinoma, pancreatic cancer, melanoma, and prostate carcinoma) using Illumina’s
TruSight Oncology 500 (TSO500) and the Affymetrix Oncoscan Molecular Inversion Probe (OS-MIP)
(ThermoFisher Scientific, Waltham, MA, USA). NGS analysis with the NxClinical 6.2 software demon-
strated a high sensitivity and specificity (100%) for CNA detection, with a complete concordance rate
as compared to the OS-MIP. All 54 known CNAs were identified by NGS, with gains being the most
prevalent (63%). Notable CNAs were observed in MYC (18%), TP53 (12%), BRAF (8%), PIK3CA, EGFR,
and FGFR1 (6%) genes. The diagnostic parameters exhibited high accuracy, including a positive
predictive value, negative predictive value, and overall diagnostic accuracy. This study underscores
NxClinical as a reliable software for identifying clinically relevant gene alterations using NGS TSO500,
offering valuable insights for personalized cancer treatment strategies based on CNA analysis.

Keywords: Copy Number Alterations; NxClinical Software; Next-Generation Sequencing; Molecular
Inversion Probe; FFPE Solid Tumor

1. Introduction

Genomic instability, characterized by copy number alterations (CNAs), plays a pivotal
role in cancer development and progression and in therapeutic resistance [1,2]. Amplifica-
tions and deletions within specific genomic segments can activate oncogenes or deactivate
tumor suppressor genes, driving uncontrolled cell growth. Notably, solid tumors exhibit a
heightened prevalence of CNAs, emphasizing their significance in the context of solid tumor
biology [3]. While various laboratory-based methods, such as multiplex ligation-dependent
probe amplification (MLPA) [4], microarray-based comparative genomic hybridization
(aCGH) [5], SNP microarrays [6], RNA sequencing [7], fluorescence in situ hybridization
(FISH) [8] and PCR-based approaches [9], facilitate CNA detection, they are often limited
by factors like restricted coverage and resolution, tissue consumption, labor intensiveness,
low throughput, and high cost [10]. Recent progress in next-generation sequencing (NGS)
technologies has facilitated the concurrent identification of targeted CNAs and somatic mu-
tations by utilizing a panel-based NGS approach. NGS technology is widely acknowledged
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for its proficiency in identifying single-nucleotide variants (SNVs) and small insertion and
deletion variants (indels) [11]. Nevertheless, the accurate detection of CNAs remains a
challenge when utilizing NGS data. This challenge arises from inherent limitations within
the NGS technology, notably short read lengths and biases associated with GC content [3].
The complexities these factors introduce impede the reliable identification and characteri-
zation of CNVs, necessitating the exploration of alternative methodologies and analytical
approaches to enhance the comprehensive assessment of genomic structural variations.

To address the existing constraints in the detection of CNAs, bioinformatics tools,
such as CoNIFER, exomeCNV, CNVkit, and QDNA, have been developed, leveraging
next-generation sequencing data [12,13]. While these tools demonstrate efficacy in reliably
identifying large CNAs on the scale of megabases, their performance diminishes when
confronted with smaller CNAs affecting only limited exonic regions [14]. Moreover, most of
these tools are optimized for whole-genome or whole-exome datasets, presenting challenges
when handling the sparser data generated by NGS gene panels routinely employed in
genetic testing. The command line nature and reliance on a single executable file further
complicate their integration into routine clinical settings [15,16]. Although benchmarks for
CNA data-calling tools on targeted NGS panel data exist, these evaluations often utilize
datasets from online repositories or predominantly rely on simulated data featuring a
limited number of validated CNAs [17–19]. Hence, there is an imminent necessity to
ascertain a tool capable of detecting clinical CNAs from NGS panel data with heightened
precision and sensitivity.

Addressing this gap, the NxClinical platform (Bionano Genomics Inc., San Diego, CA,
USA), that has been rebranded to VIA™ software Version 7.0, stands out as a software
solution with an interactive graphical interface and compatibility with multiple file formats.
This study explores the potential of an integrated workflow using NGS data and NxClinical
6.2 in detecting CNAs in formalin-fixed, paraffin-embedded (FFPE) solid tumor samples.
Fifty (n = 50) previously well-characterized specimens by the OncoScan microarray inver-
sion probe (OS-MIP) were used for this exhaustive validation and to assess the diagnostic
precision of CNA detection through the proposed workflow.

2. Materials and Methods
2.1. Patient Samples

We analyzed a diverse set of 50 FFPE solid tumor cases, including breast cancer
(n = 10), ovarian carcinoma (n = 8), pancreatic cancer (n = 8), melanoma (n = 4), and prostate
carcinoma (n = 20). This study received approval from the Institutional Review Board (A-
BIOMEDICAL I, IRB registration number 00000150, Augusta University; Human Assurance
Committee IRB number 61129). Informed consent was obtained for newly collected samples,
while waived authorization was granted for de-identified, banked samples. All protected
health information was removed, and data were anonymized (coded and double-blinded)
before study accession. OS-MIP confirmed the presence of pathogenic/likely pathogenic
structural variants in all FFPE samples.

2.2. Tissue Selection and DNA Extraction

Hematoxylin and eosin (H&E)-stained FFPE tissue sections were reviewed by a board-
certified pathologist to identify cancerous regions. Following this, macrodissection was
performed on the tumor areas, enriching for higher tumor cellularity to achieve a minimum
tumor percentage of 20%. DNA extraction used the QIAamp DNA FFPE tissue kit (Qiagen,
Hilden, Germany) and DNA quality was checked by NanoDrop (ThermoFisher, Waltham,
MA, USA). Double-stranded DNA was quantified using the Qubit DNA High Sensitivity
(HS) assay kit (Life Technologies Waltham, MA, USA).

2.3. OncoScan Microarray Inversion Probe (OS-MIP)

For validation of CNA calling, all FFPE samples were tested in parallel by OS-MIP.
Samples were characterized using the OncoScan™ FFPE Assay Kit (ThermoFisher, Waltham,
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MA, USA) with probes targeting specific genomic regions. Briefly, 80 ng DNA/sample was
hybridized according to the manufacturer’s guidelines. Hybridized and processed samples
were scanned through the GENECHIP Scanner-7G (Affymetrix, Santa Clara, CA, USA) to
identify copy number and somatic mutation variations.

2.4. Library Preparation for Next-Generation Sequencing

The experimental procedure adhered strictly to the manufacturer’s guidelines for
library preparation, employing the TruSight Oncology 500 Library Preparation Kit (Illu-
mina, San Diego, CA, USA) based on hybrid capture principles [20]. The fragmentation of
DNA was executed using an ultrasonicator (Covaris, Woburn, MA, USA), yielding DNA
fragments ranging from 90 to 250 base pairs (bp) with a specific target peak at approxi-
mately 130 bp. Subsequent steps included end repair, A-tailing, and adapter ligation. The
DNA fragments, now linked to adapters, were subjected to amplification through index
PCR utilizing primers tailored to the UP-index. Further refinement was achieved through
sample enrichment, employing probe-based hybridization (OPD2). The enriched samples
underwent a series of procedures encompassing capture, PCR-driven enrichment, purifi-
cation, and quantification of double-stranded DNA using the High Sensitivity Qubit kit
(Q32854 Invitrogen, Waltham, MA, USA). Following bead-based library normalization, the
normalized DNA libraries were combined to create a pooled sample, primed for ultimate
loading onto the sequencer for downstream analysis. The TruSight Oncology 500 (TSO500)
sequencing procedure encompassed a 101-base-pair paired-end sequencing methodology,
employing 218 cycles. The library specimens were subjected to sequencing on Illumina’s
NextSeq550 DX, utilizing the V2 flow cell kit (Illumina, San Diego, CA, USA).

2.5. Post-Sequencing Variant Analysis

The post-sequencing data analysis was performed using the BaseSpace TSO500 As-
sessment App (Illumina). Briefly, the output of the sequencing procedure produced FASTQ
files, which were then converted into binary base call (BCL) files. These BCL files were
subsequently processed through Qiagen’s QCI Cloud Connect software, converting them
into variant calling format (VCF) files. These VCF files were then uploaded to the QCI
Variant Interpreter platform, where advanced computational algorithms were applied to
classify the variants. The classification process adhered to the collaborative guidelines set
forth by the American College of Medical Genetics (ACMG) and the Association for Molec-
ular Pathology (AMP), ensuring a standardized and rigorous assessment of the identified
genetic variants.

2.6. CNA Analysis

A total of 24 clinically relevant regions/genes were selected in this study for analysis
after extensive literature review and expert consensus (Supplementary Table S1). CNAs
were detected by analyzing binary alignment map (BAM) files obtained from Qiagen’s QCI
Cloud Connect software and OSCHP files from OS-MIP using NxClinical 6.2 software (Bio-
nano Genomics Inc., San Diego, CA, USA). To initiate the analysis, a reference profile was
established utilizing genomic DNA extracted from a cohort of healthy controls (comprising
10 male and 10 female individuals). The DNA was sequenced at an approximate coverage
range of 5× to 10× through the Binary Alignment Map Multi-Scale Reference Builder
(Bionano Genomics Inc.) module. This algorithm adopts a dynamic bin size strategy to
maintain a consistent number of reads per bin. In this context, a target of 1000 reads per
bin was set. Subsequently, the reads per bin for each test sample were juxtaposed with
the expected read count, and a series of systematic correction steps were applied. These
adjustments accommodated various sources of bias, including GC content. The outcome
of this process was the generation of a log2 profile of bins spanning the entire genome,
centered on zero to denote no copy number change. CNAs were then detected using the
hidden-Markov-model-based fast adaptive states segmentation (SNPFASST2) algorithm.
This algorithm establishes hidden states for each CNA value based on anticipated log2 ra-
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tios and B-allele frequency, providing a comprehensive and accurate assessment of genomic
copy number alterations. We did not include larger CNVs, particularly those exceeding
5 Mb, which may encompass vast stretches of non-coding or less biologically relevant
regions of the genome. Gain was defined by one extra copy of a gene, so there are three
copies instead of the normal two, and amplifications were defined by two or more extra
copies of a gene, so four copies instead of the normal two. Loss is considered when one
or both copies of genes were not present. The workflow for CNA detection is shown in
Figure 1.
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Figure 1. Workflow for copy number alteration (CNA) detection and analysis using Oncoscan
Molecular Inversion Probe (OS-MIP) and Next Generation Sequencing (NGS) (TSO500) on NxClinical
6.2 software.

3. Results
3.1. Concordance of CNA Detection

A retrospective study was conducted to validate CNA identification using NGS on
NxClinical software. We analyzed 50 FFPE samples, encompassing a diverse range of
tumor types with varying tumor cellularity (20% to 100%). The male/female ratio was
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1.2. Previously genotyped by the OncoScan, these samples were selected for the validation
cohort, revealing complete concordance for CNAs between the NGS and OncoScan. In
the examination of 24 regions for CNAs, out of the 54 known CNAs across the 50 samples,
gain emerged as the most prevalent, accounting for 62.9% (34/54), while loss represented
14.8% (8/54) of total CNAs (Supplementary Table S2). Amplifications accounted for 22.2%
(12/54) with NGS (Figure 2A). Figure 2B illustrates the distinctive CNA patterns observed
across various tumors. Gains consistently emerge as the most prevalent CNAs across all
tumor types. Notably, melanoma exhibits no instances of amplification, while pancreatic
tumors show no loss.
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Figure 2. Bar chart of CNAs detected (A) in 24 cancer genes (B) in different tumor samples in 50 pa-
tients of the retrospective cohort, including breast, ovary, pancreas, melanoma, and prostate tumors.

3.2. CNA Patterns According to Tumor Type

In breast cancer patients, CNAs were observed in 50% (5/10) of cases. The genes MYC,
CCDN, MDM2, ERBB2, and TP53 had the highest frequency of CNAs, each occurring in
20% (2/10) of patients. Meanwhile, PIK3CA, BRAF, EGFR, FGFR, KRAS, AR, and CCNE1
were observed in 10% (1/10) of each. In 40% (4/10) of patients, two or more CNVs were
observed simultaneously. CNAs were observed in two samples (50%, 2/4) in melanoma.
BRAF, RAF1, MDM2, RICTOR, CDK4, and MET each occurred in 25% (1/4) of cases. For
ovarian carcinoma tumors, CNAs were observed in five patients (62.5%, 5/8). MYC was
prevalent in 50% (4/8) of cases, followed by TP53 (25%, 2/8). PDGFR, PIK3CA, BRAF,
EGFR, FGFR1, RICTOR, FANCC, ALK, and CDK6 were each present in 12.5% (1/8) of cases.
Four patients had two or more CNAs. In pancreatic tumors, CNAs were observed in 25%
(2/8) of patients. TP53, FGFR1, MYC, and ERBB2 each occurred in 12.5% (1/8) of cases.
For prostate tumors, CNAs were observed in 15% (3/20) of patients. MYC had the highest
frequency at 10% (2/20), followed by TP53, BRAF, and PIK3CA, each occurring in 5% (1/20)
of cases. A heat map of CNAs detected by NGS using the NxClinical platform is shown in
Figure 3. A representative copy number plot of the CNAs is given in Figure 4.
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Figure 4. A representation of copy number analysis from NxClinical software version 6.2 using
OS-MIP and NGS data; (A) shows 3q and 7q gain in ovary cancer sample (Case No. 14268) (B) shows
3q amplification 5q gain, 12q gain in melanoma sample (Case No. 14467). Gain/amplifications in
specific genes are indicated by red arrows and boxes.
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3.3. Sensitivity, Specificity, and Accuracy

The sensitivity calculation for this method, derived from the analysis of 54 known
CNAs in 50 samples, yielded a result of 100%, meaning no false negatives or false positives.
Moving on to specificity, the assessment was based on 50 diagnostic routine samples,
encompassing the analysis of 1200 individual genetic regions for CNAs within a target
panel of 24 genes. Remarkably, no false positive results were detected, resulting in a
specificity of 100%. As a result, the method exhibits an exceptional overall diagnostic
accuracy, with both the positive predictive value (PPV) and negative predictive value
(NPV) achieving a remarkable 100%, underscoring the method’s robustness, particularly in
the context of negative predictions, as illustrated in Table 1.

Table 1. Diagnostic parameters calculations for copy number alteration (CNA) detection using
NxClinical platform.

NxClinical (BAM Files TSO500)
NxClinical (OSCHP Files OncoScan)

POSITIVE NEGATIVE TOTAL

POSITIVE 54 (TP) 0 (FP) 54

NEGATIVE 0 (FN) 1146 (TN) 1146

TOTAL 54 1146 1200

Sensitivity TP/(TP + FN) = 100% PPV TP/(TP + FP) = 100%

Specificity TN/(FP + TN) = 100% NPV TN/(FN + TN) = 100%

Diagnostic accuracy (TP + TN)/TP + TN + FP + FN) = 100%
TP = True Positive (positive outcome when the CNA is indeed present); TN = True Negative (negative outcome
when the CNA is indeed absent); FP = False Positive (incorrectly indicates the presence of a CNA when it is
actually absent); FN = False Negative (incorrectly indicates the absence of a CNA when it is actually present);
PPV = Positive Predictive Value (likelihood that a positive CNA detection result accurately indicates the presence
of that CNA); NPV = Negative Predictive Value (likelihood that a negative CNA detection result accurately
indicates the absence of that CNA).

4. Discussion

CNAs represent a significant and prevalent form of genomic diversity within the
general population [21,22], with implications for various diseases, including autoimmune
disorders, Alzheimer’s, and Parkinson’s [23,24]. Somatically acquired CNAs are partic-
ularly prominent in cancer, playing a substantial role in its pathogenesis [25–27]. The
routine screening of FFPE samples from solid tumors for CNAs poses a considerable chal-
lenge, necessitating a testing platform compatible with low DNA quantity and high quality.
As discussed above, traditional methods for assessing CNAs, including MLPA, SNP mi-
croarray, and techniques such as FISH, exhibit resolution and probe coverage limitations.
The escalating demand for screening an increasing number of markers has prompted the
integration of high-throughput technologies such as NGS and aCGH into clinical laborato-
ries [28]. Also, the simultaneous detection of high-quality CNAs and sequence mutations
from limited samples by these approaches streamlines the diagnostic process, providing a
comprehensive and integrated assessment of genomic alterations and optimizes resource
utilization. The precise detection of CNAs, especially in targeted NGS datasets, can enhance
diagnostic yields and elevate the quality of clinical care.

While research has demonstrated the successful application of CNA detection algo-
rithms to targeted NGS data, a lack of robust validation parameters has hindered their
integration into diagnostic services. In this study, we proposed a streamlined workflow
designed to facilitate the effective implementation of NxClinical software for CNA surveil-
lance in targeted NGS datasets within a clinical setting. This approach aims to address the
challenges associated with CNA detection in clinical environments, paving the way for
improved diagnostic accuracy and patient care.

Recently, a complete concordance for detection of CNAs from 76 FFPE samples was
observed between OS-MIP, NGS, and FISH [1]. In another study, a high degree of con-
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cordance (>97%) was observed between NGS with FISH [10]. However, fewer clinically
relevant genes were included in the NGS panels of the above-mentioned studies. In a study
by Chandramohan et al., 2022, the validation and implementation of tumor-only copy
number alterations by a pipeline using CNVkit on a 124-gene panel for 28 pediatric solid
tumors were performed. In this study, SCNA events involving a single exon (T19 RB1 exon
18) as well as events involving several exons (T26 ATRX exons 9 to 17) were studied. This
highlights the potential for greater resolution of SCNA analysis when using sequencing
data in comparison to clinical copy number arrays. The study was able to find SCNAs in
86% (24/28) of samples, with 46% (13/28) of samples harboring findings of potential clinical
relevance [29]. In another study, researchers applied this integrated approach of NGS and
an in-house algorithm for CNV detection in a retrospective cohort of 391 samples and a
prospective cohort of 2375 samples and found a 100% sensitivity (95% CI, 89–100%) for 37
unique events. While in-house copy number variation (CNV) prediction algorithms boast
complexity in their computational methodologies, their outcomes often lack consistency
due to variations in assumed parameters and statistical reasoning. Consequently, their
integration into clinical settings is hindered by this inconsistency, limiting their potential
utility [30].

In the present study, 50 FFPE samples were analyzed on NxClinical software for
detecting CNAs in numerous cancer-related genes using the 523 NGS gene panel from
Illumina (TSO500). The CNA detection from NGS showed complete concordance with
OS-MIP. NxClinical software is a user-friendly interface and accessible to users without
any prior knowledge of bioinformatics or any command language. It also has the ability
to analyze multiple file formats (OSCHP, CEL, BAM, VCF, etc.), enabling a centralized
platform to consolidate analyses from multiple technologies. The CNAs tested included
24 clinically significant cancer-related genes in solid tumors of varying tissue of origin (e.g.,
breast, ovary, pancreas, melanoma, and prostate). Samples for this study were selected
with a focus on 24 genes for which CNAs have well-established clinical implications, such
as MYC, MET, MDM2, TP53, ERBB2, EGFR, FGFR1, etc. NGS exhibited 100% analytical
sensitivity and specificity, precisely detecting 8 losses, 34 gains, and 12 amplifications in a
set of 50 samples compared to the OS-MIP results. This underscores NxClinical software’s
exceptional accuracy and reliability to detect CNAs from hybrid capture NGS library
preparations. The genomic analysis of the present cohort revealed that CNAs were most
frequently observed in MYC (18%), TP53 (12%), BRAF (8%), PIK3CA, EGFR, and FGFR1 (6%)
genes. MYC, a proto-oncogene, governs crucial cellular functions in growth, proliferation,
metabolism, differentiation, and apoptosis. Its amplification is frequently associated with
malignancies, notably in breast cancer, where it emerges in advanced stages, signaling
poor prognosis and increased risk of distant metastasis [31]. Our study identified a high
frequency of CNAs in MYC in breast, ovary, and prostate cancer patients, shedding light
on its potential role across multiple cancer types. TP53 was suggested to be responsible for
poor outcome and a higher number of genomic imbalances, corroborating the central role of
chromosomal instability with respect to tumor aggressiveness and disease prognostication
in younger breast cancer patients [32]. Notably, we observed TP53 copy number loss is
observed in ovarian, pancreatic, and prostate cancers, further linking it to tumorigenesis.

High frequencies of CNAs were observed in PIK3CA, FGFR1, and EGFR in breast,
ovary, pancreas, and prostate cancer samples. Understanding these genetic alterations is
crucial for personalized cancer treatment. Alterations in the PI3K/AKT/mTOR pathway,
driven by changes in PIK3CA, promote cell proliferation and survival [33]. Elevated FGFR1
expression or activity can contribute to uncontrolled cell growth and tumorigenesis. Un-
derstanding these genetic alterations is crucial for personalized cancer treatment. Targeted
therapies designed to inhibit specific pathways, such as the PI3K/AKT/mTOR pathway
or FGFR1 signaling, may be considered for cancer patients exhibiting these genetic aber-
rations [34]. Also, EGFR copy number gain might be one of the accumulating genetic
alterations during tumor progression and EGFR activation induced by EGFR copy num-
ber gain may contribute to tumor aggressiveness in triple-negative breast cancer [35]. In
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melanoma, the most frequent CNAs were observed in BRAF and previous studies sug-
gested that an increased BRAF copy number could be associated with disease progression.
Targeting BRAF mutations in melanoma has become a significant therapeutic approach.
Drugs known as BRAF inhibitors, such as vemurafenib and dabrafenib, have been devel-
oped to specifically target and inhibit the activity of the mutated BRAF protein. These
inhibitors can be combined with MEK inhibitors to improve their effectiveness [36].

Thus, the present study highlights the utility of a targeted NGS gene panel and the
highly efficient NxClinical 6.2 software, which has been rebranded to VIA™ software in
later versions, for comprehensive CNA analysis in routine clinical testing. This integrated
workflow has the potential of providing insights into potential therapeutic targets and
prognostic implications in various solid tumor types.

5. Strengths and Limitations

In the pursuit of advancing genomic analysis methodologies, this study delves into
the application of NGS coupled with the NxClinical platform for the detection and interpre-
tation of CNAs within predetermined genomic regions. While our investigation highlights
several strengths and promising outcomes, it is imperative to acknowledge the inherent
limitations that may impact the scope, generalizability, and robustness of our findings.

5.1. Strengths

1. Comprehensive Analysis: NGS platforms offer extensive genomic data, encompassing
CNAs, SNVs, and other genetic aberrations. By leveraging NxClinical for CNA
analysis within NGS data, the study consolidates multiple facets of genetic testing
into a unified workflow. This integration facilitates a holistic understanding of the
genomic landscape, enabling clinicians to gain insights into both structural and
sequence-level alterations from a single analysis.

2. Streamlined Workflow: Integration of CNA analysis into NGS data processing through
NxClinical enhances laboratory efficiency by streamlining workflow processes. This
integration reduces the need for disparate tests, such as chromosomal microarrays,
thereby optimizing sample processing time. The resultant expedited turnaround
times contribute to timely generation of comprehensive genomic profiles, facilitating
swift clinical decision making.

3. Cost Efficiency: Despite the inherent costs associated with NGS technology, the
adoption of a unified NGS test for both CNA and sequence variant analysis can yield
significant cost efficiency.

5.2. Limitations

1. Scope Limitation: The study’s focus on 24 predetermined genomic regions of clinical
relevance within the NxClinical platform excludes other potential areas analyzed
by the software. This selective approach may restrict the breadth of comprehensive
CNA detection and interpretation. Clinicians interpreting study findings should
acknowledge this scope limitation, which could impact the generalizability of the
results to broader genomic landscapes.

2. Sample Size Inadequacy: With a sample size of 50, the study may lack the statistical
power necessary to establish a coherent approach for a streamlined workflow utilizing
NGS and NxClinical for CNA detection. A larger sample size is imperative to ensure
robustness and generalizability of findings, particularly in understanding the nuances
and complexities of genomic alterations.

3. Limited Cancer Type Validation: The validation of the NxClinical workflow was
conducted with a restricted range of cancer types. Diverse categories of cancers
should be included in future assessments to comprehensively evaluate the efficacy
and accuracy of NxClinical in detecting CNAs across various malignancies.



Genes 2024, 15, 396 10 of 13

6. Conclusions

In summary, our study demonstrated the efficacy of a targeted NGS gene panel in
identifying CNAs within clinically relevant genes, including MYC, MET, MDM2, TP53,
ERBB2, EGFR, and FGFR1, among others, utilizing NxClinical software with a remark-
able specificity and accuracy rate of 100%. The findings exhibited comparable results to
those obtained through OS-MIP. This underscores the importance of integrating CNA
testing into routine NGS analyses, emphasizing its role in uncovering clinically significant
gene alterations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes15040396/s1, Table S1. List of 24 CNAs studied in the present
study along with their potential cancer associated with them [32,34–73]. Supplementary Table S2.
Categorization of CNAs detected by analysis in NxClinical with TSO500 and OncoScan.
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