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Abstract: Adenophora triphylla is an important medicinal and food plant found in East Asia. This
plant is rich in secondary metabolites such as triterpenoid saponin, and its leaves can develop into
different types, such as round and linear, depending on the origin of germination even within
the same species. Despite this, few studies have comprehensively characterized the development
processes of different leaf types and triterpenoid saponin pathways in this plant. Herein, we provide
the first report of a high-quality genome assembly of A. triphylla based on a combination of Oxford
Nanopore Technologies and Illumina sequencing methods. Its genome size was estimated to be 2.6 Gb,
and the assembled genome finalized as 2.48 Gb, containing 57,729 protein-coding genes. Genome
completeness was assessed as 95.6% using the Benchmarking Universal Single-Copy Orthologs
score. The evolutionary divergence of A. triphylla was investigated using the genomes of five plant
species, including two other species in the Campanulaceae family. The species A. triphylla diverged
approximately 51-118 million years ago from the other four plants, and 579 expanded/contracted
gene families were clustered in the Gene Ontology terms. The expansion of the β-amyrin synthase
(bAS) gene, a key enzyme in the triterpenoid saponin pathway, was identified in the A. triphylla
genome. Furthermore, transcriptome analysis of the two leaf types revealed differences in the activity
of starch, sucrose, unsaturated fatty acid pathways, and oxidoreductase enzymes. The heat and
endoplasmic reticulum pathways related to plant stress were active in the development of round type
leaf, while an enhancement of pyrimidine metabolism related to cell development was confirmed in
the development of the linear type leaf. This study provides insight into the evolution of bAS genes
and the development of different leaf types in A. triphylla.

Keywords: Adenophora triphylla; genome assembly; different leaf types; triterpenoid saponins

1. Introduction

The Japanese lady bell (Adenophora triphylla var. japonica) is a perennial herb mainly
distributed in China, Japan, Korea, and Russia [1]. A. triphylla belongs to the Campanu-
laceae family and grows in mountainous areas with good drainage [2]. It is an important
medicinal plant used in oriental medicine to control symptoms of lung diseases, such
as cough, sputum, and asthma [3]. Its roots contain different phytochemicals, such as
saponin, inulin, polysthicol, triphyllol, and lupenone [4]. The plant’s leaves are used as
a food source to prevent obesity in traditional Korean recipes [5]. In recent years, anti-
inflammation, antitumor, and antidiabetic activities have been reported in A. triphylla [6],
and their consumption has increased in oriental medicine, food, and health products [7].
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The genome assemblies of two species, balloon flower (Platycodon grandiflorus) [8,9] and
lance asiabell (Codonopsis lanceolate) [10], belonging to the Campanulaceae family, have been
previously reported. However, the genome assembly of Japanese lady bell has not yet been
reported. Genomic information can be used to guide breeding strategies for the cultivation
and enhancement of crop quality. Next-generation sequencing (NGS) technologies have
enabled accurate genome assembly [11], and highly heterozygous genomes have been
assembled using a combination of short-read Illumina and long-read Oxford Nanopore
Technologies (ONT) sequences [12].

Plant leaves are important organs that participate in photosynthesis, respiration, and
transpiration [13], and have evolved many mechanisms to optimize leaf function according
to their surrounding conditions [14]. Development of different leaf types is controlled
through complex gene regulatory networks. Leaf evolution appears to depend on the
architecture of cis-regulatory elements and the epigenetic states of responsive genes [15].
The complexity of leaf morphology during leaf development is generally related to the
regulatory mechanism of various genes, including the transcription factor Knotted-like tale
homeobox (KNOX1) [16].

Leaves of A. triphylla exhibit a wide range of morphological variations within the same
species. They can be classified according to the types of leaves into lanceolate, cuneate,
elliptic, and ovate forms [17]. However, in A. triphylla, few studies have reported on
the biological processes involved in the development of different leaf types [6]. Most
studies have focused on its classification, phytochemical functions, and nutritional compo-
sition [18–20]. Triterpenoid saponins are recognized as significant secondary metabolites
in A. triphylla. Triterpenoid saponins have a wide range of pharmacological bioactivities,
such as antihyperglycemic, anti-inflammation, antitumor, antioxidant, hemostatic, and
hormone-like activities [21,22]. Triterpenoid saponins are synthesized via the mevalonic
acid and methylerythritol 4-phosphate pathways [23]. In the Campanulaceae family, triter-
penoid saponin pathways have been studied with diverse skeleton structures in α-amyrin,
β-amyrin, dammarenediol, and lupeol metabolism [24]. In particular, β-amyrin synthase
(bAS) gene families are key players in triterpenoid saponin biosynthesis [25]. However,
triterpenoid saponin pathways in A. triphylla are not well characterized [26].

In this study, we report the first assembly of the A. triphylla genome. Furthermore,
this study provides insight into the biological processes involved in the development of
different leaf types and the evolution of triterpenoid saponin biosynthesis in A. triphylla.

2. Results and Discussion
2.1. Estimation of Genome Size

The genome size of A. triphylla was estimated using Jellyfish and GenomeScope.
In total, 119.7 Gb of trimmed Illumina sequence data was obtained, and distributions
of k-mer coverage based on Jellyfish analysis presented double peaks (Supplementary
Figure S1). Using GenomeScope with optimal 17–23 k-mer values, we estimated that
the haploid genome size ranged from 2.60–2.64 Gb with 2.32% heterozygosity (Sup-
plementary Table S1). These results suggest that the A. triphylla genome is likely to
be highly heterozygous and diploid. However, studies on the chromosome number
in various Adenophora species have revealed that these species possess either 17, 34, or
51 haploids, indicating the potential presence of a tetraploid or hexaploid genome [27,28].
The A. triphylla genome is likely tetraploid, containing two similar subgenomes. This
possibility may also be related to the high heterozygosity (2.32%) of the A. triphylla
genome. The heterozygosity of autotetraploid plant genomes such as potato (Solanum
tuberosum) is 6.8–7.9% (http://qb.cshl.edu/genomescope/genomescope2.0/analysis.php?
code=example10, accessed on 14 December 2023) while the heterozygosity of allote-
traploid genomes such as cotton (Gossypium barbadense) can be as high as 11% (http:
//qb.cshl.edu/genomescope/genomescope2.0/analysis.php?code=example8, accessed
on 14 December 2023). However, heterozygosity levels can be high even in diploid
plants. The heterozygosity of diploid plant genomes such as pear (Pyrus pyrifolia) is about

http://qb.cshl.edu/genomescope/genomescope2.0/analysis.php?code=example10
http://qb.cshl.edu/genomescope/genomescope2.0/analysis.php?code=example10
http://qb.cshl.edu/genomescope/genomescope2.0/analysis.php?code=example8
http://qb.cshl.edu/genomescope/genomescope2.0/analysis.php?code=example8


Genes 2024, 15, 58 3 of 13

1.6% (http://qb.cshl.edu/genomescope/genomescope2.0/analysis.php?code=example3,
accessed on 14 December 2023). These results suggest that heterozygosity levels vary in
plant genomes and that high heterozygosity levels are not necessarily associated with plant
polyploidy. Cytogenetic and genomic studies are very poor in A. triphylla. Therefore, it
is necessary to confirm the chromosome number and ploidy level of this plant species
through additional research in the future, referring to the genome sequence information
obtained in this study.

2.2. Genome Assembly

To produce a high-quality genome sequence, we generated trimmed 123.6 Gb of
Nanopore long-read and 119.7 Gb of Illumina short-read sequences (Supplementary
Table S2). Two assembly pipelines, Pipeline 1 and Pipeline 2, were used to assemble
the A. triphylla genome. Among the two sets generated by the two pipelines, the set
produced by Pipeline 2 exhibited better quality than the one produced by Pipeline 1, as
judged by the total assembly length, N50, and N90 (Supplementary Table S3). Therefore,
the contig set generated by Pipeline 2 was selected as the final genome assembly sequence
of A. triphylla and then used for further analysis. A total of 99.4% of the trimmed PE
reads were mapped to genome sequences, and the mapped reads covered a maximum
of 86.5% of the genome sequences. The long terminal repeat (LTR) assembly index (LAI)
value [29] for assembly quality assessment of repetitive sequences was calculated as 11.8
(Supplementary Table S4). Finally, the quality of the assembled genome was evaluated
using the Benchmarking Universal Single-Copy Orthologs (BUSCO) score. In the BUSCO
analysis, 95.6% of genes were assembled in a complete form, while 1.0% were assembled
in a fragmented form. The completeness of the genome was comparable with that of
four genomes reported from C. lanceolata and P. grandifloras belonging to the Campanu-
laceae family (Supplementary Table S5) [8–10,25]. The genome was completed at 2.48 Gb,
comprising 8432 contigs with an N50 value of 403.7 Kb (Table 1).

Table 1. Genome assembly metrics and gene annotation statistics of Adenophora triphylla.

Parameter Value

Genome assembly (Pipeline 2)
Number of sequences 8432 contigs
Total length of sequences 2,477,772,497 bp
N50 length 403,696 bp
Smallest sequence 18,168 bp
Longest sequence 3,658,388 bp
Average length 293,853 bp
Complete BUSCO (version 5.0) 95.6%

Gene annotation
Number of protein-coding genes 57,729
Total length of protein-coding genes 55,297,059 bp
Smallest gene length 102 bp
Longest gene length 16,275 bp
Average gene length 958 bp
Repeat content 79.2%
GC content 43.6%
Functionally annotated 88.4%
Complete BUSCO (version 5.0) 75.0%

BUSCO = Benchmarking Universal Single-Copy Orthologs score (embryophyta_odb10 library).

The pipeline based on NextDenovo showed higher assembly completeness metrics
compared to assembly using Canu Pipeline in this study (Supplementary Table S3). These
results indicate that NextDenovo can be efficient when assembling large-sized genomes
with high heterozygosity such as the A. triphylla genome. In fact, NextDenovo improves
long-read assembly in a variety of organisms. However, genome assembly of long reads
must be appropriately selected, taking into consideration factors such as heterozygosity

http://qb.cshl.edu/genomescope/genomescope2.0/analysis.php?code=example3
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of the target organism, sequencing depth, convenience, cost, and computing resources.
A variety of assemblers have been developed for genome assembly of long reads, and a
perfect platform still does not exist [30,31].

2.3. Genome Annotation

A total of 57,729 protein-coding genes were predicted using the transcriptome data
and protein sequences. The total length of the protein-coding genes was 55.3 Mb, with an
average length of 958 bp and GC content of 43.6% (Table 1). Genome annotation identified
1.96 Gb of repeat sequences in A. triphylla, accounting for 79.2% of the genome. The most
repetitive category was LTR retrotransposons, including Gypsy (35.0%) and Copia (13.4%)
(Supplementary Table S6). In plants, Gypsy- and Copia-like retroelements are the major
components that affect genetic and phenotypic variations [32].

Among the protein-coding genes, 88.4% were functionally annotated after comparing
their homology against five known protein libraries: NCBI GenBank, Arabidopsis thaliana
(Araport11) proteins, protein domains, and Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) databases. In total, 87.4% of the genes showed high
similarity with known protein sequences deposited in the NCBI GenBank database and
65.9% had known conserved protein domains. A total of 45.4% of the genes were assigned
to at least one GO term and 33.8% assigned to a pathway registered in the KEGG database
(Supplementary Table S7). Features of this gene set were similar to those of previously
reported genomes of species in the Campanulaceae family (Supplementary Table S8).

For functional classification of the annotated genes, 26,212 GO term genes were
assigned to three functional categories: biological process (16,273), molecular function
(20,310), and cellular component (15,504). Within the three categories at level three, the
most abundant genes were assigned to organic substance metabolic processes, organic
cyclic compound binding, and membrane processes (Figure 1).
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Figure 1. Gene histogram of Gene Ontology (GO) biological analysis in Adenophora triphylla. Colors
represent the three GO categories: blue (biological process), red (molecular function), and green (cel-
lular component). Height of the histogram bars represents the number of genes in the corresponding
color sections at level three.

2.4. Genome Comparison

To determine the evolutionary relationship between A. triphylla and four other whole
plant genomes (C. lanceolata, P. grandiflorus, Panax ginseng, and Arabidopsis thaliana) [10,25,33,34],
we performed similarity-based gene clustering analysis. The genomes of A. thaliana and P.
ginseng were added to investigate the evolutionary divergence of plants belonging to the
Campanulaceae family (Supplementary Table S9). Gene clustering revealed that A. triphylla
had 2551 unique gene clusters and shared 10,216 among the five genomes. Additionally,
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A. triphylla shared 877, 559, and 519 gene clusters with C. lanceolata, P. grandiflorus, and P.
ginseng, respectively (Figure 2).
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Figure 2. Gene distribution between Adenophora triphylla and four related species. Venn diagram
showing the protein-coding genes sequenced among A. triphylla, Codonopsis lanceolata, Platycodon
grandiflorus, Panax ginseng, and Arabidopsis thaliana. The numbers in overlapped regions indicate
shared genes and those in non-overlapped regions the unique genes.

Using unique and shared gene clusters, GO enrichment analysis was performed
to identify enriched functional categories. In A. triphylla, a total of 2551 unique and
10,216 shared genes were not enriched in any abundant GO terms. However, 877 shared
genes between A. triphylla and C. lanceolate were mostly clustered as GO terms related to the
translation process (Supplementary Table S10). The 559 genes shared with P. grandiflorus
were the most clustered in defense response GO terms (Supplementary Table S11), and
the 519 genes shared with P. ginseng mostly clustered in microtubule-based movement GO
terms (Supplementary Table S12).

To investigate the evolutionary divergence of A. triphylla, expansion and contraction
analyses of the gene family were performed between A. triphylla and four plant species.
During divergence of the five plant species, A. triphylla was separated from the rest ap-
proximately 51–118 million years ago. Evolutionary divergence analysis revealed that
277 expanded and 302 contracted gene families clustered in A. triphylla (Figure 3). The
clustered gene family was identified as an abundant GO term using GO enrichment anal-
ysis. Among the 277 genes that expanded during evolution between the groups, the GO
terms were related to protein phosphorylation and protein serine/threonine kinase activ-
ity. Among these, protein phosphorylation is the most important activity in almost all
cellular processes [35], and serine/threonine protein kinases play a role in apoptosis [36].
Among the 302 genes that contracted during evolution between the groups, GO terms were
related to protein ubiquitination and oxidoreductase activity (Supplementary Table S13).
Among these, protein ubiquitination is a post-translational modification process with many
cellular functions [37], and oxidoreductases are a family of enzymes that catalyze redox
reactions [38].
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2.5. β-Amyrin Synthase Genes in A. triphylla

A total of 70 genes were identified to be related to triterpenoid saponin biosynthesis
in A. triphylla using the KEGG database (Supplementary Table S14). Triterpenoid saponins
play an important role in determining the quality of medicinal plants belonging to the
Campanulaceae family [39], and bASs are important oxidosqualene cyclases involved in
triterpenoid saponin biosynthesis [25]. Therefore, the identified 22 bAS genes among the
70 genes involved in triterpenoid saponin synthesis provide evidence of their major contri-
bution to triterpenoid saponin modifications in A. triphylla. To identify the bAS genes com-
monly found in the Campanulaceae family, comparisons were made between A. triphylla, P.
grandiflorus, and C. lanceolata. A total of 22, 14, and 13 genes were associated with β-amyrin
production in A. triphylla, P. grandiflorus, and C. lanceolata, respectively (Supplementary
Table S15). In particular, the bAS gene, consisting of 763 amino acids (NCBI/GenBank
accession no., ASB17950.1), was identified in A. triphylla (Atj_C1300_0130T), P. grandiflorus
(Pg_chr04_12440T), and C. lanceolata (Cl_chr02_36110T). This gene may be involved in the
key synthase responsible for β-amyrin compound synthesis in the Campanulaceae family.
Additionally, 22 bAS genes suggest the potential for species-specific saponin synthesis in A.
triphylla. Triterpenoid saponins, such as platycodin D in P. grandifloras [9], lancemaside A
in C. lanceolate [40], and dammarenediol-II in P. ginseng [41], have specifically evolved for
individual plant species. The presence of an expanded bAS genes in A. triphylla suggests
the possibility of discovering novel triterpenoid saponins in this plant.

2.6. Analysis of Transcriptomes Involved in the Development of Different Leaf Types

Leaves of A. triphylla interestingly show different morphological characteristics even
within the same species [17]. Leaves of A. triphylla were round (elliptic or ovate) when
the plant first germinated from seeds, but linear (lanceolate or cuneate) leaves appeared
after it germinated from the bulb in the second year (Supplementary Figure S2). To
explore the biological processes involved in the two leaf types, RNA sequencing was
performed on two types of A. triphylla leaves, including nine round types (AT1-round) and
nine linear types (AT2-linear) (Supplementary Figure S2 and Supplementary Table S17).
After decontaminating the raw reads, we obtained 6,798,070,576–7,078,472,389 clean reads
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from 18 samples. Then, the reads were mapped to the A. triphylla genome. An average
of 47,641,622 reads from 18 samples were used for genome mapping, with an average
mapping rate of 88.5% (Supplementary Table S17).

To reveal the physiological responses in the two leaf types, we evaluated the biological
pathways using GO and KEGG databases. Differentially expressed gene (DEG) analysis
between AT1-round and AT2-linear showed a total of 1314 defined genes, including 689 up-
regulated and 625 downregulated genes (Supplementary Figure S3). KEGG functional
enrichment analyses using the identified 1314 genes showed 14 significantly enriched path-
ways in the upregulated gene group (p < 0.05) and 11 in the downregulated gene group.
The most enriched upregulated pathway was starch and sucrose metabolism, whereas the
most downregulated pathway was a biosynthesis pathway involving unsaturated fatty
acids (Figure 4).
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In the GO analysis, both upregulated (Supplementary Figure S4) and downregulated
gene groups (Supplementary Figure S5) were mainly enriched in oxidoreductase activity
in the molecular function category. However, for oxidoreductase activity, the upregu-
lated genes act on the sulfur group of donors (GO:0016667), whereas the downregulated
genes act on paired donors with oxidation (GO:0016717). In the time interval between
the development of the two leaf types, AT1-round was mainly enriched in response to
heat (GO:0009408) and the endoplasmic reticulum pathway related to plant stress [42]
(Supplementary Figure S6), and AT2-linear was enriched in pyrimidine metabolism path-
ways related to cellular development [43] (Supplementary Figure S7). Various metabolic
differences at the point where the leaf originates are likely to cause different develop-
mental patterns of leaves. In tomato (Solanum lycopersicum), the leaf initiation point can
be determined by spatial differential regulation of carbohydrate metabolism in the api-
cal meristem, which is associated with the spiral phyllotaxy pattern [44]. In addition,
phytohormone biosynthetic mutants of brassinosteroid exhibit variations in leaf shape
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when compared to the wild type [44], while differences in auxin activity are also closely
associated with leaf shape and development [15]. These results suggest that imbalances
in phytohormone synthesis within plant tissues may contribute to the development of
different leaf types. Therefore, the two types of leaves in A. triphylla are likely caused by
differences in carbohydrate and phytohormone metabolism between seeds and bulbs.

3. Materials and Methods
3.1. Plant Materials and DNA Preparation

A. triphylla (Japanese lady bell) was collected from the National Institute of Horticul-
tural and Herbal Science in Eumseong, Korea, and registered at the National Agrobiodi-
versity Center under voucher number IT272706. High molecular weight genomic DNA
was extracted from young leaves using a Qiagen Cell Culture DNA Maxi Kit (Qiagen, Ger-
mantown, MD, USA). Quality of the genomic DNA was examined using a NanoDrop 2000
(Thermo Fisher Scientific, Santa Clara, CA, USA) and Agilent 2200 TapeStation (Agilent
Technologies, Santa Clara, CA, USA).

3.2. Library Preparation, Sequencing, and Genome Size Estimation

Illumina and Nanopore sequencing libraries were prepared using a TruSeq DNA PCR-
free kit (Illumina, San Diego, CA, USA) and an ONT 1D ligation sequencing kit (Oxford
Nanopore Technologies, Oxford, UK), respectively. Sequencing was performed using an
Illumina HiSeqX platform (Illumina) and 1D flow cells (Oxford Nanopore Technologies).
After sequencing data trimming, Illumina PE (Phred score > 20) and Nanopore sequencing
data (Q ≥ 7) were trimmed using the Trimmomatic [45] and Porechop [46], respectively.

The genome size of A. triphylla was estimated via k-mer frequency analyses of the
trimmed Illumina PE data using Jellyfish (ver. 2.0 with optimal k-mer value of 17) [47] and
GenomeScope (k-mer value of 23) [48].

3.3. Genome Assembly

Two assembly pipelines were used to assemble the A. triphylla genome. Pipeline
1 was composed of Canu [49], SMARTdenovo [50], Pilon [51], NextPolish [52], and
Purge_haplotig [53], while Pipeline 2 was composed of NextDenovo [54], NextPolish [52],
and Purge_haplotig [53] (Supplementary Table S3). For Pipeline 1, the trimmed Nanopore
sequence data were self-corrected using the Canu assembler and the corrected sequences
assembled de novo using SMARTdenovo with a minimum read length of 1000 bp. The
assembled contig sequences were polished using Pilon with trimmed PE data. In Pipeline 2,
the trimmed Nanopore data were assembled de novo using the NextDenovo assembler and
the assembled contig sequences polished using NextPolish with the trimmed Nanopore
and PE sequence data. Haplotigs (duplicate copy contig of the same region by heterozygos-
ity) were removed using Purge_haplotig because they could interfere with downstream
processes and cause erroneous results such as linking of alleles. Genome assembly quality
assessed using the LAI [29] value and BUSCO [55] score with the embryophyta_odb10
library. The coverage of Illumina PE reads in the assembled genome was analyzed using
BWA-MEM [56].

3.4. Gene Annotation

Protein-coding regions and transcriptome sequences were predicted in the assembled
genome sequence using well-known annotation tools, such as Maker3 (https://www.yandell-
lab.org/software/index.html, accessed on 14 December 2023), Snap, Augustus, GeneMark-ES,
and EvidenceModeler (Supplementary Figure S8). The balloon flower [8,9], sun flower [57],
Korean ginseng [58], and A. thaliana [34] sequences were used for the annotation of protein-
coding genes. For transcriptome evidence, A. triphylla and A. polyantha sequences (NCBI
accession no., SRR11994226) were used. A total of 195,939 transcripts were prepared, with a
total length of 171.7 Mb. Genome sequences were masked with consensus repeat sequences,
which were identified and characterized using RepeatModeler and RepeatMasker pro-

https://www.yandell-lab.org/software/index.html
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grams [59]. Finally, to improve annotation quality, we selected gene sequences for which
the annotation evidence distance (AED) score was less than 1 which indicates there is no
evidence to support the annotation, as in previous studies [25,60].

For functional annotation of protein-coding genes, all predicted proteins were aligned
against those found in the NCBI non-redundant protein database using the Diamond
tool with an e-value cutoff of 1 × 10−5 [61]. The aligned proteins were annotated as the
best-matched proteins. The annotated genes were classified using GO terms and assigned
to a metabolic pathway using the KEGG database.

3.5. Genome Comparisons

Five plant species were used for genome comparison: A. triphylla, C. lanceolata (lance
asiabell), P. grandiflorus (balloon flower), P. ginseng (Korean ginseng), and A. thaliana. Unique
and shared gene sequences were clustered using the OrthoVenn3 web tool (ver. 4. 26.1)
with an e-value cutoff of 1 × 10−5 [62]. The expansion and contraction of gene families
were investigated using the CAFE5 program (ver. 2.1) [63] and OrthoVenn3 web tool.
Divergence time information among the five plant species was retrieved from the Time-Tree
database [64] and entered into OrthoVenn3 (C. lanceolata and P. grandiflorus: 25 million years
ago (MYA), A. triphylla and C. lanceolata: 51 MYA, A. triphylla and P. grandiflorus: 51 MYA,
A. triphylla and P. ginseng: 85 MYA, A. triphylla and A. thaliana: 118 MYA, P. ginseng and A.
thaliana: 118 MYA).

3.6. RNA Sequencing and Transcriptome Analysis

A. triphylla accessions include leaf collections at different developmental stages of
two leaf types and stress-treated samples (Supplementary Table S16). These samples were
frozen in liquid nitrogen for RNA extraction. Total RNA was extracted using the RNeasy
Mini Kit (Qiagen) and quantified using an Agilent 2100 Bioanalyzer (Agilent Technologies).
Libraries were prepared with 2 µg of total RNA for each sample using a TruSeq Stranded
mRNA LT Sample Prep kit (Illumina, San Diego, CA, USA). Then, indexed libraries were
sequenced using an Illumina HiSeq X platform by Macrogen Incorporated (Seoul, Republic
of Korea). The raw reads were preprocessed to remove low-quality, adapter sequences and
bacterial sequences using Trimmomatic [45] and BBduk [65].

For transcriptome analysis, 18 samples (two leaf types, three replicates, and three time
intervals) were selected from A. triphylla accessions in RDA GenBank (http://genebank.
rda.go.kr/, accessed 8 October 2020), which were unstressed plant samples grown in a
greenhouse (Supplementary Table S17). The processed reads were aligned to the A. triphylla
genome using HISAT [66]. For expression profiling and DEG analysis, fragments per
kilobase of transcript per million mapped reads were calculated based on the number
of mapped RNA reads. The DESeq2 package was used to determine DEGs between
samples [67]. The DEGs were evaluated with the up- and downregulated genes, and
their biological roles were verified using GO enrichment and KEGG pathway database
analyses. The bAS-related genes of triterpenoid saponin biosynthesis were identified using
KEGG databases with eukaryote gene sets. The programs and parameter values used for
transcriptome analysis were indicated in Supplementary Figure S9.

4. Conclusions

The Japanese lady bell (A. triphylla) is a popular medicinal plant in East Asia and
Russia that has various therapeutic effects. This study is the first to report the genome
size, genome assembly, and genomic characterization of A. triphylla. In the A. triphylla
genome, 22 bAS genes were identified, providing indirect evidence for the biosynthesis of
triterpenoid saponins in this plant. Analysis of GO and KEGG revealed differences in the
activities of starch, sucrose, unsaturated fatty acid pathways, and oxidoreductase enzymes
in the development of two leaf types. Our findings provide insights into A. triphylla
genome evolution and could enable future genomics-aided breeding of important traits in
the Campanulaceae family. These genomic resources are important for the improvement

http://genebank.rda.go.kr/
http://genebank.rda.go.kr/
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of agricultural traits for the use of A. triphylla as a source of pharmaceutical resources and
health-related foods.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes15010058/s1. References [8–10,25,33,34,68–70] are cited in the
supplementary materials.
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