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Abstract: Alternative splicing (AS) is a crucial mechanism in post-transcriptional regulation, con-
tributing significantly to the diversity of the transcriptome and proteome. In this study, we performed
a comprehensive AS profile in nine tissues obtained from Duroc (lean-type) and Luchuan (obese-type)
pigs. Notably, 94,990 AS events from 14,393 genes were identified. Among these AS events, it was
observed that 80% belonged to the skipped exon (SE) type. Functional enrichment analysis showed
that genes with more than ten AS events were closely associated with tissue-specific functions.
Additionally, the analysis of overlap between differentially alternative splicing genes (DSGs) and
differentially expressed genes (DEGs) revealed the highest number of overlapped genes in the heart
and skeletal muscle. The novelty of our study is that it identified and validated three genes (PYGM,
MAPK11 and CAMK2B) in the glucagon signaling pathway, and their alternative splicing differences
were highly significant across two pig breeds. In conclusion, our study offers novel insights into the
molecular regulation of diverse tissue physiologies and the phenotypic differences between obese-
and lean-type pigs, which are helpful for pig breeding.

Keywords: obese- and lean-type pigs; multiple tissues; transcriptome; alternative splicing; skeletal
muscle metabolism

1. Introduction

Alternative splicing (AS) is a prevalent and evolutionarily conserved biological process
in which splice sites are differentially selected within pre-messenger RNAs, leading to the
generation of diverse mRNA and protein isoforms [1–3]. The growing body of evidence
suggests that the precise regulation of AS plays a crucial role in determining tissue types
and developmental stages [4]. Researchers have discovered that transcripts from ~95% of
multi-exon genes undergo alternative splicing in humans [5]. Meanwhile, disruptions in
the splicing pathway or the presence of aberrant splicing isoforms have been associated
with various human diseases [6,7]. And five different types of alternative splicing events
have been identified, including skipped exons (SEs), retained introns (RIs), alternative
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5′ splice sites (A5SSs), alternative 3′ splice sites (A3SSs), and mutually exclusive exons
(MXEs) [8,9].

Pigs are an important source of animal protein for humans [10]. They are also an
ideal medical model for many biomedical research disciplines because of their similarity to
humans in size, immunology, anatomy, genome, and physiological characteristics [11–13].
There are two pig breeds, Western pigs (lean-type) and Chinese native pigs (obese-type),
and their phenotypes exhibit significant differences [14]. For example, the former is charac-
terized by more developed muscles, smaller muscle fibers, higher muscle content, and lower
fat content in their muscles. Conversely, the latter exhibit higher levels of fat deposition,
including subcutaneous, visceral, and intermuscular fat [15]. In previous studies, signifi-
cant differences in gene expression and mutations have been found to partially explain the
variations between breeds with different phenotypes [16–18]. Due to the aforementioned
differences, these two breeds become valuable resources for the study of AS. While there
has been extensive exploration of AS events across various tissues in pigs [19,20], the
differences in AS events within multiple tissues of lean-type and obese-type pig breeds, as
well as the regulatory functions of different transcripts, remain not fully understood.

In the present study, we conducted a comprehensive comparative analysis of the
AS characteristics in nine tissues (liver, lung, skeletal muscle, heart, adipose, cerebrum,
cerebellum, stomach, and small intestine) from Duroc (DR) and Luchuan (LC) pigs. The
results revealed the detection of 94,990 AS events, of which 87% were novel, originating
from 14,393 genes across these tissues. Subsequently, we analyzed differentially alternative
splicing genes (DSGs) in various tissues and pig breeds, with a particular focus on exploring
DSGs associated with skeletal muscle metabolism. We aimed to explore AS in pigs, and
the data not only enhance our understanding of pig gene functionality, including the
distinct functions of different gene isoforms and regulatory mechanisms, but also provide
important resources for pig genetic breeding.

2. Materials and Methods
2.1. Data Collection

The transcriptome datasets of nine tissues (liver, lung, skeletal muscle, heart, adipose,
cerebrum, cerebellum, stomach, and small intestine) from DR and LC pigs were obtained
from our previous study [21] and are available at the China National GenBank (https:
//db.cngb.org/search/project/CNP0001159/ (accessed on 5 December 2023)) Nucleotide
Sequence Archive (CNSA) under the accession number CNP0001159. Briefly, six adult
individuals for DR and LC pigs (three sows for each breed) were obtained from the Institute
of Animal Science, Guangxi Zhuang autonomous Region, China. Nine tissues or organs
were collected from each pig, resulting in a total of 54 transcriptomes sequenced. The
accession numbers for each sample are listed in Table S1.

2.2. Identification and Quantification of Transcripts

Quality control for the raw reads was performed using Fastp software version 0.23.1
with the default parameters [22]. High-quality reads were aligned to the Sus Scrofa 11.1
reference genome using Hisat (version 0.1.6) with the default parameters [23,24]. Only
reads uniquely aligned to the reference genome were used for downstream analysis. Tran-
script construction for each sample was performed using StringTie (v1.3.3) with default
parameters. The abundance of the transcripts was measured by TPM (Transcripts Per
Million). Transcripts with TPM lower than 0.1 were filtered out [25]. Identification of
known transcripts and novel transcripts was performed by comparing with the Sus Scrofa
11.1 genome annotation file (Ensembl release 108) using StringTie. Functional enrichment
analyses of overlapping genes were performed using DAVID version 6.8 [26], enabling
Gene Ontology (GO) terminology and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway function. False discovery rate (FDR) values ≤0.05 were considered to be
a significant function.

https://db.cngb.org/search/project/CNP0001159/
https://db.cngb.org/search/project/CNP0001159/
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2.3. Analysis of Differentially Expressed Genes, Transcripts and Alternative Splicing

Differentially expressed genes (DEGs) and differentially expressed transcripts (DETs)
were identified via the Deseq2 version 1.36.0 R package [27]. Genes with a false discovery
rate (FDR) ≤ 0.05 and |log2FoldChange| ≥ 1 were considered as DEGs. Transcripts with a
false discovery rate (FDR) ≤ 0.05 and |log2FoldChange| ≥ 1 were considered as DETs.

The rMATS program was used to classify and count the five types of alternative
splicing events. The differences in AS events between DR and LC pigs were measured by
variation in percentage spliced in (PSI), a commonly used parameter to describe the degree
of alternative splicing in international biomedical research organizations. The estimated
value of PSI is shown in the following equation:

PSI =
RSplice_in

RSplice_in+RSplice_out

∆PSI = PSIDR − PSILC

RSplice_in represents the count of reads specific to the splicing transcript, and RSplice_out
represents the count of reads specific to the no-splicing transcript. PSIDR represents the
percent spliced in DR pigs. PSILC represents the percent spliced in LC pigs. ∆PSI means
the value of change.

Alternative splicing events with FDR ≤ 0.05 and |∆PSI| ≥ 10% were extracted as
differential alternative splicing events.

2.4. RNA Extractison

Total RNA was extracted from quick-frozen samples using TRIzol® reagent (Invitro-
gen Life Technologies, Palo Alto, CA, USA) according to the manufacturer′s instructions.
The RNA quality was determined using agarose gel electrophoresis and NanoDrop 2000
(Thermo Fisher Scientific, Waltham, MA, USA).

2.5. Semi-Quantitative RT-PCR Analysis of Alternative Splicing Events

Primers flanking the differentially spliced region were designed using the Primer
Premier 5. The primers are shown in Table S2. PCR products were separated by 2% agarose
gel in 1×TAE buffer for 40–60 min at 120 V. ImageJ software (v.1.47) was used to define
regions of interest (ROIs) [28,29]. Independent measurements of the surveyed area were
made using ROIs of identical size. DNA fragments were recovered from the gel, followed
by Sanger sequencing at the Sangon Biotech company (Shanghai, China).

2.6. Statistical Analysis

GraphPad Prism v8.0.2 was used for statistical analysis. An unpaired nonpara-
metric test for statistical significance was performed. The significance level was set at
p-value < 0.05. Data were expressed as mean ± standard error of the mean (SEM) (n = 3).

3. Results
3.1. Tissue- and Breed-Specific Differential Expression Profiles of Lean- and Obese-Type Pigs

The RNA sequencing data exhibited high quality, with an average of 45.79 million
high-quality clean reads, revealing a high average percentage of 96.90% and 92.20% for
Q20 and Q30, respectively (Table S3). The quantification information for identified genes
and transcripts is provided in Table S4 and Table S5, respectively. A PCA was conducted
to analyze the gene expression patterns of different tissues and biological replicates from
DR and LC pigs (Figure 1A). The results demonstrated distinct clustering patterns among
tissues and biological replicates, with notable differences in clustering observed among
tissues from the two breeds. Then, we used TBtools (v2.041) to identify the number of
tissue-specific expressed genes in these nine tissues. As we can see, the highest and lowest
number of tissue-specific expressed genes were found in the cerebrum (744) and stomach
(93) (Figure 1B). Additionally, in a more focused investigation on pig breeding, the number
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of tissue-specific expressed genes was 206 in skeletal muscle and 628 in adipose tissue
(Figure 1B). Meanwhile, the heart exhibited the highest number of differentially expressed
genes (DEGs) between DR and LC pigs (Figure 1C). Moreover, there were also numerous
differentially expressed genes in skeletal muscle (2761) and adipose tissue (2241) (Figure 1C).
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an exploration of tissue-specific and breed-specific transcripts. Hierarchical clustering 
based on expression levels of transcript also showed clear separations among different 
tissues (Figure 1D). The analysis of tissue-specific transcripts showed that the cerebrum 
had the highest number of transcripts (Figure 1E). Notably, the heart and stomach had the 
highest and lowest number of differentially expressed transcripts (DETs) between DR and 
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Figure 1. The expression characteristics of genes and transcripts in different tissues and breeds.
(A) Principal coordinate analysis of nine tissues in DR and LC pigs. Colors: different tissues. Shape:
different breeds. (B) Heatmap of tissue-specific genes among different tissues. (C) The DEGs in nine
tissues between DR and LC pigs. (D) Hierarchical clustering tree of nine tissues in DR and LC pigs.
Colors: different tissues. (E) Heatmap of tissue-specific expressed transcripts in different tissues.
(F) The DETs in nine tissues between DR and LC pigs. (G) The proportion of differentially expressed
genes with at least one differentially expressed transcript. DR: Duroc pigs. LC: Luchuan pigs. DEGs:
differentially expressed genes. DETs: differentially expressed transcripts.

Currently, an increasing amount of research on gene function is directing attention to
the regulatory functional aspects of different gene isoforms. Therefore, we conducted an
exploration of tissue-specific and breed-specific transcripts. Hierarchical clustering based
on expression levels of transcript also showed clear separations among different tissues
(Figure 1D). The analysis of tissue-specific transcripts showed that the cerebrum had the
highest number of transcripts (Figure 1E). Notably, the heart and stomach had the highest
and lowest number of differentially expressed transcripts (DETs) between DR and LC pigs,
respectively (Figure 1F). The analysis of tissue-specific transcripts provided additional
insights into the complex regulatory mechanism of gene expression. We found that at
least 83.5% of DEGs had at least one DET (Figure 1G), suggesting that differential gene
expression might be caused by the differential expression of transcripts [30]. These findings
shed light on the intricate regulatory mechanisms that govern differential gene expression
in different pig tissues and breeds. Simultaneously, we have identified numerous tissue-
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and breed-specific functional genes or transcripts, which can be regarded as potential
candidate genes (transcripts) for regulating phenotypic differences between lean- and
obese-type pigs.

3.2. Five Types of Alternative Splicing Events Generate Novel Transcripts

We found that the number of AS events ranged from 35,377 to 48,517 in nine tissues
from two pig breeds. These AS events were divided into five types, including skipped
exons (SE), retained introns (RIs), alternative 5′ splicing sites (A5SSs), alternative 3′ splicing
sites (A3SSs), and mutually exclusive exons (MXEs). The statistical results indicated that
the number of SE-type and MXE-type events ranked first and second, respectively, while
the number of A5SS-type events was the least (Figure 2A). To be specific to individual
tissues, there was a similar distribution of the AS type across nine different tissues in two
breeds (Figure 2B, left panel). Above all, 80% of them belonged to the SE type (Figure 2B,
right panel).
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Figure 2. Analysis of alternative splicing and identification of novel transcripts in nine tissues
between two breeds. (A) Number of AS events in each sample from nine tissues in DR and LC
pigs. Colors: different tissues. Shape: different breeds. (B) The distribution of five types of AS
events in nine tissues. Left: proportion of five AS events in nine tissues. Right: total percentage of
five AS events. (C) The number of known and novel AS events. Top right: percentage of novel AS
events. (D) The relationship between the number of annotated isoforms and novel isoforms per gene.
(E) The distribution of novel transcripts identified in nine different tissues (TPM > 0.1). (F) Expression
abundance of novel and known transcripts (log2(TPM + 1) in nine different tissues. AS: alternative
splicing. A3SS: alternative 3′ splice sites, A5SS: alternative 5′ splice sites, MXE: mutually exclusive
exons, RI: retained intron, SE: skipped exon. TPM: Transcripts Per Million.

The novel AS events were categorized into two types, novel transcripts of known
genes and novel transcripts of unknown genes. In our study, we found that more than
87% of AS events were novel transcripts (Figure 2C). The correlation between the number
of previously annotated isoforms and novel isoforms of annotated genes was analyzed.
Transcripts with ensemble IDs were considered to be annotated: the greater the number of
annotated isoforms per gene, the greater the number of novel isoforms detected (Figure 2D).
The cerebrum and lung had a higher number of novel transcripts compared to the other
tissues analyzed, and to our surprise, the skeletal muscle had a lower number of novel
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transcripts (Figure 2E). This might indicate that the genetic activity in the skeletal muscle is
relatively more well studied or understood compared to the cerebrum and lung in pigs. Due
to the observation of a higher number of novel transcripts compared to known transcripts,
we aimed to explore the expression levels of these novel transcripts. However, it should be
noted that, despite the considerably lower expression level of novel transcripts compared
to known transcripts (Figure 2F), it was still worthwhile to explore their contribution to
gene expression and their impact on gene function. These findings suggest that AS is a
highly complex regulatory mechanism in gene expression across various tissues, with the
SE type being the most prevalent AS event in all tissues. Additionally, new AS events
have been identified, and the corresponding novel transcripts generated require further
identification and exploration.

3.3. Tissue-Specific Alternative Splicing Events

Previous studies have demonstrated a positive correlation between the number of
alternative splicing (AS) events and the number of transcripts produced by a gene [31,32].
In our study, we observed a decreasing trend in the number of AS events per gene as the
range of AS events increased from 1 to 30 (Figure 3A, Table S6). Specifically, we found
that genes with only one AS event comprised the highest proportion, accounting for an
average of approximately 30.83%. Furthermore, nearly 93% of all genes had fewer than
ten AS events in pigs. Therefore, for genes with more than ten AS events, accounting for
less than 10%, we were curious about the main regulatory pathways these genes were
involved in. So, we performed functional enrichment analysis on genes with more than
ten AS events to elucidate the logic of AS event variation. GO analysis revealed that these
genes were associated with tissue-specific functions (Figure 3B), such as muscle contraction
in skeletal muscle. KEGG pathway analysis showed enrichment of metabolic pathways
specific to each tissue, including metabolic pathways in the liver, fatty acid metabolism
in subcutaneous adipose tissue, and the glucagon signaling pathway in skeletal muscle
(Figure 3C). Additionally, genes with more than ten AS events had more exons and were
significantly longer (Figure 3D). These findings suggest that genes involved in AS events
are closely associated with tissue-specific functions, and genes with more than ten AS
events are predominantly involved in metabolic pathways.

3.4. Comparison Analysis of Alternative Splicing between Duroc and Luchuan Pigs

Differentially alternative splicing genes (DSGs) were identified between DR and LC
pigs in the same tissues. We found that the number of DSGs ranged from 935 to 1655;
these were the lowest and highest numbers of DSGs in subcutaneous adipose and small
intestine between the two breeds, respectively. In skeletal muscle and heart tissues, the
numbers of DSGs between DR and LC pigs were 1367 and 1480. Furthermore, the overlap
analysis between DSGs and differentially expressed genes (DEGs) showed that the heart
and skeletal muscle had the highest number of shared genes (Figure 4A). Meanwhile, the
KEGG and GO analyses of the overlapping genes revealed significant differences among the
different tissues (Figures S1 and S2). For example, we found that the heart exhibits tissue-
specific regulation of cell cycle function, while the liver exhibits tissue-specific regulation
of cell proliferation function, and the lung exhibits tissue-specific regulation of cell shape
function [33–35]. These findings suggest that different tissues have evolved specialized
molecular mechanisms to regulate specific biological functions.

To gain further insights into tissue-specific AS gene expression, we performed a multi-
tissue overlapping analysis. The results showed that the heart (195), skeletal muscle (138)
and lung (128) exhibited a large number of tissue-specific AS genes (Figure 4B). The further
analysis suggested that several genes, such as TNNT1 (troponin T1, slow skeletal type),
TNNT3 (troponin T3, fast skeletal type), HOXA10 (Homeobox A10), LAD1 (Ladinin 1),
TMEM45B (Transmembrane protein 45B), PHGDH (phosphoglycerate dehydrogenase) and
PLEKHG6 (Pleckstrin Homology and RhoGEF Domain Containing G6), present the highest
tissue-specific AS in skeletal muscle (Figure 4C), indicating their involvement in maintain-
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ing intramuscular homeostasis and muscle development. These findings indicated that
tissue-specific AS genes play a crucial role in the growth, development and maintenance
of tissues. Furthermore, we identified some AS genes that are specifically expressed in
skeletal muscle. These genes may serve as potential functional candidates regulating the
phenotypic differences in skeletal muscle between lean- and obese-type pigs.
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3.5. AS Analysis of Genes from Glucagon Signaling Pathway in Skeletal Muscle

Skeletal muscle constitutes ~40% of body mass and has the capacity to play a major role
as thermogenic, metabolic and endocrine tissue [36]. In our study, GO analysis revealed that
differentially alternative splicing genes (DSGs) between DR and LC pigs in skeletal muscle
were enriched in the muscle contraction response process and glycogen metabolic process
(Figure 5A). Moreover, KEGG analysis demonstrated that these DSGs were significantly
enriched in the glucagon signaling pathway (FDR = 1.85 × 10−4) in both DR and LC pigs
(Figure 5B, Table S7).

Subsequently, we further focused on the genes related to glucagon signaling pathway, in-
cluding PFKFB11 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase), MAPK11 (mitogen-
activated protein kinase 11), PYGM (glycogen phosphorylase, muscle-associated), CAMK2B
(calcium/calmodulin-dependent protein kinase II β), CAMK2A (calcium/calmodulin-
dependent protein kinase II α), GYS1 (glycogen synthase 1) and PHKA1 (phosphorylase
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kinase regulatory subunit α 1). We analyzed the expression differences of differential
splicing events, differential transcripts and differential genes between DR and LC pigs. We
found that the PSI values of GYS1, CAMK2A, PHKA1 and CAMK2B were higher in DR pigs
compared to LC pigs, Furthermore, the PSI values of MAPK11, PYGM and PFKFB1 had the
opposite trend between DR and LC pigs (Figure 5C, Top right). Due to the occurrence of AS
events leading to the generation of distinct mRNA isoforms, we conducted an examination
of the expression differences in various transcripts of the aforementioned genes in DR and
LC pigs (Figure 5C, Left panel). Furthermore, these transcripts differences will ultimately
lead to variations in the overall gene expression levels (Figure 5C, Bottom right). The results
highlight the expression levels of all these genes were significantly different at both the
transcript and gene level between two breeds.
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Figure 4. Comparison analysis of AS events in different tissues between DR and LC pigs.
(A) Statistical analysis of DSGs and overlapping genes in nine tissues between two breeds.
(B) Distribution of the number of overlapping genes and the number of tissue-specific AS genes in
different tissues. (C) Expression pattern of tissue-specific AS genes in nine tissues. Left: genes specific
to skeletal muscle.

To investigate the relationships between alternative splicing genes, we calculated the
correlation between their expression levels (TPM) and identified correlations greater than
0.85 as being relevant. A correlation network showed that PYGM, PFKFB1, CAMK2B, GYS1,
PHKA1 and CAMK2A may play important roles in regulating these genes (Figure 5D).
These results suggested that the AS of these genes related to the glucagon signaling path-
way significantly contributes to the phenotype differences of skeletal muscle between the
two breeds.

3.6. Validation of AS Differences of Genes Related to the Glucagon Signaling Pathway

To confirm the results of the AS analysis, we selected three genes (CAMK2B, PYGM,
and MAPK11) related to the glucagon signaling pathway to validate differences in AS
events in skeletal muscle between DR and LC pigs. The sashimi plot results display the
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exon positions of CAMK2B, PYGM and MAPK11 undergoing alternative splicing, along
with the corresponding reads count. The primer positions used for semi-quantitative
detection were also marked. It can be observed that in the LC pigs, there was no skipping
of exon 13 in CAMK2B, while in the DR pigs, there was no splicing of exon 12 in PYGM
(Figure 6A, Table S8). The semi-quantitative RT-PCR experiments validated the alternative
splicing of these three genes in DR and LC pigs, confirming consistency with the results
shown in the sashimi plot. PSI values of PYGM and MAPK11 were significantly higher
in DR pigs, while PSI values of CAMK2B were lower in DR pigs (Figure 6B), which were
consistent with the analysis results based on RNA-sequencing data. Subsequently, we
subjected the products of semi-quantitative RT-PCR to Sanger sequencing and conducted
nucleic acid sequence alignment between DR and LC pigs. The results indicated that,
indeed, exon skipping occurred in exon 13 of CAMK2B, exon 12 of PYGM, and exon 10 of
MAPK11 (Figure 6C). These results confirm the reliability of our bioinformatics analysis
of AS events and simultaneously unveil differentially spliced genes in skeletal muscle
between DR and LC pigs.
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Figure 6. Transcript information of the novel isoforms and verification of alternative splicing events
(CAMK2B, PYGM and MAPK11). (A) RNA-seq results of AS using sashimi plot analysis. Read
count for standardized-RPKM. Arrows of the primers represent the amplification of three exonic
regions. (B) Semi-quantitative RT-PCR analyses for AS genes between DR and LC pigs. Left: exon
skipping event verification. Right: verification of different AS event data (PSI). Data are presented as
mean ± standard error of the mean (SEM), n = 3. * p < 0.05. (C) Sanger sequencing results of splicing
sites for different transcripts of genes. PSI: percentage spliced in. RPKM: Reads Per Kilobase per
Million mapped reads.

4. Discussion

Transcriptome analysis provides an excellent method for understanding the molecular
characteristics of the physiological function of an organ or tissue [17,37–39]. A compre-
hensive analysis of AS (alternative splicing)-mediated gene expression changes in pig
tissues is essential for advancing pig breeding [40]. pre-mRNAs perform distinct regulatory
functions in specific tissues through different AS types [41]. In this study, we systematically
analyzed AS in nine tissues from DR (lean-type) and LC (obese-type) pigs (Figure S3). A
total of 94,990 AS events and 14,393 expressed genes were detected, with an average of
6.6 AS events per gene. However, other related studies have reported an average of 2.3 AS
events per gene [42]. The observed difference in the number of AS events per gene may be
attributed to breed and tissue-specific factors. Furthermore, our study found that SE events
were the most common forms of AS, consistent with previous research findings [43,44].
However, there is also a study that has found SE events not to be the most prevalent
type among AS events [31]. Moreover, unlike in animals, retained intron (RI) is the most
conspicuous type of alternative splicing in plants [45]. In comparison to annotated iso-
forms, our study revealed a significant increase in novel isoforms and transcripts, whereas
some studies have indicated no differences [46]. This discrepancy could be attributed to
inconsistencies in genome assembly (Sus Scrofa 11.1 vs Sus Scrofa 10.2) and annotation
methods. In conclusion, these novel transcripts and isoforms provide important insights
into pig genome annotation. However, it is worth noting that novel transcripts generated
by AS may undergo nonsense-mediated decay (NMD), and NMD plays a role in quality
control for the AS process [47,48].

The additional analysis we conducted on the characteristics of tissue-specific AS
events in various pig tissues revealed that AS plays a critical role in maintaining specific
functions in particular tissue types. Our findings demonstrated a substantial variation in
the number of differential alternative splicing genes (DSGs) and differentially expressed
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genes (DEGs) across different tissues (Table S9). Through overlapping analysis of DSGs
and DEGs, we found that the skeletal muscle and heart exhibited a higher number of
overlapping genes compared to other tissues. This may be attributed to the presence of
some muscle-specific splicing factors in muscle tissue [49–51]. Previous studies have also
indicated significant differences in AS events between lean and obese-type pigs in skeletal
muscle [52]. Specifically, there were numerous AS events related to mitochondrial function
and glucose metabolism in the skeletal muscle of lean-type pigs. In contrast, the skeletal
muscle of obese-type pigs exhibits abundant AS events related to muscle development and
fat metabolism. In the present study, the average expression levels of certain AS genes
(e.g., TNNT1, TNNT3, LAD1, TMEM45B, PHGDH and PLEKHG6) were higher in skeletal
muscle than in other tissues (Figure 4C). And, based on our knowledge, we identified
for the first time that genes such as TNNT1, TNNT3, and PHGDH are skeletal muscle-
specific alternative splicing genes, and they exhibit the highest expression levels among all
differentially alternative splicing genes between lean-type and obese-type pigs. Based on
existing studies, we know that TNNT1, TNNT3 [53–57], and PHGDH genes [58–60] play
important roles in muscle development and metabolic regulation. Therefore, these skeletal
muscle-specific DSGs may be related to muscle metabolism and development differences,
potentially influencing the formation of lean- and obese-type pigs.

Skeletal muscle is the dominant organ system in locomotion and energy metabolism [61,62].
To further investigate the pathways enriched by DSGs in skeletal muscle between the
two pig breeds, GO and KEGG analysis were employed. The results showed that the
most significant enrichment pathway was the glucagon signaling pathway. Through our
investigation, we focused on three genes associated with skeletal muscle development
in this pathway: PYGM [63], MAPK11 [64] and CAMK2B [65]. As demonstrated by our
results (Figure 6), the PSI values for these three genes showed significant differences in
skeletal muscle of two pig breeds. In the semi-quantitative RT-PCR results, it was evident
that a transcript of the CAMK2B (ENSSSCT00000018230) was not detected in Luchuan
pigs. Simultaneously, a transcript of the PYGM (ENSSSCT00000059278) was not detected in
Duroc pigs. Due to the increasing focus on the diverse regulatory functions exhibited by
different protein isoforms encoded by the same gene [66–69], we contemplate whether the
specific transcripts of these three genes contribute to the phenotypic differences observed
in skeletal muscles between the two pig breeds.

Our study revealed a significant number of tissue-specific alternative splicing events,
with the identified exons serving as potential gene-editing sites. Drawing on the mech-
anism of exon skipping, these exons can be excised at the mRNA level through precise
mutations at conserved bases in splice donors or acceptors [70,71]. This strategy has
proven effective in repairing the coding sequence of the DMD causative gene in animal
models [72] and also provides a new method for MSTN gene knockout in pigs [73]. An
interesting observation in our study is that, consistent with the majority of alternative
splicing classifications [2,74,75], we divided AS events into five types. However, in some
analyses, AS events were categorized into seven classes, including an additional two events:
alternative first exon (AF) and alternative last exon (AL) events [76–79]. Additionally, upon
consideration, we can specifically tally the number of microexons within SE events when
conducting alternative splicing analysis, for instance, counting the microexons involved
in differential SE events between the two pig breeds. Through transcriptomic analyses
of several species and organs, microexons were found to have the highest evolutionary
conservation of sequence and inclusion levels relative to other classes of alternative splicing
elements [3,80]. Finally, in our study, the fusion transcripts, full-length mRNAs and APA
(alternative polyadenylation) sites [81] of two pig breeds have not been well characterized
due to the lack of full-length transcripts, so single-molecule long-read sequencing (PacBio
Iso-seq) can be used to directly obtain full-length transcripts without further assembly, thus
overcoming the above-mentioned limitations [76,82–84]. The strategy of combining Iso-seq
and RNA-seq techniques can improve the efficiency of pig genome annotation [85].
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5. Conclusions

Our study conducted comprehensive alternative splicing profiling in nine tissues
from two pig breeds (Duroc and Luchuan) with different traits (lean- and obese-type).
We identified tissue-specific differentially expressed genes and differentially alternative
splicing genes across the different tissues and breeds, and validated the DSGs related to the
glucagon signaling pathway in the skeletal muscle of two pig breeds. These data can be
valuable for elucidating the transcriptomic profile and enhancing the genome annotation
of pigs, providing helpful insights for pig breeding.
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