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Abstract: Fat has a high energy density, and excessive fatness has been recognized as a problem for
egg production and the welfare of chickens. The identification of a genetic polymorphism controlling
fat deposition would be helpful to select against excessive fatness in the laying hen. This study aimed
to estimate genomic heritability and identify the genetic architecture of abdominal fat deposition in a
population of chickens from a Dongxiang blue-shelled local breed crossbred with the White Leghorn.
A genome-wide association study was conducted on abdominal fat percentage, egg production and
body weights using a sample of 1534 hens genotyped with a 600 K Chicken Genotyping Array. The
analysis yielded a heritability estimate of 0.19 ± 0.04 for abdominal fat percentage; 0.56 ± 0.04 for
body weight at 72 weeks; 0.11 ± 0.03 for egg production; and 0.24 ± 0.04 for body weight gain. The
genetic correlation of abdominal fat percentage with egg production between 60 and 72 weeks of age
was −0.35 ± 0.18. This implies a potential trade-off between these two traits related to the allocation
of resources. Strong positive genetic correlations were found between fat deposition and weight traits.
A promising locus close to COL12A1 on chromosome 3, associated with abdominal fat percent, was
found in the present study. Another region located around HTR2A on chromosome 1, where allele
substitution was predicted to be associated with body weight gain, accounted for 2.9% of phenotypic
variance. Another region located on chromosome 1, but close to SOX5, was associated with egg
production. These results may be used to influence the balanced genetic selection for laying hens.

Keywords: abdominal fat deposition; genomic heritability; genetic correlation; body weight gain;
egg production

1. Introduction

Excessive fat deposition is undesirable for egg production in laying hens because it is
associated with poorer feed efficiency, increases the cost of egg production and affects the
health of the hens. As a consequence, interest in controlling abdominal fat pad deposition
is growing in the field of layer breeding, though sufficient abdominal fat is required to safe-
guard egg production, especially in the later laying period. The solution requires balancing
the fat pad weight with the impact on other production traits. In a suitable breeding plan, a
genetic model of the selected traits should be correctly evaluated, and parameters should
be exactly described. Understanding the genetic parameters and architecture of abdominal
fat deposition would be useful for layer breeding.

Selecting for a thinner abdominal fat pad would produce a faster rate of genetic gain
due to its moderate heritability and large genetic variance within populations. Some studies
have suggested that abdominal fat is a polygenic trait with moderate to high heritability.
However, most previously reported genetic parameters were estimated using juvenile
meat-type chickens [1–3]. There are considerable differences in gene expression profiles
and metabolic patterns between the young and adult stages. A longitudinal analysis also
revealed that heritability changed over time [4,5], but this study is unaware of any prior
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efforts to assess heritability changes in laying hens, and few genetic correlation coefficients
have been reported, especially with egg production.

Advances in the development of genotyping technology have enabled genetic eval-
uation and selection in poultry production using a genomic relationship matrix. High-
throughput association studies have revealed significant associations for economically
important traits, such as egg size [6], breast muscle weight [7], ascites syndrome [8], body
weight [9], feed efficiency traits [10], egg production [11] and feather pecking behavior [12].
Genome-wide association studies (GWASs) have also been performed on meat-type chick-
ens for fat deposition [13–15] and body weight gain [16,17]. To the best of our knowledge,
no GWASs are available for other major traits in laying chickens such as fat deposition and
body weight gain during the laying period.

The aims of this study were to estimate the genetic parameters between abdominal
fat deposition and performance traits using a genomic relationship matrix and to evaluate
the genetic architecture of fat deposition and performance traits using GWAS. The genetic
knowledge of abdominal fat deposition and performance traits will show how selection
can affect fat deposition and anticipate and prevent the undesirable side effects of selection.

2. Materials and Methods
2.1. Animals

Phenotypic data were obtained from an experimental farm at the Jiangsu Institute of
Poultry Science. The examined population was developed by reciprocal crosses between
Dongxiang blue-shelled chickens and White Leghorn. More details about the F2 population
are described by Yi et al. [6]. Zero-day-old chicks were vent-sexed, wing-banded and
vaccinated for Marek’s disease on day zero. All chicks were reared in battery brooders and
transferred to group cages at six weeks of age. Brooders and cages were maintained at 20
to 25 ◦C with artificial illumination. Pullets were then transferred to single-hen cages at
17 weeks of age. The light treatment gradually increased by 1 h per week until 16 h of light
was provided. The laying mash contained 16.5% crude protein and provided 2750 kcal of
metabolizable energy/kg.

2.2. Phenotypic Measurements

Five traits were measured, including abdominal fat weight (AFW), body weight at
28 weeks (BW28) and 72 weeks of age (BW72), and egg production (EN) between 60 weeks
and 72 weeks. The body weight of live birds was measured after overnight fasting. Number
of eggs produced from 60 weeks to 72 weeks was recorded daily for each bird and then
summated as a total. After slaughter, abdominal fat weights were measured.

For abdominal fat percentage and egg production, the most extreme values that varied
by +3 and −3 standard deviations from the mean were removed prior to the analysis. For
body weight gain, outliers are worth studying and were kept in the data set by giving
them the closest value within the average ± 3 SD. All experiments were approved by
the Institution of Animal Care and Use Committee in Jiangsu Institute of Poultry Science
(permit number: JPIAE 2011–0005, approval date: 2 July 2013).

2.3. DNA Extraction, Genotyping and Quality Control

Blood samples were obtained from the brachial vein by standard venipuncture. Ge-
nomic DNA was extracted from the samples by the overnight proteinase K digestion
of lysed whole blood followed by phenol/chloroform extraction. A total of 1534 hens
from an F2 resource population were genotyped with an Affymetrix® Axiom® 600 K
Chicken Genotyping Array (GeneSeek Inc., Lincoln, NE, USA) [18]. After the quality
control procedure, 22 samples with a dish quality control less than 0.82 or single-nucleotide
polymorphism (SNP) call rate less than 97% were excluded from the sample pool. Mark-
ers with a missing SNP call rate exceeding 5%, minor allele frequency less than 0.01 and
Hardy–Weinberg equilibrium test p-value less than 1 × 10−6 were eliminated. All SNPs
located in the sex chromosomes and those not mapped in the chicken assembly were
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excluded from the analysis. All autosomal SNPs from 1512 qualified samples were used for
imputation implemented using the Beagle Version 4 software package based on localized
haplotype clustering [19]. A total of 435,243 SNPs and 1512 birds were obtained for further
analyses after filtering for imputation results using PLINK (v1.90b6.21, Shaun Purcell,
https://www.cog-genomics.org/plink/, accessed on 5 January 2023) [20].

2.4. Genome-Wide Association Analysis

Before the association test, an independent SNP set was identified using the PLINK
command --indep-pairwise 25 5 0.2 for a principal component analysis (PCA). The top
five principal components were assigned as covariates in the association analyses. In the
present study, the effective number of independent tests was set to 59,308, estimated by
sample [21], so the genome-wide suggestive and significant p-values were 1.69 × 10−5 and
8.43 × 10−7, respectively. The candidate genes closest to the associated SNPs in GeneCards
(http://www.genecards.org/# accessed on 6 June 2023), Ensembl (http://asia.ensembl.org,
version 107, accessed on 25 May 2023) and NCBI (http://www.ncbi.nlm.nih.gov, accessed
on 25 May 2023) databases were searched. The positions of interesting SNPs were obtained
from Ensembl version 107 and NCBI bGalGal1.mat.broiler.GRCg7b.

A conditional analysis was also performed to identify the potential associated SNPs
that might be masked in the putative region by a strong signal. Briefly, the top SNP
was selected into covariates. Association analysis conditioning was then implemented
based on the selected SNPs to iteratively search for the top SNPs one by one using a
stepwise model selection procedure until no SNP had a conditional p-value that passed the
significance level.

GEMMA (v0.98.5, Xiang Zhou and Matthew Stephens, https://github.com/genetics-
statistics/GEMMA, accessed on 15 January 2023) was used to implement a standard linear
mixed model in which a single environmental variable was explained by the SNP genotype
and where relatedness was introduced by a random effect [22]. The statistical model used
for the association test could be represented by the following matrix expression:

y = Wα+ Xβ+ Zu + ε

where y is the vector of the phenotypic values for all hens; W is the incidence matrix
of fixed effects, including a column of ones, house effects and the top five PCAs; α is
the vector of the corresponding coefficients, including the intercept; X is the vector of
marker genotypes; β is the corresponding effect size of the marker; Z is the design matrices
relating observations to u; u is the vector of random effects with u~(0, GRMσ2

a), where σ2
a is

the genetic variance, and GRM represents the genomic relationship matrix as calculated
with the GCTA package and used to replace pedigree relationship matrices [23]; and ε is
the vector of the residual variances with ε~N (0, Iσ2

e ), where σ2
e is the residual variance

component. The statistical model was used as described above for a single-marker GWAS.
The Wald test statistic was used as a standard to select the SNPs associated with abdominal
fat and growth traits. To evaluate the systematic bias of the linear regression model, the
genomic inflation factor was calculated using the ratio of the median of the observed
p-values to that of the expected test statistics. Manhattan plots were generated with R as
described by Yi et al. [6]. Quantile–quantile (QQ) plots were obtained with the gap package
in R [24].

2.5. Heritability

In order to investigate the roles of additive genetic contributions to phenotypic varia-
tions, a restricted maximum likelihood method was applied to estimate the heritability and
genetic correlation coefficients based on the genomic relationship matrix in BLUPF90 soft-
ware (v1.0.1, Misztal et al., http://nce.ads.uga.edu/html/projects/programs/, accessed
on 15 January 2023) [25]. The genetic variance explained by chromosomes and individual
SNPs with the additive genetic effect was estimated, and the mixed linear model was
used to estimate the genetic variance for each chromosome. The chicken genome was

https://www.cog-genomics.org/plink/
http://www.genecards.org/#
http://asia.ensembl.org
http://www.ncbi.nlm.nih.gov
https://github.com/genetics-statistics/GEMMA
https://github.com/genetics-statistics/GEMMA
http://nce.ads.uga.edu/html/projects/programs/
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partitioned into 28 autosomes and two linkage groups. The use of the GCTA software
package (v1.94.1, Yang et al., https://yanglab.westlake.edu.cn/software/gcta/#Download,
accessed on 15 February 2023) allowed the pedigree relationship matrix to be replaced by
the genomic relationship matrix, and the eigenvectors obtained by PCA were embedded as
covariates [23]. A regression analysis was used to evaluate the relationship between the
variance explained by each chromosome and its length.

2.6. Linkage Disequilibrium Analysis and Gene Identification

Linkage disequilibrium (LD) in target regions was visualized with Haploview 4.2 [26].
The LD blocks were defined according to the Gabriel criteria [27]. Genes that overlapped in
target regions were identified with the Ensembl BioMart webtool (http://www.ensembl.
org/biomart/, accessed on 6 July 2023).

2.7. Shared Loci Analyses

Because significant correlations were found between fat deposition and production
traits with a genomic relationship matrix, the following step was aimed at revealing the
overlap loci that influence both fat deposition and production traits. GWAS-PW software
(v0.21, Pickrell et al., https://github.com/joepickrell/gwas-pw, accessed on 6 July 2023)
was applied to identify shared loci associated with a pair of traits [28]. This program
used a Bayesian method to assess the posterior probabilities of association (PPA) for four
models, where one block harbored a genetic variant only associated with one trait in
model 1 and model 2, another block harbored a genetic variant that was associated with
both traits in model 3, and the last block harbored different genetic variants that were
separately associated with each trait in model 4. In model 3, a value of PPA exceeding 0.9
was considered to jointly influence both traits at the significance level, whereas a value of
PPA exceeding 0.6 was considered influential at the suggestive level.

3. Results
3.1. Description of Traits and Genetic Parameters

The statistical description of abdominal fat, egg production and growth traits is sum-
marized in Table 1. The sample size differs among traits because of missing observations.
The coefficient of variation for BW72 at 13.9% and EN at 27.9% was lower than for AFP and
BWG at 44.5% and 64.13%, respectively, showing that the relative internal variability for
AFP and BWG was high. The highest heritability was obtained for body weight at 72 weeks.
The moderate to high heritability estimated for weight traits suggests that these traits could
be significantly improved.

Table 1. Statistical description of abdominal fat, body weight and egg production.

Trait Sample Size Average ± SD Genetic
Variance

Residual
Variance

Phenotypic
Variance Heritability

AFP (%) 1329 4.45 ± 1.98 0.48 ± 0.10 2.05 ± 0.10 2.53 ± 0.10 0.19 ± 0.04
BW72 (kg) 1493 1.44 ± 0.20 0.023 ± 0.003 0.018 ± 0.001 0.042 ± 0.002 0.56 ± 0.04
BWG (g) 1486 215.59 ± 138.27 4064.87 ± 751.65 12,998.17 ± 664.73 17,157.63 ± 706.11 0.24 ± 0.04

EN 1489 53.29 ± 14.89 25.53 ± 7.13 211.89 ± 9.51 237.38 ± 9.00 0.11 ± 0.03

The phenotypic and genetic coefficient parameters are presented in Table 2. In this
study, AFP showed strong genetic correlations with weight traits and moderate negative
genetic correlations with egg production between 60 and 72 weeks of age. Egg production
showed a low genetic correlation with weight traits. Strong and positive genetic correlations
among weight traits were found.

https://yanglab.westlake.edu.cn/software/gcta/#Download
http://www.ensembl.org/biomart/
http://www.ensembl.org/biomart/
https://github.com/joepickrell/gwas-pw
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Table 2. Estimates of genetic (above the diagonal) and phenotypic (below the diagonal) correlations
with their approximate standard errors (in parenthesis).

Traits AFP BW72 BWG EN

AFP -- 0.55 ± 0.09 0.79 ± 0.08 −0.35 ± 0.18
BW72 0.39 ± 0.03 -- 0.88 ± 0.03 0.15 ± 0.14
BWG 0.42 ± 0.02 0.79 ± 0.01 -- 0.14 ± 0.17
EN −0.10 ± 0.03 0.04 ± 0.03 −0.06 ± 0.03 --

3.2. SNP Association and Candidate Genes

The quantile–quantile (QQ) plot for each trait shows that most of the observed p-values
fit well to the expected p-values, except for in the tail region of the distribution, which
corresponds to associated SNPs, as shown in Figure 1. The genomic inflation factors were
0.997 for abdominal fat percent, 1.021 for egg production and 1.026 for body weight gain,
indicating that inflation effects due to population stratification or an undetected genotyping
error were small to negligible in each trait of interest. In the QQ plot of egg production
(Figure 1), the deviation from the straight line may be due to the pleiotropy enrichment of
genetic loci. Also, high-intensity selection on egg production cannot be ignored. For each
trait, only the most significant regions were selected for further downstream analysis.
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One significant SNP located on chromosome 3 was rs13695700, found in the down-
stream region of the collagen type XII α 1 gene COL12A1. It had supporting SNPs spanning
a region between 80.76 M and 81.06 M, as in the chicken reference genome GRCg7b, and it
was identified for abdominal fat percentage based on Bonferroni correction for multiple
testing, as shown in Table 3 and Figure 2.

Table 3. Lead SNP from the significantly associated region for abdominal fat percent, body weight
gain and egg production in chickens.

SNP Chr Position Candidate
Gene Distance (kb) MAF Substitute

Proportion
Phenotypic

Variance
LRT

p-Value
Length

of Block
(kb)

Trait

rs13695700 3 81057418 COL12A1 downstream 457 kb 0.275 G/A 0.025 9.31 × 10−8 6.9 Abdominal fat
percent

rs317160250 1 168419997 HTR2A upstream 164 kb 0.362 A/G 0.029 2.25 × 10−7 11.2 Body weight gain
rs313399567 1 65972279 SOX5 upstream 0.68 kb 0.499 A/G 0.024 7.44 × 10−8 299 Egg production
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A total of 7 SNP effects that mapped to the long arm of chromosome 1 were identified
for body weight gain, as shown in Figure 2, and 88 SNP effects reached suggestive signifi-
cance. The three chromosomes GGA1, 2 and 4 harbored these suggestive significant SNPs.
A strong association was identified for a region on GGA1 that spanned 2 Mb between 168.27
and 170.25 Mb and contained all the genome-wide and 45 suggestive significant SNPs
associated with body weight gain between 28 and 72 weeks. The SNP rs317160250 was
the lead SNP associated with body weight gain, as shown in Table 3. 5-Hydroxytryptamine
Receptor 2A (HTR2A) was the proximal genetic locus to the lead SNP and encoded one of
the receptors as a neurotransmitter with many roles.

The GWAS for egg production revealed a significantly associated genomic region on
GGA1. The SNP rs313399567 was the lead SNP located in this region associated with the
number of eggs produced between 60 and 72 weeks. Due to the proximal position to the top
SNP, SRY-Box Transcription Factor 5 (SOX5) was proposed as a candidate gene associated
with egg production. The genotype and allele frequencies for this most associated SNP are
given in Table 3.

• Conditional analysis

To check for any potential markers that might be masked by the single-step analysis,
conditional association analyses based on significantly associated SNPs were carried out.
First, any markers detected as retained after the top SNP associated with body weight
gain were treated as covariates and all significant SNPs dropped out after stepwise condi-
tional analysis. Second, the conditional analysis for egg production was repeated, and no
significant association was found on chromosome 1.

• Single-chromosome heritability analysis

To assess the distribution of the genetic components on abdominal fat percentage,
we also investigated the phenotypic variance explained by each chromosome. As shown
in Figure 3, the variance explained by each chromosome was proportional to its number
of genes (adjusted R2 = 0.78). On average, more genes on a chromosome explained a
larger percentage of variance. These results are consistent with the infinitesimal model
theory; i.e., common variants throughout the genome accounted for the total variances.
In total, 28 autosomes and two linkage groups accounted for 18.46% of the variance in
abdominal fat percentage. Chromosome 3 explained 4.45% of the variance in abdominal fat
percentage. These results do not differ from the univariate heritability estimates (Table 1).
No convergence result was obtained on body weight gain or egg production.

• Overlap genetic locus analyses

To explore any shared loci that jointly affect fat deposition and production traits,
pairwise GWASs were applied to identify which pleiotropic regions were shared between
paired traits. We found that one locus reached a suggestive level for a shared association
between abdominal fat deposition and body weight gain with a PPA3 of 0.85, and body
weight at 72 weeks with a PPA3 of 0.81. This genomic region harbored the above-mentioned
SNP mapped on chromosome 3. No region was uncovered between fat deposition and
egg production.

The x-axis represents the number of genes on the chromosome, while the y-axis
represents the resultant heritability in a given chromosome. The gray area around the blue
line is the 95% confidence level interval predicted from the linear model. Chromosomes 3
and 17 fall outside the gray area, thereby indicating that these chromosomes could explain
more heritability than expected according to the number of genes.



Genes 2024, 15, 10 8 of 12

Genes 2024, 15, x FOR PEER REVIEW 8 of 12 
 

 

Figure 2. Manhattan plot of the p-value in the chicken GWAS. The horizontal black and green lines 
indicate the whole-genome significance (p-value = 8.43 × 10−7) and suggestive thresholds (p-value = 
1.69 × 10−5), respectively. 

 
Figure 3. Chromosome heritability of abdominal fat percentage against the number of genes on the 
given chromosome. Green circles are the chromosome heritability. Grey area around the blue line 
is the 95% confidence level interval for prediction from the linear model. 

The x-axis represents the number of genes on the chromosome, while the y-axis 
represents the resultant heritability in a given chromosome. The gray area around the blue 
line is the 95% confidence level interval predicted from the linear model. Chromosomes 3 
and 17 fall outside the gray area, thereby indicating that these chromosomes could explain 
more heritability than expected according to the number of genes. 

4. Discussion 
4.1. Genetic Evaluation 

The estimates of genetic correlations in this study provide unequivocal proof that 
abdominal fat deposition interacts with egg production and body weight gain. Unlike 
previous studies, the relationship matrix was constructed from genomic information 
rather than pedigree data. The advantage of this method lies in a more accurate 
description of the relative relationship, and it offers some ability to adjust for Mendelian 
sampling terms [29,30]. It has been observed that excessively fat hens tend to lay fewer 
eggs [31,32], but, to the best of our knowledge, there was no known genetic correlation 
with reproductive performance. Yet adequate fatness is necessary to maintain good egg 
production. Using the quantitative genetic method, this study found that abdominal fat 

Figure 3. Chromosome heritability of abdominal fat percentage against the number of genes on the
given chromosome. Green circles are the chromosome heritability.

4. Discussion
4.1. Genetic Evaluation

The estimates of genetic correlations in this study provide unequivocal proof that
abdominal fat deposition interacts with egg production and body weight gain. Unlike
previous studies, the relationship matrix was constructed from genomic information rather
than pedigree data. The advantage of this method lies in a more accurate description
of the relative relationship, and it offers some ability to adjust for Mendelian sampling
terms [29,30]. It has been observed that excessively fat hens tend to lay fewer eggs [31,32],
but, to the best of our knowledge, there was no known genetic correlation with reproductive
performance. Yet adequate fatness is necessary to maintain good egg production. Using the
quantitative genetic method, this study found that abdominal fat deposition has a negative
genetic correlation with egg production, providing a rationale to balance fat deposition and
egg production during laying hen breeding programs.

The positive genetic correlation between abdominal fat percentage and body weight
gain was 0.79 ± 0.08. These results are consistent with those of a previous study by
Garwood et al. [33], who reported that abdominal fat weight is positively correlated (0.84)
with body weight gain. Conversely, Chen et al. [34] reported that the genetic correlation
of abdominal fat proportion was weakly negatively associated with body weight gain in
young broilers and unknown for the laying hen. It is generally considered that estimates of
genetic correlations are less precise than those of heritability, especially for a highly variable
trait such as fat deposition.
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4.2. Genetic Architecture

In this phenotypic study of fat deposition, a large variation in abdominal fat percentage
was obtained. Given the observed small genetic effect relative to the large variation in
phenotype, it was not surprising that few loci were identified during the association
study. The GWAS showed that one SNP located near the COL12A1 gene was significantly
associated with abdominal fat deposition.

Adipose tissue is not merely composed of simple adipocytes, and each cell is closely
associated with the extracellular matrix (ECM). COL12A1 is a key component of ECM,
which takes part in the remodeling of adipose tissue in fatness and metabolic disease [35].
In another GWAS of a broiler population, COL12A1 was regarded as one of the candidate
genes for abdominal fat deposition, and this was validated by analyzing its quantitative
PCR gene expression between high- and low-fat weight groups [36]. There is also evidence
that the differential expression level of COL12A1 is related to abdominal fat deposition
using RNA-seq [37] and proteomics profiles [38]. The results from this study are therefore
consistent with a genetic contribution where COL12A1 makes ECM changes leading to
abdominal fat deposition.

Knowledge of the genetic architecture of fat deposition must also be supported by
the study of the interaction of related traits. These results provide essential data for a
better understanding of genetic correlations related to fat deposition. The implicated
region linked with COL12A1 and its effects on the extracellular matrix remodel were also
associated with phenotypic variations, such as fat deposition and body weight at 72 weeks
and body weight gain.

This study also noted with the use of GWAS that HTR2A was associated with body
weight gain. The HTR2A gene encodes a serotonin receptor, and the neuroactive ligand–
receptor pathway plays an important role in chicken growth by regulating food appetite [39].
Molecular genetic studies show that serotonin receptors affect appetite and body weight
through the melanocortin 4 receptor [40]. Previous studies have confirmed the importance of
the genomic region that includes HTR2A in exercising genetic control over body weight and
fatness [41,42], and this study provides further evidence of an association between serotonin
receptor polymorphism and body weight gain.

Another important finding was that a polymorphism in the upstream of the SOX5 gene
was significantly associated with egg production. It belongs to a member of the SOX family,
which has SRY-related conserved HMG boxes in its structure. Earlier studies noted the im-
portance of the expression of SOX5 in influencing egg production. Through a transcriptome
profile analysis, Ma et al. identified SOX5 as one of the core genes affecting laying-rate
differences [43]. Through association analyses in cattle, SOX5 has been determined to be
one of the candidate genes for female fertility [44,45], and through whole-genome scanning
analyses in dairy goats, it has been noted to be related to litter size [46]. The consistency
of the findings with those of other studies is encouraging; however, further validation
research may be required in order to understand the effects of genetic architecture on egg
production more comprehensively.

5. Conclusions

These results confirm the hypotheses of a potential trade-off between fatness and egg
production. However, a pairwise GWAS analysis did not provide significant results for
colocalization between the paired traits. There is substantial evidence that fat deposition,
egg production and body weight gain are heritable and polygenic, and the majority of
the genetic variance of both traits was captured by the genomic relationship matrix. A
promising candidate gene involved in fat deposition was mapped to chromosome 3. A
pleiotropy effect from this region appeared to be identified with pairwise GWAS. The
identification of the pleiotropic region is helpful for understanding the genetic background
of fatness in chickens. These results also provide additional evidence of an important role
for HTR2A in body weight gain; a potential role for chromosomes 1, 2 and 4 in growth traits;
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and a key role for SOX5 in the persistence of lay. Taken together, these results advance the
understanding of the genomic architectures of fatness, body weight and egg production.
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