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Abstract: DNA methylation (DNAm) is a dynamic, age-dependent epigenetic modification that can
be used to study interactions between genetic and environmental factors. Environmental exposures
during critical periods of growth and development may alter DNAm patterns, leading to increased
susceptibility to diseases such as asthma and allergies. One method to study the role of DNAm
is the epigenetic clock—an algorithm that uses DNAm levels at select age-informative Cytosine-
phosphate-Guanine (CpG) dinucleotides to predict epigenetic age (EA). The difference between EA
and calendar age (CA) is termed epigenetic age acceleration (EAA) and reveals information about
the biological capacity of an individual. Associations between EAA and disease susceptibility have
been demonstrated for a variety of age-related conditions and, more recently, phenotypes such as
asthma and allergic diseases, which often begin in childhood and progress throughout the lifespan.
In this review, we explore different epigenetic clocks and how they have been applied, particularly as
related to childhood asthma. We delve into how in utero and early life exposures (e.g., smoking, air
pollution, maternal BMI) result in methylation changes. Furthermore, we explore the potential for
EAA to be used as a biomarker for asthma and allergic diseases and identify areas for further study.

Keywords: allergy; asthma; biomarker; epigenetic clock

1. Introduction

DNA methylation (DNAm) is a dynamic epigenetic modification that refers to the
bonding of a methyl (CH3) group to the fifth carbon of a Cytosine base to form 5-methyl-
Cytosine [1]. This process primarily occurs at Cytosine-phosphate-Guanine (CpG) dinu-
cleotides [2]. Methylation levels can be altered by environmental factors (e.g., smoking [3],
pesticide exposures [4]), disease (including asthma [5]), cell type [6], sex [7], and age [2])
and may play a causal or intermediary role in the development of disease (Figure 1).
DNAm can be used to characterize the relationship between gene-environment interactions
and disease.

Many complex phenotypes—including asthma and allergic disease—have an age-
dependent presentation. The role of epigenetics in these conditions can be studied by
exploiting the relationship between DNA methylation and aging. Consistent universal
patterns of methylation change due to age have been identified [2,8–10], resulting in
the development of epigenetic clocks [11]. These are mathematical algorithms that use
methylation levels at select CpG sites to calculate epigenetic age [12] as a measure of
biological aging. The epigenetic clock provides a concise summary of DNAm at CpG sites
across the genome.
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Figure 1. Causality and biomarkers. Epigenetic changes such as DNA methylation (DNAm) can be 
(A) unrelated to a phenotype, (B) a cause, or (C) a consequence. (A) DNA methylation is affected by 
genotype, which also independently causes a phenotype. (B) Genotype causes phenotype, mediated 
by DNA methylation (a mediator). (C) A genotype causes a phenotype, which, in turn, affects DNA 
methylation (reverse causality). In both (B,C), DNA methylation can be used as a diagnostic bi-
omarker, but it can only be used as a predictive biomarker in (B). 

Many complex phenotypes—including asthma and allergic disease—have an age-
dependent presentation. The role of epigenetics in these conditions can be studied by ex-
ploiting the relationship between DNA methylation and aging. Consistent universal pat-
terns of methylation change due to age have been identified [2,8–10], resulting in the de-
velopment of epigenetic clocks [11]. These are mathematical algorithms that use methyl-
ation levels at select CpG sites to calculate epigenetic age [12] as a measure of biological 
aging. The epigenetic clock provides a concise summary of DNAm at CpG sites across the 
genome. 

Differences between an individual’s epigenetic and chronological ages may point to 
deviation, either due to disease or exposure, from the expected patterns of age-related 
methylation. Epigenetic age acceleration (EAA, epigenetic age > chronological age) has 
shown utility as a biomarker in age-related conditions [13–15] and has been linked to pe-
diatric asthma and allergy [16,17]. Due to the labile nature of the modification, it is difficult 
to establish whether changes in methylation are a cause or a result of disease (Figure 1). 
A predictive biomarker requires a causal relationship (Figure 1B). However, a diagnostic 
biomarker for complex diseases such as asthma necessitates only a change in methylation 
that is specifically associated with the phenotype (Figure 1A). 

  

Figure 1. Causality and biomarkers. Epigenetic changes such as DNA methylation (DNAm) can be
(A) unrelated to a phenotype, (B) a cause, or (C) a consequence. (A) DNA methylation is affected by
genotype, which also independently causes a phenotype. (B) Genotype causes phenotype, mediated
by DNA methylation (a mediator). (C) A genotype causes a phenotype, which, in turn, affects
DNA methylation (reverse causality). In both (B,C), DNA methylation can be used as a diagnostic
biomarker, but it can only be used as a predictive biomarker in (B).

Differences between an individual’s epigenetic and chronological ages may point to
deviation, either due to disease or exposure, from the expected patterns of age-related
methylation. Epigenetic age acceleration (EAA, epigenetic age > chronological age) has
shown utility as a biomarker in age-related conditions [13–15] and has been linked to
pediatric asthma and allergy [16,17]. Due to the labile nature of the modification, it is
difficult to establish whether changes in methylation are a cause or a result of disease
(Figure 1). A predictive biomarker requires a causal relationship (Figure 1B). However, a
diagnostic biomarker for complex diseases such as asthma necessitates only a change in
methylation that is specifically associated with the phenotype (Figure 1A).

A key question is whether epigenetic age acceleration is set prenatally and impacts
disease risk in later life. This aligns with the Developmental Origins of Health and Disease
(DOHaD) [18] hypothesis that exposures during the first 1000 days of life lead to changes in
methylation that contribute to disease in adulthood. This premise has led to studies of the
impact of gestational and early life exposures on epigenetic aging and on the development
of asthma and allergic disease (Figure 2A). Differential methylation has been observed in
cord blood due to in utero exposures such as elevated maternal BMI [19], air pollution [20],
and the repeatedly replicated effects of maternal smoking [21–24] (Table 1).

Table 1. Examples of CpG sites associated with exposures or phenotypes in cord blood.

Publication CpG Site CHR Position (hg38) Gene Associated Exposures
or Phenotypes

[20] cg14547404 10 48653753 ARHGAP22 Air Pollution
[20] cg06517429 10 113679876 CASP7 Air Pollution

[21,25] cg26995690 13 35772239 DCLK1 Birthweight
[21,25] cg00637745 2 120739758 Birthweight
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Table 1. Cont.

Publication CpG Site CHR Position (hg38) Gene Associated Exposures
or Phenotypes

[21,25] cg07133097 2 120739962 Birthweight
[19] cg10593758 5 76952917 CRHBP Elevated Maternal BMI
[19] cg07621682 19 41321853 CCDC97 Elevated Maternal BMI

[21,22,26] cg11932158 3 155704340 PLCH1 Gestational Age
[21,26] cg18623216 3 155704181 PLCH1 Gestational Age
[21,26] cg16103712 8 98011641 MATN2 Gestational Age
[21,26] cg17133774 1 6138607 CHD5 Gestational Age
[21,26] cg12713583 19 940724 ARID3A Gestational Age
[21,26] cg04347477 12 124517461 NCOR2 Gestational Age
[21,26] cg08817867 17 19753241 Gestational Age
[21,26] cg02001279 19 940967 ARID3A Gestational Age
[21,26] cg08412913 16 85395916 DOCK6 Gestational Age
[21,26] cg06870470 19 11205091 Gestational Age

[21,24,27] cg05549655 15 74726802 CYP1A1 Maternal Smoking
[21,23,27,28] cg11924019 15 74726942 CYP1A1 Maternal Smoking
[21,23,27,28] cg22549041 15 74726910 CYP1A1 Maternal Smoking

[21,23,24,27–29] cg23067299 5 323791 AHRR Maternal Smoking
[21,23,24,27] cg22132788 7 44962886 MYO1G Maternal Smoking
[21,23,27,28] cg18092474 15 74726961 CYP1A1 Maternal Smoking

[21,23,24,27,28] cg12803068 7 44963320 MYO1G Maternal Smoking
[21,23,27] cg12101586 15 74726862 CYP1A1 Maternal Smoking

Abbreviations: CpG; Cytosine-p-Guanine hg38; human genome version 38. Genes associated with the CpG site
are indicated if available. For gestational age, DNAm associated with change in gestational age (in weeks).
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Figure 2. The epigenetic clock and asthma across the life course. (A) illustrates different environ-
mental exposures that may alter epigenetic aging. (B) is an illustrative representation of the propor-
tion of male vs. female asthmatics over the life stages. Arrows indicate key changes in sex-specific 
patterns of prevalence as extrapolated from [30–32] and are for illustrative purposes only. (C) shows 
the different life stages. During periods of significant hormone changes (e.g., puberty, pregnancy, 
and menopause), DNA is particularly vulnerable to alteration by environmental exposures. (D) 
demonstrates the utility of epigenetic asthma biomarkers at different time points. (E) shows the key 
genes undergoing changes in methylation during development [33–35]. 
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ences. Exposure to pollutants such as bisphenols (BPs) during pregnancy has been associated with 
asthma in adolescent girls [37], while maternal stress [38] and prenatal smoking [39] have been 
linked to childhood asthma. Epigenetic modifications have been extensively associated with asthma 
and allergic diseases. These associations have been previously reviewed [40,41] and are not the focus 
of this paper. It is important to consider that associations between exposures, epigenetic modifica-
tions, and disease phenotypes do not equate with demonstrating causality or pathogenesis, as these 
epigenetic modifications may be secondary to the development of the phenotype (Figure 1). We 
emphasize the potential of the epigenetic clock as a cumulative indicator of both DNAm across the 
genome and epigenetic modifications due to exposure or disease, independent of disease etiology, 
as a diagnostic biomarker in asthma. Currently, asthma diagnosis is based largely on symptom 
presentation, which may be unreliable, and a diagnostic molecular biomarker would be of clinical 
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Figure 2. The epigenetic clock and asthma across the life course. (A) illustrates different environmen-
tal exposures that may alter epigenetic aging. (B) is an illustrative representation of the proportion of
male vs. female asthmatics over the life stages. Arrows indicate key changes in sex-specific patterns of
prevalence as extrapolated from [30–32] and are for illustrative purposes only. (C) shows the different
life stages. During periods of significant hormone changes (e.g., puberty, pregnancy, and menopause),
DNA is particularly vulnerable to alteration by environmental exposures. (D) demonstrates the
utility of epigenetic asthma biomarkers at different time points. (E) shows the key genes undergoing
changes in methylation during development [33–35].
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Asthma is a complex, heterogeneous phenotype with age- and sex-specific prevalence
patterns [31]. Childhood asthmatics are predominately male (65%), while 65% of adult
asthmatics are female (Figure 2B) [31]. There are many phenotypes and endotypes of
asthma. Allergic asthma (i.e., asthma present in conjunction with an IgE-mediated allergic
disease) accounts for ~90% of childhood cases and ~50% of adult cases [36]. Asthma is
often thought to be driven by in-utero and early-life influences. Exposure to pollutants
such as bisphenols (BPs) during pregnancy has been associated with asthma in adolescent
girls [37], while maternal stress [38] and prenatal smoking [39] have been linked to child-
hood asthma. Epigenetic modifications have been extensively associated with asthma and
allergic diseases. These associations have been previously reviewed [40,41] and are not the
focus of this paper. It is important to consider that associations between exposures, epige-
netic modifications, and disease phenotypes do not equate with demonstrating causality or
pathogenesis, as these epigenetic modifications may be secondary to the development of the
phenotype (Figure 1). We emphasize the potential of the epigenetic clock as a cumulative
indicator of both DNAm across the genome and epigenetic modifications due to exposure
or disease, independent of disease etiology, as a diagnostic biomarker in asthma. Currently,
asthma diagnosis is based largely on symptom presentation, which may be unreliable, and
a diagnostic molecular biomarker would be of clinical utility. The epigenetic clock can
be used to identify early-life exposures that affect methylation [42], paving the way for
epigenetic diagnostic biomarkers for asthma.

2. Purpose

Provide an overview of current epigenetic clocks, explore their utility in early childhood,
and highlight their applications as potential biomarkers for asthma and allergic disease.

3. Overview of DNA Methylation

About 70% of CpG sites in the human genome are methylated [43]. CpGs are concen-
trated in CpG islands (CGIs)—regions > 200 base pairs—where C-G dinucleotides make
up more than 50% of the sequence [1,44]. Islands house the promoters of ~70% of human
genes [44,45]. Methylation in these areas is linked to repressed gene expression, but the
relationship is mediated by CpG density [46].

Different technologies have been developed for assessing DNA methylation, but
arrays and sequencing protocols form the basis of the literature. Three arrays have been
predominantly used in human studies: the legacy Illumina Human Methylation 27 Bead
Chip (Illumina, Inc., San Diego, CA, USA) [47], the Illumina Human Methylation 450 Bead
Chip (Illumina, Inc., San Diego, CA, USA) [48], and the Illumina Methylation EPIC Bead
Chip array (Illumina, Inc., San Diego, CA, USA) [49]. Each features progressive expansion
of coverage and increased representation of different genomic regions, with the EPIC
assaying ~30× more sites than the 27 K, especially outside of islands [49].

Common changes in DNA methylation over the lifespan across individuals have
been identified by multiple studies [50–52]. Cord blood generally displays low levels of
methylation across the genome [53,54] followed by a rapid increase in early life [34,54], and
a gradual loss in later years [2]. CpG sites linked to embryonic developmental genes gain
methylation in childhood, while regions related to immune processes lose methylation [33].
For example, genes located in Major Histocompatibility Complex (MHC) classes I and
II [33,55]—in particular HLA-B, HLA-C, HLA-DMA, and HLA-DPB1—become demethylated
with age. MHC I and II play a crucial role in the immune response and have been implicated
in asthma and allergic disease (Figure 2E) [56,57].

There are two key components to the immune system: innate and adaptive immunity.
MHC complexes are part of the adaptive immune system and are involved in recognizing
and destroying pathogens [58]. Innate immunity is present in the fetus and at birth but
is subdued to tolerate the stress of fetal development [59]. Adaptive immunity develops
throughout the lifespan, with T cells playing a key role. Helper T cells are heavily involved
in asthma and allergic diseases. They can be further differentiated into Th1 or Th2 cells.
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Th2 cells stimulate the production of antibodies and have been linked to an increased
immunoglobulin E (IgE) response in atopy [60] and asthma [61]. Fetal and neonatal T cells
differ significantly from adult cells. Environmental exposures may activate fetal/neonatal
T cells, resulting in a Th2 immune response [59] (Box 1). The role of these cells in asthma
severity may be sex-specific, as Th2 cell abundance has been shown to be correlated to
asthma symptom severity in adult women but not men [62]. In addition, Zhang et al.
found that changes in methylation within Th2 pathway genes between the ages of 10 and
18 increase the risk of asthma development in girls [63].

DNA methylation fluctuates during childhood at a rate three to four times greater
than in adulthood [64]. These early changes might follow a logarithmic, rather than linear,
pattern with age [64–66]. The accumulation of changes with time leads to larger inter-
individual variability in methylation with age, a process known as epigenetic drift [67,68].
It has been postulated that aging may be a process of ‘memorizing’ environmental expo-
sures [69].

Box 1. Molecular mechanisms of sex hormones, DNAm, and asthma.

The molecular mechanism behind the sex-specificity of asthma has not been fully elucidated.
Adult women with severe asthma have higher levels of inflammation (e.g., circulating Th2 cells)
compared to males [62]. Previous animal work has shown that the sex hormone estrogen increases
inflammation in female mice, while androgens [70] (e.g., testosterone) decrease it in male mice. In
humans, estrogen is linked to increased differentiation of Th2 cells by influencing the expression
of CRTH2 [62] (a receptor on Th2 cells). DNA methylation may also play a role in this mechanism.
Exposure to environmental estrogens leads to a decrease in methylation at H3K27me3 (histone 3) in
T cells [71]. Moreover, in mouse models, these exposures can lead to a loss of methylation in helper
T cells and a subsequent increase in Th1 and Th2 cells, persisting across generations [72].

4. Epigenetic Clocks

Epigenetic clocks exploit the reproducible relationship between methylation at specific
CpGs and age to calculate epigenetic age. CpG sites are usually selected using penalized
linear regression methods (e.g., elastic net regression) [12,73]. Discrepancies between
epigenetic and chronological age can highlight changes in cell or tissue function [12].
Epigenetic age acceleration has been associated with exposures such as tobacco [74] and
implicated in disease [13,15] and time to mortality [14,75]. There is some evidence that
maternal exposures (e.g., smoking) are associated with acceleration in the offspring [42].
Meanwhile, epigenetic age deceleration (EAD, epigenetic age < chronological age) has
been connected to exercise [76]. The utility of epigenetic clocks as biomarkers for complex
diseases is of biological significance and is the focus of this review.

Epigenetic clocks have mostly been studied in association with adult diseases. To
be useful in pediatric conditions, they need to accurately model the dynamic nature of
age-related DNA methylation during early life. Furthermore, current linear methods do
not account for any non-additive interactions between CpG sites. This limitation can be
addressed by using non-linear methods to build epigenetic clocks.

5. Epigenetic Clock Training Metrics

There are two types of epigenetic clocks: first- and second-generation clocks. First-
generation clocks use raw or log-transformed chronological age [65] as the dependent
variable, whereas a composite measure of aging is the dependent variable in second-
generation clocks. This measure includes biological aging proxies, such as heart function
markers, and chronological age [77].

6. First-Generation Epigenetic Clocks

First-generation clocks have been used in the bulk of epigenetic clock research. Despite
being trained solely on chronological age, the epigenetic age acceleration calculated by
these clocks has been implicated in the incidence of disease [78]. First-generation clocks can
be further classified into single- and multi-tissue clocks. In this review, we discuss the clocks
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that have broad utility (e.g., the Hannum clock [79], the Horvath pan-tissue [65] and Skin
and Blood clocks [80], and the Pediatric-Buccal-Epigenetic (PedBE) clock [81]. The features
of other clocks tailored to narrower use cases are summarized in Table 2. The accuracy of
first-generation epigenetic clocks is assessed in relation to chronological age, usually using
Absolute Error (AE = |epigenetic-chronological age|) or Pearson’s correlation coefficient
(r). Chronological and epigenetic age are correlated, but the deviation between the two
has been shown to be informative of ‘biological capacity’ (e.g., physical fragility, disease
susceptibility) in adults [82].

Table 2. First-generation epigenetic clocks.

Type Epigenetic
Clock Tissue Type Methodology

Used
Methylation
Technology Strengths Limitations

Single Tissue [83] Single Tissue:
Saliva

Association
Analysis

Illumina 27 K
Array

First epigenetic
clock

Low accuracy
(mean AE:
5.2 years)

[79] Single Tissue:
Whole Blood

Elastic Net with
bootstrapping

Illumina 450 K
Array

Accurate in
blood.

Extensively
used

Limited age range
of training samples:

19–101 years

[84] Single Tissue:
Whole Blood

Multivariate
Linear Regression Pyrosequencing Consists of only

three CpG sites

Low accuracy
(mean AE:
5.4 years)

[85] Single Tissue:
Breast Tissue

Elastic Net
Regression with
cross-validation

TruSeq Methyl
Capture EPIC

library

Improved
accuracy in
breast tissue

TruSeq Methyl
Capture not yet

widely used

Multi-Tissue [86]

Multi-Tissue:
Epidermis,

dermis, T-cells,
cervical smear,
and monocytes

Pearson
Correlation

Illumina 27 K
Array

First
multi-tissue

clock

Relative low
accuracy (mean AE:

11 years)

[65]
Multi-Tissue:
51 tissue and

cell types

Elastic Net with
ten-fold

cross-validation

Illumina 27 K
Array and

Illumina 450 K
Array

Accurate across
tissues;

extensively
used

Mostly adult
samples

Age of neonate
samples set at “0”

[80] Multi-Tissue
including blood

Elastic Net with
ten-fold

cross-validation

Illumina 450 K
and Illumina
EPIC Array

Accurate (mean
AE: 2.5 years)

Not widely
used yet

Pediatric
Single Tissue [81] Single Tissue:

Buccal Cells
Elastic Net with
cross-validation

Illumina EPIC
Array

Pediatric-only
clock

Low accuracy
in blood

Gestational
Age [87] Cord Blood

Elastic Net
Regression with
cross-validation

Illumina 27 K
array and

Illumina 450 K
Array

Median error:
1.24 weeks

Gestational
Age Only

[88] Cord Blood
Lasso Regression

with
cross-validation

Illumina EPIC
Array

Uses the
EPIC Array

Gestational
Age Only

[26] Cord Blood Elastic Net
Regression

Illumina 450 K
Array

Correlation
with

Gestational Age

Gestational
Age Only

The first clock was developed in 2011 by Bocklandt et al. [83] using saliva samples
(Figure 3). Due to the tissue specificity of methylation, it was not generalized to other
tissue types (Table 2) [83]. Shortly thereafter, the Hannum [79] clock—a blood epigenetic
clock—was published. Using the 450 K array (Illumina Inc., San Diego, CA, USA) data
from 656 samples (482 in the training set and 174 in the testing set) of whole blood (age
range: 19–101 years), this clock was developed in stages [79]. First, ~70,000 age associated
autosomal CpG sites were identified. Furthermore, elastic net regression with bootstrapping



Genes 2023, 14, 1724 7 of 17

was performed to build a clock of 71 CpGs [79] (Table 2). The Hannum clock demonstrated
low accuracy in pediatric samples [89], likely due to only using adult samples in model
development [89].
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Figure 3. A timeline of key epigenetic clocks. A timeline of the development of key epigenetic clocks
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7. First-Generation Multi-Tissue Epigenetic Clocks

Teschendorff et al. (2010) [91] described a set of 69 CpGs with age-associated increases
in methylation in both blood and epithelial tissue, showing a multi-tissue signature of
aging. Koch et al. used four different tissue types (Table 2 and Figure 3) to develop the first
multi-tissue clock [86]. Two multi-tissue clocks have been developed by Horvath et al.: the
pan-tissue [65] and Skin and Blood clocks [80] (Figure 3).

The pan-tissue Horvath clock [65] forms the backbone of epigenetic aging studies. It
was developed using 8000 samples (from 51 healthy tissues) of Illumina 27 K and 450 K
data, divided into training and validation cohorts. Elastic net regression with 10-fold
cross validation was performed on the methylation values of 21,369 CpG sites with a
log-transformed version of chronological age as the dependent variable. This regression
yielded a clock of 353 CpG sites with a median absolute error between predicted and
reported ages of 3.6 years in the validation cohort [65]. The pan-tissue Horvath clock has
shown a high correlation with chronological age, even when applied to data from the
Illumina 850 K EPIC (Illumina Inc., San Diego, CA, USA) array (missing 19/353 sites) [92];
in addition, it demonstrates robustness to changes in cell type composition [89]. However,
this clock has several drawbacks. For example, repeated underestimation of epigenetic age
in older individuals and variable accuracy in children with cell type composition [89] have
both been observed [93]. Moreover, this clock was mostly developed using adult samples
and may not contain the CpG sites associated with early developmental processes, thus
limiting its utility as a biomarker in pediatric conditions.

The Horvath Skin and Blood clock aimed to improve the accuracy of the pan-tissue
clock in fibroblasts [80]. It consists of 391 CpG sites and was built using the same method-
ology as the pan-tissue clock but with Illumina 450 K or 850 K array (Illumina Inc., San
Diego, CA, USA) data from buccal cells, fibroblasts, keratinocytes, endothelial cells, blood,
and saliva [80]. This clock is more accurate than the Horvath pan-tissue clock and Hannum
clock in blood samples (median AE = 2.5 vs. 3.7 and 5.1 years) [80].

8. Pediatric Epigenetic Clock

As the field of epigenetic aging has broadened to study the effects of childhood expo-
sures, pediatric epigenetic clocks have been developed. The most prominent childhood
clock is the PedBE [81] clock—a 94-CpG buccal epithelial cell clock developed using exclu-
sively pediatric samples (age range: 0.17–19.47 years). Elastic net regression was performed
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on Illumina 850 K array data from 1032 children to identify clock CpGs and their weights.
PedBE’s performance was then evaluated in an independent set of 689 buccal samples
(age range: 0.01–19.96 years) [81], where it had a median absolute error of 0.35 years,
demonstrating greater accuracy for that age group compared to the pan-tissue Horvath
clock [81]. However, when applied to an independent set of blood samples (n = 134), the
PedBE clock had a higher median absolute error than the Horvath pan-tissue clock (3.26 vs.
0.57 years) [81]. This performance discrepancy (blood vs. buccal samples) was expected as
methylation patterns are cell and tissue type specific.

9. Gestational Age Clocks

The cell type specificity of methylation has complicated the use of the epigenetic clock
to study prenatal environmental exposures [87], as the cellular composition of cord blood
is distinct from that of venous blood. Hence, clocks developed using venous blood may be
unsuitable for epigenetic gestational age predictions. The Horvath pan-tissue clock incor-
porated cord blood samples in its training set but set their age at “0” [65]. This may lead
to lower accuracy in neonatal blood samples as it does not account for gestational age. To
address this, gestational epigenetic clocks have been developed [26,87,88], as summarized
in Table 2 and Figure 3. Our understanding of the relationship between maternal exposures
and methylation has expanded rapidly. However, there is inconsistency between some
studies using gestational age (estimated through either the last menstrual period or ultra-
sound methods) [21] and others using epigenetic gestational age. Epigenetic gestational
age acceleration can provide insight into the role of methylation in traits in infancy.

10. Second-Generation Epigenetic Clocks

First-generation epigenetic clocks are useful in the study of phenotypes and epigenetic
aging, but because they were trained exclusively on chronological age [11], they may not
select the most health informing CpG sites. Second-generation epigenetic clocks are devel-
oped using variables indicative of health status (e.g., five plasma proteins and smoking
status) in addition to chronological age. They aim to improve the performance of the
first-generation clocks in predicting disease development and mortality. PhenoAge [77]
and GrimAge [90] (Table 3) are second-generation clocks and assess time-to-death more
accurately than first-generation clocks. However, the clinical markers used to generate
a composite “biological age” value make these clocks difficult to implement, as detailed
health data may not be available. In addition, the markers used (e.g., albumin and crea-
tinine) may be relevant to aging in older adults but may not be informative in pediatric
samples; thus, child-specific second-generation clocks may be needed.

Table 3. Second-generation epigenetic clocks.

Epigenetic Clock
Citation Tissue Type Methodology

Used Platform Strengths Limitations

[77] Elastic Net with
Cross Validation Phenotypic Age Illumina EPIC

Array

Composite of
aging; well

correlated with
morbidity

Utility of
childhood samples

is unknown

[90] Elastic Net with
Cross Validation Time-to-Death Illumina 450 K and

EPIC Arrays
Well correlated
with mortality

Utility of
childhood samples

is unknown

11. Metrics of Epigenetic Age Acceleration

Epigenetic age acceleration underlines the potential use of epigenetic clocks as biomark-
ers. The most frequently used approaches to assess epigenetic age acceleration are: (1) In-
trinsic Epigenetic Age Acceleration (IEAA) and (2) Extrinsic Epigenetic Age Acceleration
(EEAA), as they both consider the cell-specificity of DNA methylation patterns (Box 1).
IEAA calculates accelerated aging independent of age-related changes in blood cell type
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composition. EEAA includes both methylation changes due to age and those due to
age-related changes in cell type composition [94]. Other methods for assessing age acceler-
ation are the difference between epigenetic and chronological age and the residual of the
regression of epigenetic on chronological age (AgeAccel) (Box 2).

Box 2. The epigenetic clock and epigenetic age acceleration.

Epigenetic age acceleration characterizes the relationship between the calculated epigenetic age and the reported chronological age.
It can be assessed using the following methods:

1. Intrinsic Epigenetic Age Acceleration (IEAA)—epigenetic age acceleration independent of cell type composition. This captures
the “intrinsic” process of aging and should be universal, regardless of cell and tissue type. This metric is calculated by extracting
the residuals of the linear regression:

Horvath Epigenetic Age ∼ Chronological age + Naive CD8 cells + Exhausted CD8 cells + plasmablasts
+Natural killer cells + monocytes + granulocytes

Usage: IEAA is not highly correlated with external factors [95] and should be used when interested in changes in pure cellular aging.

2. Extrinsic Epigenetic Age Acceleration (EEAA)—a measure of age acceleration including both intrinsic age-related processes
and changes in cell type, calculated in two steps:

a. Enhanced Hannum epigenetic age is the weighted average of epigenetic age predicted by the Hannum clock and a
combination of cell types. The weights are determined using a correlation between cell type and chronological age.

b. The second step is a regression of enhanced Hannum age on chronological age

Enhanced Hannum Epigenetic Age ∼ Chronological Age.

Usage: EEAA captures both changes in the epigenetic clock and in cell type [95] (immune system aging) and is highly correlated with
external factors. EEAA is based on the Hannum clock, which is not accurate for children.

3. Age Acceleration (AgeAccel) [96]—a measure obtained by extracting the residuals of the linear regression of epigenetics on
chronological age without accounting for cell type: Epigenetic Age ~ Chronological Age.

Usage: This method is the most frequently used but does not account for the age-associated changes in cell type proportion that
affect methylation.

12. Applications of the First-Generation Epigenetic Clocks to Asthma and
Allergic Disease

Asthma presents a test case for the utility of the epigenetic clock in studying prenatal
and childhood traits and exposures over the lifespan. This condition often starts in the
early years. Diagnosis, especially of pediatric asthma, is performed by exclusion, relying
on a diverse clinical presentation.

There is a well-established age-related pattern to asthma development. Childhood
asthma is part of the atopic march, which has an age-specific course [97]—beginning in
infancy with eczema/atopic dermatitis, progressing to infant food allergies, then asthma
and allergic rhinitis. In adolescence, there is an unexplained switch in the sex-specific
prevalence of asthma [31] (Figure 2C and Box 2). Adult asthmatics, predominantly female,
are prone to severe asthma, particularly after menopause [31] (Box 2). Diagnosis by
presentation alone cannot distinguish the different asthma phenotypes and endotypes or
differentiate between adult, pediatric, and severe vs. non-severe asthma.

A similar lack of a diagnostic test is seen in allergic diseases. Skin prick tests (SPT)
are frequently used, but positive results are not always indicative of an allergic reaction.
The gold standard test for food allergies—the oral food challenge—carries risk and is only
performed in specialized settings [98].

Genetic information has been used to assess asthma risk. Genetic variants account
for ~61–75% of susceptibility to asthma [99,100]. Genome-wide association studies have
demonstrated associations between genes in the Human Leukocyte Antigens (HLA) region
and asthma and allergic disease [101,102]. The remaining ~25–40% of the risk may be due
to environmental factors, with effects dependent on age and sex. Differential methylation
at CpG sites has been reported in both child and adult asthmatics [103,104].
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The inclusion of epigenetic information can explain heterogeneity within the asthma
phenotype and is necessary for the development of a diagnostic biomarker.

For example, respiratory syncytial virus (RSV) infection in infancy is associated with
a higher risk of asthma [73]. Viral infection can have either a punitive or protective
effect, depending on age and viral subtype [105] (Box 2). Infection may skew the immune
response towards the Th2 pattern observed in allergy [61,106,107]. This effect appears to be
mediated through changes in methylation [106–108]. Methylation levels at three CpG sites
can separate (with area under the curve (AUC) = 1) children who will develop recurrent
wheeze and asthma following an RSV infection from those who recover normally [108].

An epigenetic biomarker (Figure 2D) captures this interplay between environmental
and genetic factors and could be beneficial for diagnosis at different stages of life, including
for (1) newborns at high risk for asthma and other allergic diseases; (2) transient vs.
persistent asthma at mid-childhood; (3) girls predisposed to severe asthma in adolescence
and adulthood; and (4) pregnant women whose asthma may increase in severity (Box 3
and Figure 2D).

Box 3. The importance of the epigenetic clock as a biomarker.

Biomarkers are of essential importance for the timely and accurate diagnosis of asthma and allergic
diseases [109]. DNA methylation may be involved in key aspects of the asthma phenotype, including
age-related changes in presentation, prevalence, and severity. The epigenetic clock is a “higher
order” summary of DNA methylation at key CpG sites [12]. It has been previously used as a
biomarker in other complex conditions [109].
Epigenetic age is easy to assess using blood samples often collected during routine medical as-
sessments. In addition, the epigenetic clock utilizes a small set of CpG sites rather than the whole
genome, making it suitable for wide-spread use. While more studies are needed on epigenetic age
acceleration in relation to asthma, the current literature has reliably shown associations between
epigenetic age acceleration, asthma, and key lung characteristics (e.g., FEV1, lung capacity). These
findings demonstrate exciting potential for the application of the epigenetic clock as a diagnostic
marker for asthma, but more work is needed to validate this.

The epigenetic clock demonstrates the complex relationship between DNAm and
a phenotype through its impact on aging. The few available studies show a positive
association between allergy and asthma and epigenetic age acceleration [16,17]. Peng
et al. found that extrinsic epigenetic age acceleration was linked to asthma and allergic
disease (i.e., atopy, food allergy) in Project Viva—a longitudinal birth cohort with blood
methylation data at mid-childhood (mean age: 7.8 years, range: 6.7–10.2 years) [16]. Both
Horvath-predicted epigenetic age and intrinsic epigenetic age acceleration have also been
associated with allergic disease [16]. These results were independently replicated in the
Genetics of Asthma in Costa Rica Study (GACRS) cohort. Moreover, a study examining the
methylation profiles of nasal epithelium cells from 547 children in early adolescence (mean
age = 12.9) also showed increased epigenetic age in those with asthma [17].

Epigenetic age acceleration has also been linked to forced expiratory volume in one
second (FEV1)—a key measure of lung fitness and asthma severity—in older and middle-
aged individuals [110,111]. Both FEV1 and the ratio of FEV1 to forced vital capacity (FVC)
were significantly negatively associated with epigenetic age acceleration. Epigenetic age
has also been used to predict lung capacity in adults [112]. More investigations are needed
into the relationship between FEV and epigenetic age, particularly in pediatric cohorts.

The epigenetic clock may provide a greater understanding of the sex-specific asthma
prevalence between childhood and adulthood [31,113] (Box 4). Hormonal fluctuations
during puberty, menstruation, pregnancy, and menopause may be associated with asthma
pathogenesis, exacerbations, and disease severity [31] (Figure 2B,C and Box 4). This might
explain the shift in asthma prevalence in adolescence [31] (Figure 2B). However, the impact
of pregnancy is variable, with increased severity in some individuals and a decrease in
others [114,115] (Box 4).
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Sex hormones are key in the immune response [116]; thus, an epigenetic clock that
captures early development and puberty may be crucial to understanding the relationship
between EAA and asthma (Figure 2C, Boxes 1 and 4). A study by Patel et al. identified 13
CpG sites with sex-specific methylation associated with the acquisition of asthma between
the ages of 10 and 18 [35]. Epigenetic clocks are also affected by sex and may unravel the
relationships between DNAm, asthma, and sex [89,94] (Box 4).

Box 4. Sex hormones, asthma, and the epigenetic clock.

Asthma develops in an age- and sex-specific manner. During early childhood—when sex hormones
are at low levels—both asthma and atopy are more common in boys [117]. This trend is reversed in
adolescence [31,117]—a period of rapid increase in sex hormones—with more women becoming
asthmatic [117].
Asthma symptoms are affected by hormonal fluctuations [118,119], with changes in severity noted
during pregnancy and menstruation [117,120] and significant exacerbations at menopause [120].
Sex hormones modulate the immune response [116], a key driver of asthma [117,121]. Estrogen
replacement therapy has been linked to the reactivation of asthma in menopausal women [122].
In mouse experiments, exposure to environmental estrogens led to an increase in a phenotype
similar to asthma [123]. However, heterogeneity in the impact of hormones shows that other
factors are also at play. Studies on oral contraceptives in asthma have produced contradictory
results [124,125]. In addition, there is variability in the effects of pregnancy. One third of asthmatic
pregnant women have milder symptoms of asthma [114,115] while pregnant, whereas another
1/3 experience exacerbations [114], and the remainder report no change. An epigenetic biomarker
could help understand these differences. Epigenetic aging demonstrates sex-specific patterns, with
higher epigenetic age acceleration observed in males throughout the lifespan [126,127] and may
also be influenced by sex hormones [128–130]. Animal studies have shown that [129] castration
(i.e., loss of testosterone) slows epigenetic age acceleration while loss of estrogen accelerates it [131].
In humans, intrinsic epigenetic age acceleration has been linked to age at menarche [128] and
menopause [95], while hormone replacement therapy has been associated with slowing of epigenetic
age acceleration [130].

13. Epigenetic Age Acceleration and the Developmental Origins of Health and Disease

Development is a highly complex process (Figure 2A). Environmental exposures
may perturb methylation during this time, leading to long-term changes that influence
susceptibility to disease. Low levels of DNAm across the genome at birth leave it vulnerable
to aberrant methylation due to external factors (Figure 2A). These methylation patterns may
persist and influence the epigenetic clock throughout the lifespan and across generations.

Previous studies have primarily focused on the prenatal and early life periods, but
rapid change also occurs during later periods (e.g., puberty and even menopause). Smoking
can alter methylation during adolescence [132], but whether this leads to impacts on
epigenetic aging that continue in later life remains underexplored. Broader societal changes
(e.g., industrialization) may also impact DNA methylation and, by extension, the epigenetic
clock, which persists throughout the lifespan and across generations.

It has been suggested that an individual’s epigenetic age acceleration trajectory is
established in childhood and continues at the same rate throughout life [133]. This question,
as well as the possibility of the inheritance of age acceleration across generations, needs to
be further examined.

Most current epigenetic clocks, except the PedBE clock and gestational age clocks,
were developed using mainly adult samples and may miss sites involved in growth and
developmental processes necessary to answer these questions. Moreover, the influence of
environmental exposures during puberty, pregnancy, and menopause needs to be explored.

14. Conclusions

In this review, we have summarized prominent epigenetic clocks and their applicability
to childhood asthma and allergic disease. These clocks have the qualities of a suitable
diagnostic biomarker as they require data from only a small set of CpG sites from tissues
such as blood and saliva that are routinely collected and can be easily accessed. The
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epigenetic clock bridges the relationship between genetic and environmental factors as well
as the time-dependent course of asthma. The clock could have utility in the differentiation
between transient and persistent asthma symptoms in childhood and the identification of
at-risk individuals in adolescence and adulthood. As early life exposures drive asthma,
understanding changes in DNA methylation during growth and development periods
is of importance in refining the epigenetic clock as a pediatric asthma biomarker. Novel
clocks incorporating pediatric longitudinal data can help further characterize the dynamic
methylation patterns during these periods.
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