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Abstract: German chamomile (Matricaria chamomilla L.) and Roman chamomile (Chamaemelum nobile)
are the two well-known chamomile species from the Asteraceae family. Owing to their essential
oils and higher medicinal value, these have been cultivated widely across Europe, Northwest Asia,
North America, and Africa. Regarding medicinal applications, German chamomile is the most
commonly utilized variety and is frequently recognized as the “star among medicinal species”. The
insufficient availability of genomic resources may negatively impact the progression of chamomile
industrialization. Chamomile’s mitochondrial genome is lacking in extensive empirical research.
In this study, we achieved the successful sequencing and assembly of the complete mitochondrial
genome of M. chamomilla and C. nobile for the first time. An analysis was conducted on codon
usage, sequence repeats within the mitochondrial genome of M. chamomilla and C. nobile. The
phylogenetic analysis revealed a consistent positioning of M. chamomilla and C. nobile branches within
both mitochondrial and plastid-sequence-based phylogenetic trees. Furthermore, the phylogenetic
analysis also showed a close relationship between M. chamomilla and C. nobile within the clade
comprising species from the Asteraceae family. The results of our analyses provide valuable resources
for evolutionary research and molecular barcoding in chamomile.

Keywords: Matricaria chamomilla; Chamaemelum nobile; mitochondrial genome; repetitive sequence
analysis; phylogenetic analysis

1. Introduction

German chamomile (M. chamomilla L.) and Roman chamomile (C. nobile) are the two
well-known chamomile species from the Asteraceae family. Owing to their essential oils
and higher medicinal value, these have been cultivated widely across Europe, Northwest
Asia, North America, and Africa [1]. Regarding medicinal applications, German chamomile
is the most commonly utilized variety and is frequently recognized as the “star among
medicinal species”. Its volatile oil is frequently utilized in the realm of cosmetic care for
its ability to alleviate inflammation, mitigate skin irritation, and diminish redness and
swelling of the skin [2]. Moreover, it is widely consumed as an herbal tea, and it is easily
accessible in the form of chamomile tea bags that contain flowers [3]. Several studies have
reported two terpenoids such as bisabolol and chamazulene that have exhibited a range of
beneficial properties including anti-inflammatory, antiallergic, antispasmodic, antibacterial,
antipyretic, and antifungal effects [4,5]. Interestingly, in contrast to German chamomile,
Roman chamomile is characterized as a perennial herb. This specific type of herbal tea
has a long-standing history in folk medicine as a soothing remedy for an array of health
conditions, encompassing headaches, colds, flu, stomach disorders, and gastrointestinal
ailments [6]. Additionally, its essential oils derived from its flowers are widely utilized as
ingredients in perfumes, alcoholic beverages, confectionery, desserts, and cosmetics [7].
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Notably, the multi-purpose use of chamomile oils highlights their versatility and popularity
in the fragrance and beauty industries [8]. To date, most reports about chamomile have
focused on their traditional Chinese medicine value. However, there is limited information
available on the organelle genomes of chamomile species. Investigating the mitogenomes of
two chamomile species will offer a valuable genetic resource for future research endeavors.

The genomes of organelles play a vital role in maintaining the growth and develop-
ment of organisms and various strategies are utilized to mitigate DNA damage in response
to genotoxic stressors [9]. According to the NCBI database as of September 2023, the number
of published plastomes is close to 13,000. Among these, angiosperms make up a signif-
icant majority (93.4%), with eudicots accounting for 68.4% and monocots for 20.7% [10].
Currently, the number of mitochondrial genomes is significantly lower compared to that
of chloroplast genomes, likely due to the intricate structures observed in mitogenomes,
which result from the accompanied reorganization of specific DNA fragments during
violent redox reactions [11]. The mitochondrion is believed to have originated from an
endosymbiotic relationship between an alphaproteobacterium and an archaeal-derived
host cell based on the endosymbiosis theory [12]. Over time, this symbiotic association
evolved, leading to the mitochondrion becoming a semi-autonomous organelle [13]. Mi-
tochondria, which are commonly referred to as energy factories, have a significant role
in a multitude of metabolic processes and are essential for energy production, synthesis,
and degradation within living cells. Recently, mitochondria have been frequently utilized
in studies aimed at elucidating evolutionary relationships and distinguishing between
various species [14]. During the evolution, the chloroplast genome (cp) sequences under-
went integration into the mitochondrial genome [15]. Horizontal gene transfer (HGT) is
a significant factor in shaping the evolution of plant mitogenomes [16]. The extensive
rearrangements observed in mitochondrial genomes could potentially be attributed to
intracellular gene transfers. Relative synonymous codon usage (RSCU) is a measure of
the relative likelihood of a particular codon compared to other synonymous codons that
encode the same amino acid [17]. In addition, the field of genetic breeding has exten-
sively employed mitogenomes [18,19]. For example, SSRs (Simple Sequence Repeats) and
SNPs (Single Nucleotide Polymorphisms) have found widespread application in the rapid
identification of plant species based on mitogenomes, particularly in the classification of
Chinese herbal medicine [20,21]. These molecular markers offer a rapid and efficient means
of species identification and can provide valuable insights into the genetic relationships
among different plant species. However, the available literature of evolutionary patterns
of mitogenomes within chamomile species is currently limited. As a result, the complete
sequencing of the chamomile mitochondrial genomes has the potential to greatly benefit
breeding endeavors and facilitate the development of novel cultivars.

The Asteraceae or Compositae, also referred to as the sunflower family, is the largest
family of flowering plants. It comprises an extensive range of 23,000 species and is classified
into 1620 genera and 12 subfamilies [22]. This family has a remarkable valuable as oil crops,
horticultural resources, medicinal plants, invasive weeds, and highly cultivated plants for
the cut flower industry [23]. These plants are distributed across different regions globally.
In recent years, there has been a considerable amount of research conducted on the cp
genomes of various plants within the Asteraceae family [24–26]. However, the study of
mitochondrial (mt) genomes within this family remains relatively limited. Furthermore, no
mitogenome in the chamomile species has been reported up to now. Here, we systematically
analyzed the mitochondrial genome structures of two chamomile species, genomic repeats,
relative synonymous codon usage, gene transfer, and the evolutionary relationships among
the Asteraceae family, which will shed light on the genetic and evolutionary mechanisms
within this family.
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2. Materials and Methods
2.1. Plant Materials and Genome Sequencing

The two specimens used for testing, namely German chamomile and Roman chamomile,
were initially obtained from Hefei City, Anhui Province (117.25◦ E, 31.86◦ N), which are
currently preserved in Anhui Agricultural University (Hefei, China). The fresh leaves
were carefully enveloped in aluminum foil and promptly frozen using flash nitrogen,
ensuring their preservation at a temperature of −80 ◦C for future utilization. ADNA
extraction kit (Tiangen Biotech, Co., Ltd., Beijing, China) was employed to extract total
genomic DNA. The DNA library was prepared by utilizing the VAHTSTM Universal DNA
Library Prep Kit. The short-paired reads were sequenced using the Illumina NovaSeq
sequencer (150 bp paired-end). The gTube technology was employed to fragment genomic
DNA into segments averaging around 10 kb in size. The DNA library was prepared by
adding relevant reagents to the platform, and subsequently introduced into the Flowcell
for real-time single-molecule sequencing using the PromethION sequencer to acquire raw
sequencing data.

2.2. Mitogenome Assembly and Annotation

The SMARTdenovo software was utilized with default parameters to assemble mi-
togenomes [27,28]. To enhance the accuracy and quality of the mitogenomes, we em-
ployed minimap2 and pilon (v1.23) to polish the Illumina short-reads [29,30]. CPGAVAS2
(http://47.96.249.172:16019/analyzer/home, accessed on 2 November 2023) was used for
mitochondria genome annotations with Chrysanthemum indicum as reference mitogenomes
from GenBank:MH716014 [31]. The annotations were manually refined using the Apollo
software version 1.11.8 [32]. The structures of the mitogenomes were visualized using
OGDRAW software (v. 1.3.1) [33]. The two mitogenomes were deposited in GenBank with
the accession numbers OR464823 and OR464824, respectively. The online tRNAscanSE
service (http://lowelab.ucsc.edu/tRNAscan-SE/, accessed on 23 November 2023) was
utilized to verify all transfer RNA genes [34].

2.3. Analysis of Repeat Sequences and the Transfer of DNA between Chloroplast
and Mitochondrion

MISA-web55 (https://webblast.ipk-gatersleben.de/misa/ accessed on 25 November
2023), was employed to detect microsatellite sequence repeats. Tandem repeats were
detected by applying the TRF software with the following default parameters. We used the
REPuter web (https://bibserv.cebitec.uni-bielefeld.de/reputer/, accessed on 26 November
2023) with default parameters to detect dispersed repeats [35]. We conducted a sequence
similarity analysis between the cp genomes and the mitogenomes using the BLASTN tool
to identify transferred DNA fragments and used the Circos package in TBtools to visualize
the results [36,37].

2.4. Codon Usage and Phylogenetic Inference Analyses

The estimation of nucleotide composition and relative synonymous codon usage
(RSCU) was performed using MEGA v.7 [38]. A total of 12 mitochondrial genomes of
Asteraceae were retrieved from GenBank to construct phylogenetic tree. A phylogenetic
tree was performed using IQTREE based on the cp genome and mitogenome of two
chamomile species and 9 other species that are closely related and was generated using
the maximum likelihood (ML) method in RAxML v8.1.5, with 1000 bootstrap replicates.
The phylogenetic trees were displayed using the online tool iTOL (https://itol.embl.de,
accessed on 29 November 2023).

3. Results
3.1. Mitogenome Assembly, Annotation, and Gene Features

We successfully assembled a single circular molecule for two chamomile species, with
sizes of 233,503 kb and 235,178 kb for M. chamomilla and C. nobile, respectively (Figure 1A,B).

http://47.96.249.172:16019/analyzer/home
http://lowelab.ucsc.edu/tRNAscan-SE/
https://webblast.ipk-gatersleben.de/misa/
https://bibserv.cebitec.uni-bielefeld.de/reputer/
https://itol.embl.de
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The nucleotide composition analysis results of the complete M. chamomilla mitogenome
(45.11% GC content) showed the following percentages—A, 27.60%; T, 27.29%; C, 22.32%;
and G, 22.79%—which are similar to those of C. nobile (A, 27.65%; T, 27.27%; C, 22.31%; and
G, 22.77%, 45.08% GC content). The M. chamomilla mitochondrial genome has 57 genes
(51 unique genes), including 32 protein-coding genes (32 are unique), 20 tRNA genes (16 are
unique), and 5 rRNA genes (3 are unique) (Figure 1; Table S1). The genes rrn5 and rrn18
exhibit a duplication event in the mitochondrial genome, resulting in the presence of two
copies for each gene. The C. nobile mitochondrial genome has 54 genes (50 unique genes),
including 32 protein-coding genes (32 are unique), 17 tRNA genes (15 are unique), and
5 rRNA genes (3 are unique) (Figure 1A; Table S1). The variable genes rrn5 and rrn18 have
two copies in the mitochondrial genome (Figure 1B; Table S2).
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Figure 1. The circular maps of mitogenomes. (A) The circular diagram illustrating the mitochondrial
genome of M. chamomilla. (B) The circular diagram illustrating the mitochondrial genome of C. nobile.
The genomic characteristics transcribed in the clockwise and counterclockwise directions are depicted
on the inner and outer regions of the circular map, respectively. The functional classification of genes
in the mitochondrial genome is visually represented by color-coding. The GC content is visually
represented in the inner circle using a dark gray plot.

3.2. Analysis of Repeat Sequences

A total of 57 and 65 Simple Sequence Repeats (SSRs) were identified in the mitogenome
of M. chamomilla and C. nobile, respectively (Figure 2A,B, Tables S4 and S5). The distribution
of SSRs, including mono-, di-, tri-, tetra-, or pentanucleotide, is evenly spread among the
various types in the mitochondrial genome of two chamomile species. However, only two
hexamers were discovered in C. nobile (Table S5). Tetranucleotide repeat units were the
most prevalent type of SSRs in the M. chamomilla and C. nobile mitochondrial genomes,
accounting for 41.3% and 33.8% of all repeat numbers, respectively (Tables S4 and S5).
Tandem repeat sequences are a ubiquitous feature among the genomes of all organisms
that have been sequenced. We identified 28 and 31 tandems in the M. chamomilla and C.
nobile mitochondrial genomes, respectively (Tables S6 and S7). Further evaluation was
conducted on these repeats to determine their suitability as markers for DNA fingerprinting
purposes. The dispersed repetitive sequence was categorized into four types: direct, reverse,
complement, and palindromic (inverted) repeats. In the C. nobile mitochondrial genome,
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all four types of dispersed repeats were detected (Tables S8 and S9). However, three
types of dispersed repeats, including direct, reverse, and palindromic (inverted) repeats,
were detected in the M. chamomilla mitochondrial genome. The dispersed repeats of the
M. chamomilla and C. nobile mitochondrial genomes were arranged in ascending order
according to their e-values.
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Figure 2. The repeats analysis of the M. chamomilla and C. nobile chamomile mitochondrial genomes.
(A) The repeat sequences detected in the mitochondrial genome of M. chamomilla. (B) The repeat
sequences detected in the mitochondrial genome of C. nobile. The dispersed repeats, indicated by
green, blue, or pink arcs, are represented in the C1 circle. Tandem repeats are depicted as short bars
in the C2 circle. The C3 circle illustrates the microsatellite sequences detected.

3.3. Analysis of Homologous Sequences between Two Organelles

The translocation of mitochondrial and plastid DNAs to the nucleus is recognized as a
crucial component of genome evolution and exerts a substantial influence on the evolution
of eukaryotes [39,40]. In the mitogenome of M. chamomilla and C. nobile, we found that
the total lengths of 4763 and 3260 base pairs (bp) of sequences likely originated from the
corresponding cp genome (Figure 3A,B; Tables S10 and S11). These homologous sequences
accounted for approximately 2.03% and 1.38% of the respective individual mitogenomes.

3.4. Analysis of Codon Usage PCGs

An analysis of codon distribution and relative synonymous codon usage (RSCU)
was conducted on the mitogenomes of two chamomile species. The analysis of RSCU
indicated that Leucine was the most prevalent amino acid. among the two chamomile
species mitogenomes, whereas codons encoding Met were the least abundant, which is very
common in mitogenomes of land plant species. The 57 and 54 annotated protein-coding
genes are encoded by codons 9322 in German chamomile and 9322 in Roman chamomile.
Two chamomile species exhibited a similar RSCU style pattern and the majority of protein-
coding genes (PCGs) in these species initiated with the standard ATG start codon (Figure 4).
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Figure 3. The homologous DNA sequences between the chloroplast genome and mitogenome of
M. chamomilla and C. nobile. (A) The conserved DNA sequences shared between the chloroplast and
mitochondrial genomes of M. chamomilla. (B) The conserved DNA sequences shared between the
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DNA fragments. The visualization of homologous sequences between the organelle genomes was
performed using the TBtools software (v2.012) with incorporation of the Circos package.
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Figure 4. Relative synonymous codon usage (RSCU) in mitochondrial protein-coding genes in the
mitogenome of M. chamomilla and C. nobile. The value for RSCU is represented on the y-axis. (A) The
RSCU value of M. chamomilla. (B) The RSCU value of C. nobile.

3.5. Phylogenetic Tree Analysis

In order to enhance our understanding of the evolutionary relationships within the
Asteraceae family, we selected 11 organelle genomes from species within the Asteraceae
family for analysis and Platycodon grandiflorus and Codonopsis lanceolata as outgroups from
GenBank. The cpgenomes and mtgenomes were subsequently utilized to construct phylo-
genetic trees based on 64 PCGs and 17 PCGs, respectively. Both phylogenetic trees revealed
a division of the 13 species into two main clades. The larger clade consisted of 11 species
from the Asteraceae family, while the smaller clade consisted of two outgroup species
(Figure 5). Additionally, the phylogenetic analysis indicated a close relationship between
M. chamomilla and C. nobile within the Asteraceae clade (Figure 5).
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Figure 5. The maximum likelihood (ML) analysis was utilized to investigate the phylogenetic
relationships among M. chamomilla, C. nobile, and nine other species belonging to the Asteraceae
family. The sequence obtained in this study has been distinguished by highlighting it in red. The
GenBank accession numbers for the chloroplast genomes and mitochondrial genomes are provided
next to the corresponding Latin names of the species.

4. Discussion

M. chamomilla and C. nobile, also referred to as “stars among medicinal species”,
have long been recognized for their traditional medicinal value. Acquiring their genomic
information is a crucial step in comprehending the biosynthesis of its active substance.
Here, we performed the sequencing and assembly of the complete mitochondrial genomes
of two chamomile species for the first time. The two mitochondrial genome assemblies
were conducted using a graph-based approach, integrating NGS reads with long reads.
This approach ensures a more accurate and coherent integration of NGS data, thereby
enhancing the overall effectiveness of the assembly process [41]. Consequently, the resulting
findings are more robust and can be confidently relied upon for further analysis and
interpretation. In this study, a single circular molecule has been identified in the complete
mitochondrial genomes of two chamomile species, respectively. This phenomenon has
been found in the most Asteraceae mitogenomes [42]. Wang et al. reported that the
variation in mitogenome sizes within the Asteraceae family is highly variable from 186,772
to 356,991 [43]. The mitogenome size of M. chamomilla and C. nobile is 233,503 kb and
235,178 kb, respectively. The size of their mitogenomes varies within the Asteraceae family.
The variation in mitogenome size within the Asteraceae family can be attributed to several
factors, including the presence of significant repetitive and foreign fragments [44,45].

In contrast to the conserved monocyclic structure typically observed in chloroplast
genomes, the mitochondrial genomes of seed plants often display multiple alternative
conformations or minor variations attributed to the existence of repeat sequences [46,47].
Repeated sequences, including tandem repeats, SSRs, and dispersed repeats, are abundant
in plant mitochondrial genomes according to research findings [48]. SSRs play a crucial role
as molecular markers in various areas of study, such as species identification, evolutionary
analysis, and genetic diversity exploration [49]. Tandemly repeated DNA sequences with
unit lengths exceeding six base pairs display notable genomic variability as a result of
their propensity for gaining or losing repeat units [50]. Previous studies have indicated
that nearly all angiosperm mitochondrial genomes exhibit substantial non-tandem repeats,
typically exceeding 1 kb in length, and these repeats are actively involved in recombination
events [51]. One possible explanation for isomerization in two chamomile mitochondrial
genomes could be the presence of the longest non-tandem repeat, which spans a range
of 78,982–22,6742 base pairs. Among the dispersed repeats in German chamomile and
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Roman chamomile mitochondrial genomes, palindromic repeats were found to be the
most abundant. This finding was also reported in the Artemisia giraldii [52]. Dispersed
repeats play a crucial role in fostering genetic diversity and are instrumental in shaping the
evolution of plant genomes [53].

Gene transfer from the chloroplast to the mitogenome is a common occurrence through-
out the long-term evolution of plants [54]. Mitochondrial genomes frequently contain
plastid-DNA-derived sequences known as mitochondrial plastid DNAs (MTPTs) [55,56].
There is limited evidence of DNA transfer between organellar genomes within the Aster-
aceae family reported in the literature. BLAST search results indicated that the inserted
sequences showed a high degree of similarity to mitochondrial DNA sequences from
Chrysanthemum, Diplostephium, Lactuca, Helianthus, and Paraprenanthes [42]. In this study,
we conducted an analysis of the homologous sequences between the mitogenomes and
plastomes of two chamomile species. The combined length of the nineteen fragments
was 4782 base pairs (bp), representing 2.04% of the entire Roman chamomile mitogenome.
The combined length of the nineteen fragments was 3269 base pairs (bp), representing
1.39% of the entire Roman chamomile mitogenome (Figure 3). Yue et al. reported similar
results in soybean [52]. The extensive rearrangements observed in mitochondrial genomes
could potentially be attributed to intracellular gene transfers [57]. Therefore, we speculated
that the fragmentation of mitochondrial genomes could be attributed to the integration of
segments from the chloroplast genome, which displayed a high level of alignment with
the original chloroplast genome sequences during gene transfer events. Among the amino
acids analyzed, Leucine (Leu), Serine (Ser), and Arginine (Arg) were found to be the most
frequent, while Tryptophan (Trp) and Methionine (Met) were identified as the least common
(Figure 4), which is frequently observed in the genomes of plant mitochondria [46,58,59].
Although two chamomile species can be distinguished by morphological characteristics
(for instance, one is perennial and the other annual), there is a limited amount of existing
literature that explores the evolutionary relationship between the two chamomile species.
We employed the sequences of conserved genes to generate phylogenetic trees for mito-
chondria and plastids using maximum likelihood (ML) methods. The results suggested that
the sequence conservation among ten Asteraceae species corresponded with the clustering
observed in the mitochondrial phylogenetic analysis [52]. Our result also showed the same
relationships between 10 Asteraceae species. Compared to the four Helianthus species
and A. conyzoides, A. giraldii exhibited higher sequence similarity with two chamomile
species. The phylogenetic trees showed a close relationship between the M. chamomilla
and C. nobile in Asteraceae (Figure 5), which is consistent with the result reported by Tai
et al. [5]. The information has the potential to contribute significantly to the understanding
of phylogenetics and evolutionary processes within chamomile species.

5. Conclusions

In our study, we successfully assembled the mitogenomes of M. chamomilla and C.
nobile for the first time. The mitogenome size of M. chamomilla and C. nobile is 233,503 kb
and 235,178 kb, respectively. The size of their mitogenomes varies within the Asteraceae
family. The phylogenetic analysis demonstrated concordance in the branch positions of M.
chamomilla and C. nobile within the phylogenetic trees constructed using both mitochondrial
and plastid sequences. Moreover, the phylogenetic analysis revealed a close relationship
between M. chamomilla and C. nobile within the clade comprising species from the Asteraceae
family. Our findings have contributed valuable mitochondrial genome resources for the
Asteraceae family, thereby enhancing our comprehension of organelle genome evolution in
flowering plants.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/genes15030301/s1. Table S1. Gene composition in the mitogenome
of M. chamomilla. Table S2. Gene composition in the mitogenome of C. nobile. Table S3. Features of
two mitogenomes belonging to the chamomile. Table S4. Microsatellite repeats in the M. chamomilla
mitogenome. Table S5. Microsatellite repeats in the C. nobile mitogenome. Table S6. Tandem repeats
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in the M. chamomilla mitogenome. Table S7. Tandem repeats in the C. nobile mitogenome. Table S8.
Dispersed repeats in the M. chamomilla mitogenome. Table S9. Dispersed repeats in the C. nobile
mitogenome. Table S10. DNA transfer length of M. chamomilla organelle genomes. Table S11. DNA
transfer length of C. nobile organelle genomes.
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