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Abstract: Human Replication Protein A (RPA) was historically discovered as one of the six com-
ponents needed to reconstitute simian virus 40 DNA replication from purified components. RPA
is now known to be involved in all DNA metabolism pathways that involve single-stranded DNA
(ssDNA). Heterotrimeric RPA comprises several domains connected by flexible linkers and is heavily
regulated by post-translational modifications (PTMs). The structure of RPA has been challenging to
obtain. Various structural methods have been applied, but a complete understanding of RPA’s flexible
structure, its function, and how it is regulated by PTMs has yet to be obtained. This review will
summarize recent literature concerning how RPA is phosphorylated in the cell cycle, the structural
analysis of RPA, DNA and protein interactions involving RPA, and how PTMs regulate RPA activity
and complex formation in double-strand break repair. There are many holes in our understanding of
this research area. We will conclude with perspectives for future research on how RPA PTMs control
double-strand break repair in the cell cycle.

Keywords: Replication Protein A (RPA); phosphorylation; homologous recombination; AlphaFold;
protein-ssDNA interactions; cell cycle; DNA metabolism; double-strand break repair

1. Introduction

Replication protein A (RPA) is a multifaceted, heterotrimeric protein involved in vari-
ous DNA metabolism activities, including cell cycle regulation, DNA damage signaling,
and DNA repair mechanisms [1]. RPA is the main ssDNA-binding protein in humans.
Historically, RPA was first discovered in the Kelly laboratory at Johns Hopkins Univer-
sity and identified as one of six purified components needed for in vitro simian virus
40 DNA replication. Then, RPA was found to play essential roles in all DNA metabolism
pathways that involve single-stranded DNA (ssDNA) [2]. RPA research was pioneered
and studied throughout Dr. Marc Wold’s entire career, who discovered the critical role
of RPA in various pathways and the importance of RPA regulation by post-translational
modifications (PTMs) [3–33]. RPA research has dramatically expanded and is of interest to
many scientists. The RPA heterotrimer has three subunits named after their corresponding
molecular weights: RPA70, RPA32, and RPA14 [34].

Over the years, research has shown that RPA has multiple types and patterns of PTMs,
including acetylation, ubiquitination, SUMOylation, ADP ribosylation, and phosphory-
lation [28,35–38]. In this review, we focus on the role of phosphorylation. Many studies
dating back to 1990 have focused on the phosphorylation of RPA, specifically the N-terminal
domain of RPA32, because of the impact phosphorylation has on cell cycle regulation [39].
Also, the phosphorylation of RPA32 is easy to detect due to a noticeable shift to a higher
molecular weight of the RPA32 subunit on SDS-PAGE. RPA32 has a long, unstructured
N-terminal tail that is phosphorylated, and these sites have several phosphospecific anti-
bodies. The phosphorylation of other subunits has also been studied through western blot
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and isoelectric focusing analysis of phosphoisoforms [40,41]. However, reagents for these
sites could be more developed.

Since RPA phosphorylation before and after DNA damage has been shown, it is im-
portant to determine which sites on RPA are most important for the function of RPA to
repair DNA damage, such as double-stranded breaks (DSBs) [40]. Previous data revealed
that phosphatidyl inositol 3-kinase-like serine/threonine protein kinase (PIKK) sites and
cyclin-dependent kinase (CDK) sites are critical for DNA repair [42–44]. Some examples of
PIKK sites that will be of interest throughout this review are AT-mutated (ataxia telangiec-
tasia, ATM) and AT and Rad3-related (ATR). Interestingly, RPA contains numerous PIKK
sites, which may affect RPA function.

Over the decades, numerous reviews have been conducted about RPA’s structure
and function [16,23,29,35,45–62]. This review will discuss novel research and more recent
findings on RPA. Specifically, we will cover recent discoveries in the structure/function of
RPA in DNA metabolism, interactions, and PTMs involving RPA, specific details on RPA
phosphorylation in the DNA damage response (DDR) in the homologous recombination
pathway, and finally conclude with a summary of necessary areas for future RPA research.

2. Structure of RPA

Heterotrimeric RPA has seven structured domains. RPA70 contains domains A, B, C,
and F, with disordered linkers connecting the ordered domains and a zinc atom in domain
C (Figure 1A). RPA32 has structured domains D and wHLH (winged helix-loop-helix),
which are also connected by disordered linkers. Finally, RPA14 is entirely composed of
one ordered domain named E. In Figure 1, each domain is drawn as a colored box, which
indicates a known structure, whereas the black and white rectangles are disordered regions
connecting the ordered, structured domains. Domains A, B, C, and D are where ssDNA
binding occurs, and domains F, A, and wHLH contain sequences for protein interactions.
The heterotrimeric core of RPA is formed by domains C, D, and E—one domain from each
subunit.

This unique RPA structure divides six oligosaccharide binding folds (OB-folds) among
the heterotrimeric protein subunits. OB-folds are typically five-stranded closed β barrels
that interact with ligands such as oligosaccharides, proteins, catalytic substrates, and more.
These six OB-folds in RPA are also frequently found in ssDNA-binding proteins (Fig-
ure 1B) [53]. RPA70 contains four OB-folds that comprise the DNA binding domains within
domains A, B, C, and F. RPA14 domain E and RPA32 domain D are also OB-folds [63–65].
The OB-folds are conserved in structure, which have more structural homology than
sequence homology (Figure 1C) [53].

Human RPA has been biochemically studied for over 30 years, with structure determina-
tion by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy [66,68–82].
Unfortunately, full-length RPA has not been crystallized as a heterotrimeric protein because
of the many disordered regions throughout the protein complex. By dividing RPA into
purified domains, it was possible to crystallize each domain individually or with specific
binding partners, such as the heterotrimeric core involving domains C, D, and E [71,75,83].
A Ustilago maydis structure was solved composed of ssDNA and domains A, B, C, D, and
E [67]. The wHLH domain is also very loosely packed, so NMR was used to determine the
wHLH structure with a bound peptide [69,82]. In 2014, Feldkamp and coworkers obtained
a crystal structure of the wHLH domain without a peptide [82]. In 2015, Brosey and col-
leagues studied structural dynamics by NMR to evaluate RPA70-A/B domain binding to
ssDNA. They obtained NMR structures for ssDNA bound to RPA70-A/B and compared
their results to other structural analyses [84].
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Figure 1. Structure of RPA. (A) Domain diagram of RPA heterotrimer with domain functions and 
phosphorylation sites. Structured domains are colored and labeled A-F and wHLH. Unstructured 
domains are white rectangles with a black outline. Phosphorylation sites are labeled and shown 
with a yellow circle indicated by P. Protein interaction domains are underlined in navy blue. DNA 
binding domains are underlined in maroon. Subunit interactions that form the heterotrimeric core 
are underlined in dark yellow. (B) OB-fold diagram [66]. Arrows indicate the β-strands and an oval 
indicates the α-helices. The blue β-strands correspond to those that comprise the OB-fold. The L12 
loop lies between β1′ and β2, and the L45 loop lies between β4′ and β5′. (C) Sequence and secondary 
structure alignment of domains A-E based on structure (updated from [53]). Orange secondary 
structure elements represent domains A and B, green elements represent domain C, and blue ele-
ments represent domains D and E. Lowercase z indicates the Cysteine residues in domain C that 
bind zinc. Residues in RPA70-A, RPA70-B, RPA70-C, and RPA32-D that bind to ssDNA are under-
lined. RPA32-D contains putative DNA binding residues that were determined through structural 
alignment of human and Ustilago maydis RPA. (D) AlphaFold predicted the structure of RPA with 
ssDNA. Domains are colored according to the domain diagram in A. The zinc in RPA70-C is shown 
as a gray ball. PIKK/CDK in G2 phase phosphorylation sites are black and labeled. The 

Figure 1. Structure of RPA. (A) Domain diagram of RPA heterotrimer with domain functions and
phosphorylation sites. Structured domains are colored and labeled A–F and wHLH. Unstructured
domains are white rectangles with a black outline. Phosphorylation sites are labeled and shown
with a yellow circle indicated by P. Protein interaction domains are underlined in navy blue. DNA
binding domains are underlined in maroon. Subunit interactions that form the heterotrimeric core
are underlined in dark yellow. (B) OB-fold diagram [66]. Arrows indicate the β-strands and an
oval indicates the α-helices. The blue β-strands correspond to those that comprise the OB-fold. The
L12 loop lies between β1′ and β2, and the L45 loop lies between β4′ and β5′. (C) Sequence and
secondary structure alignment of domains A–E based on structure (updated from [53]). Orange
secondary structure elements represent domains A and B, green elements represent domain C, and
blue elements represent domains D and E. Lowercase z indicates the Cysteine residues in domain
C that bind zinc. Residues in RPA70-A, RPA70-B, RPA70-C, and RPA32-D that bind to ssDNA
are underlined. RPA32-D contains putative DNA binding residues that were determined through
structural alignment of human and Ustilago maydis RPA. (D) AlphaFold predicted the structure of
RPA with ssDNA. Domains are colored according to the domain diagram in A. The zinc in RPA70-C
is shown as a gray ball. PIKK/CDK in G2 phase phosphorylation sites are black and labeled. The
phosphorylation sites: in RPA70 are S38, T180, S207, and T483; in RPA32 are S4, S8, S11, S12, S13, T21,
S23, S29, S33, S52, S72, S174. ssDNA, shown in maroon, was superimposed from 4GNX [67].
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Since the flexible disorder is a significant factor in RPA structure, small angle X-ray
scattering (SAXS) is another method used. This method allows for low-resolution structures
from proteins in solution. In 2010, Pretto and others used SAXS specifically on RPA70
domains A and B and the N-terminal region to see how these domains bind to ssDNA. They
concluded that RPA70 domains A and B are more compact in the presence of ssDNA. The
N-terminal region of RPA70 did not change in structure in the presence of DNA, allowing
them to conclude that there is no interaction between the two [84–86].

With these structurally known domains of RPA, AlphaFold can be handy to try to
obtain a prediction of the entire RPA structure using experimentally known structures in
the Protein Data Bank (Table 1). We used AlphaFold to predict various conformations of
the complete protein, including the disordered regions and structured domains (Figure 1D).
The modeled AlphaFold structure was used to visualize candidate PIKK/CDK Ser and Thr
phosphorylation sites involved in DNA damage repair, specifically DSBs. These sites are
shown in black (Figure 1D) and labeled with the corresponding amino acid and residue
number. There are four phosphorylation sites on RPA70, twelve on RPA32, and none on
RPA14. ssDNA was superimposed using the 4GNX structure, which interacts with RPA70
domains A, B, C, and RPA32 domain D [67]. The specific residues that bind zinc and ssDNA
are indicated in Figure 1C.

Table 1. Human RPA structures in the Protein Data Bank (PDB).

Subunits/Domain Experiment Information PDB ID Resolution (Å) Citation

X-ray; MRE11; RPA70(1-121) 8K00 1.4 [76]

RPA70-F

X-ray; RAD9; RPA70(1-120) 8JZY 1.5 [76]
X-ray; ETAA1; RPA70(1-120) 8JZV 1.5 [76]
X-ray; ATRIP; RPA70(1-123) 7XV4 1.6 [76]
X-ray; HelB; RPA70(1-120) 7XV1 1.8 [76]

X-ray; BLMp1; RPA70(1-120) 7XV0 1.5 [76]
X-ray; RMI1; RPA70(1-120) 7XUV 1.6 [76]
X-ray; WRN; RPA70(1-120) 7XUT 1.6 [76]

X-ray; BLMp2; RPA70(1-120) 7XUW 1.8 [76]
X-ray; drug; RPA70(1-123) 5E7N 1.21 [77]

X-ray; Dna2 peptide; RPA70(1-123) 5EAY 1.55 [70]
X-ray; PrimPol(514-525); RPA70(1-123) 5N85 2 [74]
X-ray; PrimPol(480-560); RPA70(1-123) 5N8A 1.28 [74]

X-ray; drug; RPA70(1-123) 4R4T 1.28 [78]
X-ray; drug; RPA70(1-123) 4R4Q 1.35 [78]
X-ray; drug; RPA70(1-123) 4R4O 1.33 [78]
X-ray; drug; RPA70(1-123) 4R4I 1.4 [78]
X-ray; drug; RPA70(1-123) 4R4C 1.4 [78]
X-ray; drug; RPA70(1-123) 4O0A 1.2 [73]
X-ray; drug; RPA70(1-123) 4LWC 1.61 [73]
X-ray; drug; RPA70(1-123) 4LW1 1.631 [73]
X-ray; drug; RPA70(1-123) 4LUZ 1.9 [73]
X-ray; drug; RPA70(1-123) 4LUV 1.4 [73]
X-ray; drug; RPA70(1-123) 4LUO 1.54 [73]
X-ray; drug; RPA70(1-123) 4IPH 1.94 [79]
X-ray; drug; RPA70(1-123) 4IPG 1.58 [79]
X-ray; drug; RPA70(1-123) 4IPD 1.51 [79]
X-ray; drug; RPA70(1-123) 4IPC 1.22 [79]
X-ray; drug; RPA70(1-123) 4IJL 1.7 [80]
X-ray; drug; RPA70(1-123) 4IJH 1.498 [80]

X-ray; p53N(33-60)/RPA70(1-123) 2B3G 1.6 [72]
X-ray; RPA70(1-123) 2B29 1.6 [72]
NMR; RPA70(1-114) 1EWI - [68]

RPA70-A/B
X-ray; RPA70(181-422) 1FGU 2.5 [63]

X-ray; ssDNA; RPA70(181-422) 1JMC 2.4 [66]
NMR; XPA-MBD/RPA70(168-326) 1D4U - [20]
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Table 1. Cont.

Subunits/Domain Experiment Information PDB ID Resolution (Å) Citation

RPA32-wHLH
NMR; UNG2(73-88); RPA32(171-270) 1DPU - [69]

X-ray; RPA32(197-270) 4OU0 1.4 [82]

RPA32/RPA14

X-ray; full length 2Z6K 3 [75]
X-ray; full length 2PQA 2.5 [75]
X-ray; full length 2PI2 2 [75]

X-ray; RPA32(43-172)/RPA14(1-121) 1QUQ 2.5 [81]

RPA70/RPA32/RPA14 X-ray; Zn2+;
RPA70(435-616)/RPA32(43-171)/RPA14(1-121)

1L1O 2.8 [71]

3. The Function of RPA in DNA Double-Strand Break Repair

RPA is critical in coordinating the cell cycle with DNA replication and any DNA repair
pathway involving ssDNA. The cell cycle is crucial in completing a series of events that
allow cells to grow and divide and includes the following stages: interphase (I), G1 phase,
S phase, G2 phase, and mitosis (M). Regulation is key to successfully replicating DNA and
normal cell division within these cell cycle phases. Several laboratories have studied RPA
in cell cycle regulation. RPA was determined not to be phosphorylated in the G1 phase,
but RPA34 in humans and S. cerevisiae is phosphorylated in cells that enter the S phase and
then are dephosphorylated in the M phase [45,87,88]. Various researchers have focused on
RPA’s role in recruiting proteins involved in DNA repair. RPA is involved in most DNA
repair pathways, including base excision repair (BER), nucleotide excision repair (NER),
mismatch repair (MMR), and HR [36,89–92]. It is also important to note that HR occurs
only during S and G2 phases [40,44].

RPA plays a critical role in HR to repair DSBs. In HR, sections of homologous se-
quences, typically on a sister chromatid or nearby repeated sequence, will fill in the gap
left by the DSB. On each side of this DSB, a 5′ strand is resected, leaving a 3′ overhang
on the DNA. This resection is done by the MRN complex (composed of RAD50, mitotic
recombination 11 (MRE11), and Nijmegen breakage syndrome 1 (NBS1)), along with other
proteins, including CtBP-interacting protein (CtIP), exonuclease 1 (EXO1), DNA replication
helicase/nuclease DNA2, and blood syndrome RecQ like helicase (BLM). Once there is a 3′

ssDNA overhang, RPA will bind to this ssDNA and follow the canonical HR pathway that
will recruit a complex that includes breast cancer type 1 susceptibility protein (BRCA1),
breast cancer type 2 susceptibility protein (BRCA2), and partner and localizer of BRCA2
(PALB1). This BRCA2 complex will recruit radiation sensitivity gene 51 (RAD51) and
undergo ssDNA transfer from RPA to BRCA2 complex to RAD51, and RAD51 will perform
a homology search on the sister chromatid, eventually repairing the DSB. Secondly, an
alternative pathway for HR includes radiation sensitivity gene 52 (RAD52). RAD52 has
similar functionality to the BRCA2 complex by undergoing a ssDNA handoff from RPA
and allowing RAD51 nucleation of the ssDNA again to perform a homology search on the
sister chromatid, eventually repairing the DSB [40,53,93–95].

4. ssDNA and Protein Interactions involving RPA

RPA involves an assorted array of interactions with ssDNA and proteins. The function
of RPA binding to ssDNA has been studied in numerous ways, for example, through
atomic force microscopy (AFM), circular dichroism (CD), optical tweezers, single-molecule
fluorescence resonance energy transfer (smFRET), and many more [61,96,97]. The interac-
tion between ssDNA and RPA is a rapid but extremely stable process that is difficult to
evaluate due to the binding strength. A study in 2000 concluded that the zinc-finger motif
is necessary to form a stable RPA:ssDNA complex, which depends on redox reactions [98].
Others focused on the binding and unfolding of non-canonical ssDNA structures by RPA
in DNA replication. The heterotrimeric core of RPA selectively binds to a G-quadruplex
forming sequence. G-quadruplexes create a unique problem for RPA to unfold, and various
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ligands could hinder DNA replication by not allowing RPA to unfold these G-quadruplexes
correctly [99].

A more recent paper described how the ssDNA binding complex can change its bind-
ing mode to allow for nucleation of RAD51. The spacing between RPA:ssDNA complexes
is essential for leaving bare nucleotides in between the complexes to allow for RAD51
nucleation. The exchange of RPA for RAD51 is known to be mediated by the RAD52
middle region [100]. Overall, the RPA:ssDNA complex is essential for life and continues to
be investigated.

With this insight into the RPA:ssDNA complex, multiple laboratories have investigated
how RPA binds to varying lengths of nucleotides (nt), for example, 8-nt, 20-nt, or 30-nt.
Kang and coworkers in 2023 investigated a protein involved in Kallmann syndrome:
N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor
(NSMF). They determined that NSMF will colocalize and physically interact with RPA
during DNA damage, allowing RPA to bind in a 30-nt binding mode. This prepares RPA to
become phosphorylated by ATR, an upstream kinase involved in HR [101]. They concluded
that the 30-nt binding mode of RPA enhances the phosphorylation of RPA32 by ATR, and
further phosphorylation will stabilize RPA binding to ssDNA.

RPA has many protein–protein interactions involving DSB repair proteins and others
(Table 2). DSB repair binding partners include: BRCA2, RAD52, RAD51, ATR/ATRIP,
DNA-PKcs, DSS1, MRE11-RAD50-NBS1, p53, and PP2A [18,21,36,38,69,72,74,90,102–212].
The interaction of RPA with RAD52 in the alternative HR DSB repair pathway and single-
strand annealing is fascinating. Without the RAD52:RPA interaction, the ssDNA handoff
from RPA to RAD51 in alternative HR would not be possible, and it is also critical that RPA
is phosphorylated to allow this DNA handoff [93]. Previous studies identified residues
224-271 on RPA32 and 169-326 on RPA70 that include binding sites for RAD52. It was
also found that RAD52 residues 218-303 bind RPA70, along with RPA32 [21]. Although
the interaction sites have been defined, structural data has yet to be available for the
RPA:RAD52 complex.

Table 2. Human proteins that interact with RPA.

Interacting Protein Interaction Site on RPA DNA Metabolism Pathway Citation

AID RPA32 Immunoglobulin diversification [107]

* Ajuba RPA70 DNA damage response (DDR) [108,109]

** ATR/ATRIP RPA70-F Checkpoint signaling, DNA repair [110–112]

BID RPA70-F Replication stress response [113]

* BLM RPA70-A/B DNA unwinding, resection [114,115,125]

** BRCA2 ? Homologous Recombination (HR) [105]

DDX11 ? Chromosome segregation [193]

** DNA-PKcs ? DNA repair [18,116]

** DSS1 RPA70 HR [121]

* ETAA1 RPA70-F/RPA32 ATR activation, repair at stalled
replication forks [117–120]

* EXO5 RPA70-F Intrastrand crosslink repair [181]

* FANCJ RPA70 DNA repair, genome stability [123]

* FBH1 RPA32 DNA unwinding, resection [193]

HELB RPA70-F Replication stress response [179,180]

HERC2 RPA70 Replication [124,125]

HIRA RPA70-C Chromatin remodeling [126]

Histones H3 and H4 RPA70-F Chromatin remodeling [127]
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Table 2. Cont.

Interacting Protein Interaction Site on RPA DNA Metabolism Pathway Citation

* HLTF RPA70 Genome stability [195,196]

HSF1 RPA70 Gene expression [122]

* Menin RPA32 Genome stability [129,130]

** MRE11-RAD50-NBS1 RPA70-F HR [131,132]

Nucleolin RPA14 Replication (stress) [133–135]

NSMF RPA32 DDR [101]

** p53 RPA70-F HR [136–140]

* p53BP1 RPA70/RPA32 DDR [106]

* PALB2 RPA32 Recovery of stalled replication forks [141]

Papillomavirus E1 RPA70-A Replication [182,183]

Parvovirus NS1 RPA70/RPA32 DNA unwinding, resection [187]

PCNA RPA70 Replication [191]

Polδ RPA70 Replication [188]

Pol-Prim RPA70-F/A/B Replication restart, DNA damage
tolerance [102,203]

** PP2A RPA32 DDR [204]

* PRP19/BCAS2 RPA70-F/C DNA repair [144]

* PTEN RPA70 Genome stability [145]

* RAD9/RAD1/HUS1 (9-1-1) RPA70/RPA32 DDR [146]

RAD17 RPA70-F DDR, replication stress response [147,178,205]

** RAD51 RPA70-A Recombination [103,150,151,206]

** RAD52 RPA70-A/B & RPA32-wHLH DNA repair [21,69,152–156,207]

RECQL1 RPA70 DNA unwinding [198,199]

RECQ5β ? DNA unwinding [200,201]

RFC RPA70 DNA unwinding [188,189]

* RFWD3 RPA32-wHLH DNA repair [157,158,195]

* RNaseH ? Transcription, DNA repair [159]

* RNF4 RPA70 DNA DSB repair by HR [202]

SENP6 RPA70 Unperturbed DNA replication [38]

SMARCAL1/HARP RPA32-wHLH Replication fork restart [160–162,208]

SV40 Large T antigen RPA70-A/B & RPA32-wHLH Replication [182–186]

* Tipin RPA32-wHLH DDR [164,165]

* UDG RPA32-wHLH Base excision repair [69,166,190]

* UNG2 RPA32-wHLH Base excision repair [69,166]

* WRN RPA70-A/B DNA unwinding, resection [115,170]

* XPA RPA70-A & RPA32-wHLH Nucleotide excision repair (NER) [69,166,171,209–211]

* XPF-ERCC1 RPA70 NER [174–176]

* XPG ? NER [174,176,212]

* Involved in DNA repair; ** Involved in DNA DSB repair.

BRCA2 is an essential protein involved in the canonical HR pathway. BRCA2 also
completes the DNA handoff, like RAD52, by interacting with RPA. BRCA2 mutations in
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women can cause familial, early-onset breast cancer, so understanding these mutations
and their potential impact on the interaction with RPA will become vital in understanding
DNA repair, specifically in cancer cells. A study in 2003 used a cancer-predisposing
BRCA2 mutation (Y42C) to investigate its interaction with RPA. They found that the Y42C
mutation inhibited the interaction between RPA:BRCA2, showing that the Y42C mutation
has biological importance within the human body [213]. The BRCA2 interaction with
RAD51 has been studied extensively over the years, as BRCA2 promotes RAD51 nucleation
on the ssDNA. Still, there has yet to be data on the interaction between BRCA2 and RPA to
specifically understand how and where this interaction occurs [214].

5. PTMs That Regulate RPA in DNA Metabolism

PTMs are chemical modifications involved in the functional regulation of cellular
proteins. RPA relies on PTMs for its proper function in the cell cycle and DNA repair, and
the main PTM we will focus on in this review is phosphorylation. Phosphorylation of
RPA has been studied for decades, with most studies focused on the RPA32 N-terminal
region. Understanding the importance of phosphorylation on other RPA subunits in RPA’s
regulation is still unresolved.

Phosphorylation occurs throughout the cell cycle, as previously described. A paper by
Yates and coworkers determined two cell cycle checkpoint kinases in yeast, Mec1 and Ddc2
(ATR and ATRIP, respectively, in humans), that are essential for replication stress response
and DDR. These two kinases were shown to recruit ssDNA binding to RPA through Ddc2
by phosphorylation. A yeast Ddc2-RPA structure through X-ray crystallography indicated
that this interaction is necessary to mediate RPA phosphorylation during DDR [215].

An early study in 1990 by Din and colleagues determined the phosphorylation of
RPA32 and RPA70 in human and yeast cells by phosphoamino acid analysis using P32

labeling [39]. Then, numerous labs focused on the phosphorylation of RPA because of
its critical regulation in the DNA repair pathway. In 2003, Binz and others discovered
that the phosphorylation of RPA32 modulates RPA-dsDNA interactions and subsequent
destabilization [22]. They concluded that an intersubunit interaction between phosphory-
lated RPA32NT and RPA70 N-terminal domain (RPA70N) was possible. Recently, NMR
and docking studies were conducted to investigate the interaction between the RPA70
N-terminal domain (RPA70N) and a phosphomimetic N-terminal peptide of RPA32 with
candidate serine/threonine sites mutated to aspartic acid. The study showed the possibility
that RPA32 N-terminal phosphorylation could allow for transient interaction with RPA70N,
which could alter or enhance other interaction sites for proteins or DNA [216]. These
conclusions indicated a possible role of RPA32 N-terminal phosphorylation binding with
RPA70N to form a less disordered structure if these interactions occur in the context of the
heterotrimer.

Not only is RPA involved in RPA-DNA interactions, but RPA phosphorylation also
influences subcellular localization, especially when there is mitotic phosphorylation at S23 and
S29 in RPA32 [217]. When the cell has a DDR, RPA becomes hyperphosphorylated [50,56].
For example, in response to DSBs, RPA is a substrate of ATM kinase that phosphorylates
RPA32 at Thr21 and most likely others [43]. In 2014, a study was performed on RPA
hyperphosphorylation involving the HR pathway in cell cycle phases where HR DSB repair
occurs. In these studies, a human squamous cell carcinoma cell line (UM-SCC-38) was
synchronized in the S and G2 phases [218–220]. Phosphorylation sites in S and G2 phases
with and without DSBs were analyzed with western blots using all available antibodies for
phosphorylation sites on RPA32. In the G2 phase, chromatin-bound immunoprecipitation
phosphorylation occurred at S4/8, S12, T21, S23, and S33 of RPA32 after DSBs.

A global view of RPA heterotrimer phosphorylation was explained using a high-
quality RPA70 antibody and isoelectric focusing (IEF) to separate RPA isoforms based on
the number of phosphorylations present. Capillary IEF immunoassay data of the phos-
phorylated RPA heterotrimeric isoforms with and without DSB treatment, synchronized
in the G2 phase of the cell cycle, were collected (Figure 2) [40]. In this study, data showed
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that RPA is always a phosphoprotein in the G2 phase by having up to seven phosphates
(Figure 2A, blue line). Hyperphosphorylated isoforms generated after DSBs contained up
to 13 or 14 phosphates. IEF identified some of these sites with phosphospecific antibodies
(Figure 2B–E). The hyperphosphorylated forms with 13–14 phosphates included pS4/8,
pT21, and pS33. Several of the sites had yet to be characterized before. DSBs showed
increased phosphorylation by PIKK and CDK kinases in S and G2 phases, providing new
information on candidate PIKK and CDK sites for future research.
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Figure 2. RPA isoforms from cells synced in the G2 phase either with DNA damage (blue) or with-
out DNA damage (pink), separated with isoelectric focusing using a pH gradient from 5-6 and
probed with phospho-specific antibodies. RPA heterotrimer probed with (A) anti-RPA70-CT, (B) phos-
phoRPA32(S4/8), (C) phosphoRPA32(T21), (D) phosphoRPA32(S23), and (E) phosphoRPA32(S33)
antibodies. The red number above the corresponding peaks indicates the number of phosphorylations
on each isoform. Figure adapted from [40].

This research provided pertinent information about RPA heterotrimeric phosphoryla-
tion in response to DSBs in the S and G2 phases of the human cell cycle. Several of these
phosphorylation sites are PIKK-specific sites in the DNA binding and protein interaction
domains of RPA. A summary figure describes possible phosphorylation sites before and
after DSBs (Figure 3). This study provided data about phosphatase and kinase action in
remodeling RPA isoforms in response to DNA damage [40].
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rylated (some sites are unknown and indicated with a ?), but after DDR is activated, RPA becomes
hyperphosphorylated by the PIKK family of kinases and CDK cell cycle kinases, which phosphorylate
RPA. Phosphorylation sites after DNA damage are shown in Figure 1D. Adapted from [40].

6. Future Directions for RPA Research

As previously described, PTMs, such as phosphorylation, play a crucial role in RPA
regulation. Future RPA research should focus on the many isoforms of phosphorylated RPA
and the complicated phosphorylation patterns of RPA to determine which ones are neces-
sary for DNA repair, cell cycle regulation, or other metabolism pathways. Phosphorylation
is critical in RPA regulation and impacts some DNA repair pathways.

RPA phosphorylation could impact protein–protein interactions in DNA repair, DNA
DSB repair, replication, gene expression, and more (Table 2). These interactions could be
explored through various binding studies, including thermal shift assays, biolayer inter-
ferometry (BLI), and surface plasmon resonance (SPR). CD spectroscopy could show if
phosphorylation changes secondary structure [221]. In vivo and in vitro activity assays
would be beneficial to determine where these phosphorylation sites impact RPA function
and interactions with proteins. Phosphomimetics, for example, serine/threonine to glu-
tamic acid mutations, could be used in these problematic studies. Understanding how
phosphorylation affects the RPA–protein interactions related to DNA DSB repair would
give insight into how to target the interactions only involved in cancerous cells.

Understanding the role of RPA phosphorylation could lead to the creation of drugs
that specifically target these forms of protein and complexes. In cancer cells deficient in the
BRCA2 complex, the alternative HR pathway involving RAD52 must step up to continue
HR, but most importantly, it must continue to repair the broken DNA. Deng and coworkers
demonstrated that RPA phosphorylation significantly stabilized the RPA:RAD52 complex
and regulates strand transfer [93]. So, the phosphoRPA:RAD52 protein complex would be
a potential target for a therapeutic inhibitor of complex formation. With this interaction
inhibited in HR-deficient cancer cells, such as high-grade serous carcinoma ovarian cancer,
these cells will not be able to survive. The most significant outcome of these potential
pharmaceuticals will be the lack of impact on the non-cancerous cells in the body with
functional canonical BRCA2 pathway.

Visualization of proteins is key for adequately understanding how they function, and
the disordered regions of RPA make this process difficult. It is known that RPA alone and
the RPA:RAD52 complex (with and without ssDNA) cannot be crystallized due to this
intrinsic disorder. Techniques such as cryo-electron microscopy (cryo-EM) will be a helpful
tool to structurally analyze RPA in its entirety [83,222,223]. Utilizing cryo-EM to study RPA
protein–protein interactions (Table 2) would allow for investigation and fill a massive gap
in the knowledge of these interactions.
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7. Conclusions

RPA is a heterotrimeric protein involved in cell cycle regulation, repair, and countless
other pathways involved in DNA metabolism. Regulation of this multifarious protein is es-
sential in DNA metabolism. The structure of RPA has been studied for several decades, with
only a handful of experiments on the entire protein because of the disordered regions. Al-
phaFold has predicted RPA as a complete heterotrimeric protein, but the disordered regions
vary in each prediction. The model has allowed us to visualize where the phosphorylated
PIKK/CDK sites are throughout the protein. This lets us understand which interactions in
DNA binding, protein–protein interactions, or formation of the heterotrimeric core might
be altered.

Regulation of RPA is a key component involved in various processes, such as PTMs.
PTMs like acetylation, ubiquitination, SUMOylation, ADP ribosylation, and phosphoryla-
tion are fundamental to RPA regulation. Throughout this review, the main PTM focused on
phosphorylation because of its complexity and misunderstanding throughout the years.
The number of phosphorylation combinations is mind-boggling. Phosphorylation of RPA is
complex and an important part of controlling multiple interactions, maintaining cell cycle
regulation, and repairing DNA. Therefore, RPA is an intriguing mystery that needs in-depth
characterization of phosphorylation in DNA double-strand break repair to understand RPA
functions fully.
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