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Abstract: Pinellia ternata (Thunb.) Breit (abbreviated as P. ternata) is a plant with an important
medicinal value whose yield is restricted by many factors, such as low reproductive efficiency and
continuous cropping obstacles. As an essential breeding material for P. ternata growth and production,
the bulbils have significant advantages such as a high survival rate and short breeding cycles.
However, the location effect, influencing factors, and molecular mechanism of bulbil occurrence and
formation have not been fully explored. In this study, exogenously applied phytohormones were
used to induce in vitro petiole of P. ternata to produce bulbil structure. Transcriptome sequencing
of mRNA and miRNA were performed in the induced petiole (TCp) and the induced bulbil (TCb).
Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were performed for the identification of key genes and pathways involved in bulbil
development. A total of 58,019 differentially expressed genes (DEGs) were identified. The GO and
KEGG analysis indicated that DEGs were mainly enriched in plant hormone signal transduction
and the starch and sucrose metabolism pathway. The expression profiles of miR167a, miR171a, and
miR156a during bulbil induction were verified by qRT-PCR, indicating that these three miRNAs
and their target genes may be involved in the process of bulbil induction and play an important
role. However, further molecular biological experiments are required to confirm the functions of the
identified bulbil development-related miRNAs and targets.

Keywords: induction; bulbil; P. ternata; microRNA; phytohormone; RNA-seq

1. Introduction

P. ternate, the most widely used herb in the Pinellia genus, is widely distributed in
China, Japan, and Korea [1]. The dried tuber of P. ternata, called Pinellia rhizome (PR),
is a commonly used medicinal plant after processing and is often used to treat phlegm,
cough, and morning sickness [2]. However, propagating P. ternata is difficult because of
viral infection, continuous cropping obstacles, unstable quality, and other factors [3]. As
a special vegetative propagule, the bulbil is usually found in the aboveground parts of
perennial herbs, such as Lilium lancifolium [4], Dioscorea alata [5], and P. ternate [6].

As a vegetative viviparous organ species, the bulbil has the characteristics of strong
vitality, high germination rate, and fast germination cycles [3]. Moreover, the bulbil’s
morphology, occurrence site, and number of different species have great variations [7].
The occurrence site of bulbils of P. ternata generally involves the petiole near the root,
and terminal globules occasionally emerge at the base of three leaves [8]. The anatomical
study of the normal development of P. ternata bulbils indicated that these developed from
the dedifferentiation and redifferentiation of the parenchyma cells between the ventral
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epidermis of young petioles and the outermost vascular bundles [9]. In vitro petioles of P.
ternata induced by MS medium containing a plant hormone comprising 0.5 mg/L 6-BA (N-
(Phenylmethyl)-9H-purin-6-amine) + 0.2 mg/L NAA (Naphthaleneacetic acid) can obtain
a large number of vegetative structures that are similar to bulbils, which can be used in
production. They exhibited the same biological characteristics as normal bulbils (such as the
cork, capability of rooting, and growth points), and can develop into complete plants [10].
The process of bulbil formation induced by plant hormones can directly complete the
structural transformation from explant to bulbil without undergoing the callus stage [11].
This process involves the influence of complex internal and external factors and precise
gene expression regulation mechanisms. Evidence suggests that various plant hormones,
i.e., 3-Indoleacetic acid (IAA), jasmonic acid (JA), abscisic Acid (ABA), and trans-Zeatin-
riboside (ZR), play an important role in the development of bulbils [12,13]. However,
exploration at the molecular level still needs to be improved.

The development of bioinformatics and molecular biology supports the study of
gene expression in non-model organisms, especially medicinal plants that are relatively
scarce but have significant medicinal and research value [14,15]. The bulbil propagation
of P. ternata has important application value in practical production. Further, despite
continuous exploration of influencing factors, key genes, and analytical mechanisms in
bulbil formation, these features have thus far failed to be fully elucidated [6,16]. In this
study, we used plant hormones to induce bulbil formation and employed RNA-seq and
qRT-PCR for the expression of quantitative critical genes in the process of bulbil induction
to explore another process of bulbil formation and provide a reference for research on the
bulbil initiation and development mechanism.

2. Materials and Methods
2.1. Plant Materials

The tubers were collected from the planting base in Qingshui, Gansu Province under
the permission of the competent authority. The seeds were identified as P. ternata tubers
by Professor Xu Tao of Zhejiang sci-tech University, and planted in the greenhouse. The
soil composition was nutrient soil: vermiculite: perlite = 3:1:1; this was irrigated with
1/5 MS nutrient solution and watered once a week. The temperature setting of the green-
house where the tubers were cultured was within the range of 25± 1 ◦C with a photoperiod
of 12 h. After 20 days of bulb culture, the petioles of the growing P. ternata plantlets were
cut into 3 cm segments as explants.

After being treated with 70% alcohol (30 s) and 10% sodium hypochlorite solution
(10 min), the explants were cultured in MS medium containing 0.5 mg/L 6-BA and 0.2 mg/L
NAA. Then, with the time gradient of 3, 6, 9, and 12 days, the tip of the petiole was cut
at 0.3 cm for the induction of the bulbil, and at the bottom 0.3 cm for the induction of
the petiole (Figure 1A–D). In order to show the completeness of the development of the
bulbil, the development and growth of the bulbil at 36 days and 108 days were assessed
(Figure 1E,F). Naturally occurring petioles were used as blank controls. mRNA and miRNA
sequencing were performed on the inducible petiole and the inducible bulbil on day 6,
because the structure of the inducible bulbil could be clearly observed. Five biological
replicates of each period, each consisting of 10–15 individual samples, were pooled into
two samples prior to sequencing. Three biological replicates were set for each period for
qRT-PCR validation. All samples were frozen with liquid nitrogen and then transferred to
−80 ◦C for preservation.
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Figure 1. The process of bulbil induction in P. ternata. 3 days (A), 6 days (B), 9 days (C), and 12 days 
(D) show the early stage of bulbil induction, and 36 days (E) and 108 days (F) show the mature 
induced bulbil. 

2.2. RNA Extraction, RNA Sequencing, and Small RNA Sequencing 
Total RNA was extracted from each sample using the Spin Column Plant Total RNA 

Purification Kit (Sangon Biotech, Shanghai, China) and the RNase-Free DNase Set (San-
gon Biotech, China), following the manufacturer’s protocol. The purity and concentration 
of each RNA sample were analyzed using the Bioanalyzer 2100 and RNA 1000 Nano Lab 
Chip Kit (Agilent, Santa Clara, CA, USA), with a RIN number > 7.0. Subsequently, the 
RNA samples were sent to LianChuan Corporation (Hang Zhou, China) for construction 
of RNA and small RNA (sRNA) sequencing libraries. 

2.3. Analysis of mRNA-Seq 
Firstly, in-house Cutadapt [17] and Perl scripts were used to remove the low-quality, 

undetermined, and adaptor contamination reads. Then, sequence quality was verified us-
ing FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 20 
February 2023). De novo assembly of the transcriptome was performed with Trinity 2.4.0 
[18]. All assembled Unigenes were aligned against the Gene Ontology (GO), non-redun-
dant (Nr) protein database, SwissProt, Kyoto Encyclopedia of Genes and Genomes, and 
eggNOG databases using DIAMOND [19] with a threshold of E value < 0.00001. Salmon 
[20] was used to determine expression level for Unigenes by calculating TPM [21]. The 
differentially expressed Unigenes were selected with log2 (fold change) > 1 or log2 (fold 
change) < −1 and with statistical significance (p value < 0.05) using the R package edgeR 
[22]. 

2.4. Analysis of miRNA-Seq 
The small RNA raw data were filtered using an in-house program, ACGT101-miR 

(LC Sciences, Houston, TX, USA). After removing the adapter dimers, junk, low complex-
ity sequences, common RNA families, and repeats, only unique sequences with length of 
18~25 nucleotide were retained and aligned to specific species precursors in miRBase 22.0 
to identify known, novel 5p- or 3p- derived miRNA, and novel miRNAs. In the analysis 

Figure 1. The process of bulbil induction in P. ternata. 3 days (A), 6 days (B), 9 days (C), and
12 days (D) show the early stage of bulbil induction, and 36 days (E) and 108 days (F) show the
mature induced bulbil.

2.2. RNA Extraction, RNA Sequencing, and Small RNA Sequencing

Total RNA was extracted from each sample using the Spin Column Plant Total RNA
Purification Kit (Sangon Biotech, Shanghai, China) and the RNase-Free DNase Set (Sangon
Biotech, China), following the manufacturer’s protocol. The purity and concentration of
each RNA sample were analyzed using the Bioanalyzer 2100 and RNA 1000 Nano Lab
Chip Kit (Agilent, Santa Clara, CA, USA), with a RIN number > 7.0. Subsequently, the RNA
samples were sent to LianChuan Corporation (Hang Zhou, China) for construction of RNA
and small RNA (sRNA) sequencing libraries.

2.3. Analysis of mRNA-Seq

Firstly, in-house Cutadapt [17] and Perl scripts were used to remove the low-quality,
undetermined, and adaptor contamination reads. Then, sequence quality was verified
using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on
20 February 2023). De novo assembly of the transcriptome was performed with Trinity
2.4.0 [18]. All assembled Unigenes were aligned against the Gene Ontology (GO), non-
redundant (Nr) protein database, SwissProt, Kyoto Encyclopedia of Genes and Genomes,
and eggNOG databases using DIAMOND [19] with a threshold of E value < 0.00001.
Salmon [20] was used to determine expression level for Unigenes by calculating TPM [21].
The differentially expressed Unigenes were selected with log2 (fold change) > 1 or log2
(fold change) < −1 and with statistical significance (p value < 0.05) using the R package
edgeR [22].

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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2.4. Analysis of miRNA-Seq

The small RNA raw data were filtered using an in-house program, ACGT101-miR (LC
Sciences, Houston, TX, USA). After removing the adapter dimers, junk, low complexity
sequences, common RNA families, and repeats, only unique sequences with length of
18~25 nucleotide were retained and aligned to specific species precursors in miRBase 22.0
to identify known, novel 5p- or 3p- derived miRNA, and novel miRNAs. In the analysis
of miRNA expression levels, differential expression of miRNAs based on normalized
deep-sequencing counts was analyzed using Fisher exact test, chi-squared 2 × 2 test,
chi-squared nXn test, Student’s t-test, or ANOVA based on the experiment design. The
significance threshold was set to 0.01 and 0.05 in each test. The computational target
prediction algorithms (PsRobot, v1.2) were used to identify miRNA binding sites to predict
the genes targeted by the most abundant miRNAs. The GO terms and KEGG pathway of
the most abundant miRNA targets were also annotated.

2.5. qRT-PCR Validation

The QuantStudio 3 real-time PCR system (Thermo ScientificTM EP0733, Santa Clara,
CA, USA) was used to validate the accuracy of RNA-seq and the expression profile of
key genes. The total RNA extraction and purification methods were consistent with those
described above. Due to differences in miRNAs and genes, reverse transcription uses
different processes. First, 250 ng RNA from each sample was used to synthesize single-
stranded miRNA cDNA using a miRNA 1st Strand cDNA Synthesis Kit (by stem-loop)
(Vazyme Biotech Co., Ltd., Nanjing, China). The specific primers of miRNA were syn-
thesized using the primer design software miRNA Design V1.01, which was provided
with the kit, using the mature sequence of miRNA. The reverse transcription reaction
of genes was processed using the Evo M-MLV reverse transcription kit II (Accuratebiol-
ogy, Hangzhou, China) in a 20 µL volume system containing 250 ng RNA following the
kit instructions.

Except for miRNA, specific primers used for qRT-PCR experiments were designed
using NCBI’s online program Primer-blast (www.ncbi.nlm.nih.gov/tools/primer-blast/,
accessed on 20 March 2023). All primer sequences are shown in Tables 1 and 2. All the
qRT-PCR reactions were conducted using the SYBR® Green Premix Pro Taq HS qPCR Kit
(Accurate biology, Hangzhou, China). GAPDH was used as a reference gene to calculate the
expression level of target genes using the 2−∆∆Ct method [23]. The reaction conditions of
two-step qRT-PCR were as follows: 95 ◦C for 30 s, 95 ◦C for 5 s, 60 ◦C for 30 s, followed by
a disassociation stage (default parameters of the instrument). The qRT-PCR amplification
system was prepared in 10 µL volumes containing 5 µL of 2 × SYBR® Green Pro Taq HS
Premix, 0.2 µL of each primer, 1 µL of cDNA, 0.2 µL ROX reference dye, and 3.4 µL ddH2O.
Each sample was subjected to three technical replicates. Negative controls with RNase-free
water instead of cDNA were included.

www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 1. Detailed information and primers of miRNA.

Gene ID miRNA Sequences Reverse Transcription Primer Primer Sequences (Forward/Reverse, 5′–3′)

aly-miR167a-5p TGAAGCTGCCAGCATGATCTGA GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCAGAT CGTGAAGCTGCCAGCATG
AGTGCAGGGTCCGAGGTATT

mes-miR171a TTGAGCCGCGTCAATATCTCC GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGAGAT CGTTGAGCCGCGTCAAT
AGTGCAGGGTCCGAGGTATT

sbi-miR156a_L 1 TGACAGAAGAGAGTGAGCAC GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGTGCTC GCGCGCTGACAGAAGAGAGT
AGTGCAGGGTCCGAGGTATT

Table 2. Detailed information and primers of key genes and miRNA target genes.

Gene Annotation Homolog Locus Primer Sequences
(Forward/Reverse, 5′–3′) Product Length

ARF6 Auxin response factor 6-like isoform x1 XM_026023239.1 AGGGCGATGTTCTTCTCGTC
GGGTCTTGATGGCTCGCATA 187 bp

IAA4 Auxin-responsive protein iaa4 isoform x3 XM_015774120 ATCTGAGGCTGGGGTTTAGC
TCACGAAGAAGGTTGCTTGC 192 bp

SCL6 Scarecrow-like protein 6 XM_015771585 GTTCCAGTAGCACACCTCCC
CCACCAAACCCGATGTCGAA 184 bp

SPL16 Squamosa promoter-binding-like protein 16 XM_015793891.2 TGATCGAGGAAATGAGGCCG
CGAACTTGAGGTAGGGGCAG 189 bp

SUS2 Sucrose synthase 2 XM_039929826.1 GCGGAGATCATAGTGGACGG
ACAGCGTCATCAACCTCTCTG 199 bp

AMY2 α amylase XM_015779949.2 AAGGAGAGCTATGGCGACTG
GTGGGTATTCCTGGGTGTGT 187 bp
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3. Results
3.1. Differentially Expressed Genes and Gene Function Enrichment Analysis of RNA-Seq

Compared with the uninduced petiole (P0, 0 days), bulbil induction development was
divided into four periods according to the morphological characteristics of induced bulbil
development, namely P1 (3 days), P2 (6 days), P3 (9 days), and P4 (12 days). Compared to
the control group, slight enlargement of the petiole tip and formation of growth points were
observed on day 6. Four samples from two tissues produced an average of 43.9 million valid
reads (ranging from 42.34 to 45.23 million valid reads). There were a total of 8602 significant
DEGs (p < 0.01, FDR < 0.05) detected between TCb and TCp, among which 4986 were
highly expressed in the TCb and 3616 were highly expressed in the petiole.

Gene Ontology (GO) annotation of the 8602 DEGs between TCb and TCp indicated
that these DEGs could be categorized into three main classifications: cellular component,
molecular function, and biological process (Figure S1). Hypergeometric tests were used in
GO enrichment analyses to determine the biological function of these over-enriched DEGs.
The enrichment analysis results revealed that the microtubule, tubule complex, microtubule
movement, and plasma membrane-related GO terms were highly enriched (Figure 2).
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Figure 2. The GO enrichment analysis of TCb and TCp differentially expressed genes (DEGs). The top
20 GO terms with significant enrichment; rich factor indicates the enrichment degree of differential
genes, and the higher the value, the higher the enrichment degree.

Subsequently, all the DEGs between TCp and TCb were mapped to the KEGG database
(Figure 3) with the pathways involving starch and sucrose metabolism (108 DEGs), plant
hormone signal transduction (104 DEGs), and phenylpropanoid biosynthesis (76 DEGs)
having the highest number of DEGs. The pathway with the highest enrichment degree
(rich factor) was for isoflavonoid biosynthesis, followed by indole alkaloid biosynthesis
and prodigiosin biosyntheses.
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Figure 3. The KEGG pathway enrichment analysis of TCb and TCp differentially expressed genes
(DEGs). The top 20 KEGG pathways with significant enrichment; rich factor indicates the enrichment
degree of differential genes, and the higher the value, the higher the enrichment degree.

3.2. miRNAs Differentially Expressed in TCp and TCb Samples

Since the morphogenetic process of plant organs is regulated by miRNA, we sequenced
miRNA expression in TCb and TCp on the 6th day, at which the induced bulbil can be
observed. After removing adaptors and low-quality reads, we obtained 4.96 million (TCp1),
7.53 million (TCp2), 5.08 million (TCb1), and 4.35 million (TCb2) valid reads. A total of
171 miRNAs were identified in TCp and TCb, including 118 known miRNAs and 53 novel
miRNAs. The expression level was significantly different between TCp and TCb (p < 0.05).
There were fifteen miRNAs (Figure S2), among which nine miRNAs were highly expressed
in TCp.

3.3. miRNA Target Gene Prediction and Pathway Enrichment Analysis

We performed target gene prediction and functional enrichment analysis for miRNAs
whose expression levels were among the top 15 with significant differences between TCp
and TCb. A total of 624 target genes were predicted from 15 miRNAs. Subsequently,
KEGG pathway enrichment analysis of the target genes showed that plant hormone signal
transduction, mRNA surveillance pathway, and peroxisome pathways were significantly
enriched (Figure 4).
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3.4. Validation of Differential Gene and miRNA Expression by qRT-PCR

qRT-PCR was used for the expression profiles of three miRNAs, their target genes, and
three key genes during TCp and TCb at four stages of bulbil induction (Figure 5). Regular
differences occurred in the gene expression levels between petiole and bulbil genesis sites
in the phytohormone-induced explants. For example, miR167a expression was significantly
up-regulated relative to the petiole, reaching a peak in P3 and then plummeting while
continuously increasing in the bulbil. The trend of the miR167a target gene, auxin response
factor 6 (ARF6), in the bulbil and petiole, was opposite to that of miR167a, and completely
consistent with auxin-responsive protein 4 (IAA4). miR171a and its target gene (SCL6)
revealed similar spatial-temporal expression characteristics. However, the expression level
of SCL6 was down-regulated relative to the P0 stage, contrary to the results for miR171a.
The expression level of miR156a was significantly up-regulated, but the target gene SPL6
was down-regulated. The expression trend of the SUS2 gene significantly differed between
TCp and TCb, and the expression level of AMY2 tended to be consistent between tissues
and controls.
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Figure 5. Verification of expression profiles of key genes, miRNAs, and their target genes via qRT-
PCR. P0 (red) was an uninduced petiole and served as a blank control, P1 = 3 d, P2 = 6 d, P3 = 9 d,
P4 = 12 d. There was no significant difference with the same letter (p > 0.05), while there was a
significant difference without the same letter (p < 0.05).

4. Discussion

In recent years, the classification and origin of plant bulbils and the influencing factors,
molecular mechanisms, and cytology of bulbils have attracted scholarly attention [24–29].
As a plant’s vegetative viviparous organ or special asexual reproductive organ, bulbils
have many advantages, such as strong vitality, high survival rate, and short germination
time, and are of great significance to plant growth and reproduction and environmental
adaptation [30,31].

The bulbil-initiating cells of plants that can produce bulbils in nature originate from
the meristem at growth sites, such as in P. ternata, P. cordata, Dioscorea polystachya, and Lilium
sulphureum [32–35]. In the research on bulbil induction, an induction system has been
established in L. lancifolium, P. ternata, and D. polystachya [11,36,37]. With its development,
high-throughput sequencing technology provides important technical support for screening
key genes and pathways in the regulation of bulbil formation and development. In this
study, we used high-throughput sequencing technology to conduct mRNA and miRNA
sequencing analysis on the early bulbil and petiole of P. ternata induced by phytohormones;
we also screened and identified numerous DEGs between TCp and TCb, and conducted
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qRT-PCR to verify the expression profiles of miRNAs and their target genes in the four
periods of induction. These results provide substantial information for the natural and
induced occurrence of P. ternata bulbils and the involvement of miRNA in the regulation of
bulbil formation.

In the results of the GO enrichment analysis of DEGs, the expression levels of genes in
the GO term that were significantly enriched, such as the microtubule, tubulin complex,
and microtubule-based biological processes, were significantly higher in TCb than in TCp.
Bulbil induction is involved in the dedifferentiation and redifferentiation of plant cells [38],
and the dynamic changes in the microtubule and microtubule-related proteins are the
key links to ensure cell division and differentiation, growth and development, and cell
morphogenesis [39].

In the analysis of KEGG pathway enrichment of DEGs, the notable pathways mainly
include starch and sucrose metabolism, plant hormone signal transduction, and phenyl-
propanoid biosynthesis. Starch and sucrose metabolism pathways enriched 108 DEGs, most
of which were highly expressed in bulbils. On the one hand, the bulbil, as a unique vegeta-
tive reproductive organ, involved sugar substances, which showed a constant increasing
trend with the occurrence and expansion of the bulbil, and ended in the maturity or passive
maturity of the maternal wilt [25]. Sucrose is a substrate for transferring and forming
starch in the bulbil. Studies on the synthesis and metabolic balance of starch and sucrose
during bulbil development revealed that the starch content increased gradually with the
development of the bulbil. The metabolism of sucrose was active in the early initiation of
the bulbil, and the content of sucrose decreased sharply before the initiation of the bulbil
primordium. Moreover, the sucrose and starch content changed with the same trend during
the expansion of the bulbil primordium [40]. By contrast, sucrose and other substances
may play the role of signaling molecules involved in regulating the bulbil’s initiation and
occurrence [25]. Analysis of the expression profiles of a base of Sucrose synthase 2 (SUS2)
from two tissues during the four stages of induced bulbil development using qRT-PCR
indicated that the SUS2 expression level in TCb decreased first and then increased com-
pared with that in the uninduced stalk; moreover, these outcomes are completely opposite
to the trend for the petiole (Figure 5). Evidence suggests that SUS may play a role in the
development of the shoot apical meristem (SAM) [41]. Further, SUS overexpression can
significantly improve the growth rate of plants [42,43], and the increase in SUS activity in
the meristem is postulated to contribute to the increase in cell proliferation. In this study,
it was found that the plant hormone signal transduction pathway was one of the more
significant pathways in the enrichment results of the KEGG pathways for the target genes
of DEGs and DEmiRNAs (Figures 3 and 4).

Plant hormones are involved in the regulation of most life activities in the plant life
cycle, and miRNA has become a key regulatory factor in plant hormone response pathways
by affecting plant metabolism, distribution, and perception [44]. For example, auxin plays a
key role in the entire life process of a plant, and its function is mainly mediated by ARF and
AUX/IAA [45]. miR160 and miR167 are dynamic components of the AUX response pathway
that target the expression of the auxin response factor (ARF) genes, such as ARF10/16/17
and ARF6/8, to participate in adventitious root initiation, lateral root development, male
and female organ maturation, germination, and postembryonic development [46–48]. The
direct homology of AtARF in barley has also been shown to be regulated by miR167 [49].

Studies of somatic embryogenesis (SE) have shown that SE is regulated by miRNA
via the plant hormone signaling pathway [50]. In this experiment, the miR167a expression
level did not change significantly at the initial stage of bulbil induction and then showed
significant histological and temporal differences. This finding is consistent with the early
stage of SE, during which miR167 expression levels decreased significantly in the initial
dedifferentiation stage and increased in the late dedifferentiation stage [51,52]. miR167
was highly expressed in the late stage of SE of larch and longan [53,54], and the reduction
in miR167 activity promoted the formation of corpus callosum and somatic embryogene-
sis [55]. The expression level of the miR167 target gene ARF6 was significantly up-regulated
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in TCp at the initial stage of induction, gradually decreased and maintained equilibrium at
P3 and P4 (Figure 1), up-regulated in P2 of TCb, and then decreased, which was similar to
the temporal and spatial expression characteristics of auxin-responsive protein 4 (IAA4)
(Figure 5). ARF6 and ARF8 are required for the gradient reaction of auxin, which is essential
for somatic embryogenesis, and miR167 affects auxin synthesis and local transport by
targeting ARF6 and ARF8 in embryogenic callus to regulate plant SE processes [56]. miR171
has been shown to regulate shoot meristem activity and phase transition by repressing
HAIRY MERISTEM (HAM) family genes, which are also named the LOST MERISTEM
(LOM) and SCARECROW-LIKE (SCL) genes in various plant species [57–60]. miR171 pre-
cursor and mature miR171 species are widely accumulated in different tissues of Arabidopsis
thaliana, but the MIR171A gene is highly specifically expressed in the epidermis of embryos,
vegetative SAM, young leaves and stems, inflorescence SAM, and floral meristem [61–63].
The promoter activity of the other three miR171/170 family genes (MIR171B/C, MIR170)
was also specifically switched on in the epidermis of shoot meristems at both vegeta-
tive and reproductive stages [62]. miR171 participated in the regulation of SE through
repression of the Scarecrow-like protein 6 (SCL6) gene and played an important role in
the regulation of SE at different stages [64,65]. In this study, miR171a was significantly
up-regulated in the early stage of bulbil induction (Figure 5) (which was consistent with
the early SE accumulation of miR171 in radish (Raphanus sativus L.) [66], indicating that
miR171a and its target genes played a key role in bulbil induction. However, the simi-
lar organizational and temporal expression characteristics and molecular mechanism of
miR171a and SCL6 during bulbil induction require further experimental verification and
interpretation (Figure 5). The miR156-SPL module plays a crucial role in the initial stage
of SE induction [67]. Overexpression of csi-miR156a or inhibition of one of the two target
genes, CsSPL3 and CsSPL14, can enhance the SE ability of citrus callus [68]. In the bulbil in-
duction process of P. ternata (Figure 5), significant up-regulation of miR156a and significant
inhibition of its target gene SPL6 indicated the important role of the miR156-SPL module.
However, the specific regulatory effects and related molecular mechanisms of the module
still need to be explored further. In the following studies, the physiological and biochemical
characteristics, microstructure, regulation of key genes, and molecular mechanism of the
P. ternata bulbil induction process will be the focus of exploration; this approach will be
more conducive to the in-depth investigation of the genesis and development mechanism
of P. ternata bulbils and the important role of this special plant organ. In addition, P. ternata
has a simple structure, fast growth rate, relatively fixed bulbil position, relatively stable
number of bulbils, and obvious and simple bulbil structure. Thus, P. ternata is an excellent
candidate for studying plant organogenesis and development and is worthy of further use
and research.
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