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Abstract: The development and approval of antivirals against SARS-CoV-2 has further equipped
clinicians with treatment strategies against the COVID-19 pandemic, reducing deaths post-infection.
Extensive clinical use of antivirals, however, can impart additional selective pressure, leading to
the emergence of antiviral resistance. While we have previously characterized possible effects of
circulating SARS-CoV-2 missense mutations on proteome function and stability, their direct effects
on the novel antivirals remains unexplored. To address this, we have computationally calculated
the consequences of mutations in the antiviral targets: RNA-dependent RNA polymerase and main
protease, on target stability and interactions with their antiviral, nucleic acids, and other proteins.
By analyzing circulating variants prior to antiviral approval, this work highlighted the inherent
resistance potential of different genome regions. Namely, within the main protease binding site,
missense mutations imparted a lower fitness cost, while the opposite was noted for the RNA-
dependent RNA polymerase binding site. This suggests that resistance to nirmatrelvir/ritonavir
combination treatment is more likely to occur and proliferate than that to molnupiravir. These
insights are crucial both clinically in drug stewardship, and preclinically in the identification of less
mutable targets for novel therapeutic design.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible
for coronavirus disease 2019 (COVID-19) [1]. COVID-19 has spread globally through
respiratory transmission and was declared a pandemic by the World Health Organisation
in March 2020 [2]. Since then, there have been over 670 million COVID-19 infections,
resulting in almost 7 million deaths worldwide [3]. To mitigate the spread of this virus,
vaccines [4], monoclonal antibodies [5], and antivirals [6] have been developed.

The introduction of mutations within the SARS-CoV-2 genome has given rise to several
lineages, of which the Omicron variant is currently prevalent [7]. Lineage emergence
is typically mediated via the accumulation of mutations conferring a beneficial effect,
such as the N501Y spike protein mutation, which increases viral transmissibility [8]. The
consideration of such variation is crucial during novel therapeutic development, as it
determines treatment longevity and efficacy [9].

Two antivirals have been approved for treatment of SARS-CoV-2: molnupiravir
and nirmatrelvir/ritonavir (NMV/r). Molnupiravir is a ribonucleoside prodrug of N4-
hydroxycytidine (NHC) that targets the SARS-CoV-2 RNA-dependent RNA polymerase
complex (RdRp) [10]. The RdRp is responsible for viral genome transcription and is com-
posed of non-structural proteins (NSP) 7, NSP8, and NSP12 [11], which binds molnupiravir.
During viral replication, NHC, the active form of molnupiravir, is further phosphorylated
intracellularly to produce the nucleotide analogue NHC triphosphate [12,13]. This is incor-
porated by RdRp as a substrate which results in the erroneous incorporation of guanosine
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or adenosine into the growing RNA strand, inducing an error catastrophe and, ultimately,
viral death [12,13]. The NMV/r components nirmatrelvir and ritonavir, on the other hand,
both target the NSP5 gene encoding the main protease (MPro) [14]. MPro is responsible
for polyprotein cleavage, which mediates the assembly of viral replication machinery [15].
Both nirmatrelvir and ritonavir act as competitive inhibitors to polyproteins pp1a and
pp1ab, thereby disrupting their cleavage and preventing further viral replication [14,15].

Despite promising results in clinical trials [12,14], a major concern with antiviral
treatment is the development of resistance following prolonged selective pressure on
the viral genome. Recent work has shed light on MPro mutations [16] and pathways [17]
leading to resistance to nirmatrelvir, the newer component of the NMV/r drug combination.
Towards the understanding of variation, we have previously characterized the effect of
all possible missense mutations within the SARS-CoV-2 genome [18,19]. In doing so, we
observed varying levels of purifying selection across the SARS-CoV-2 proteome, which
helped identify genes encoding for helicase, NSP4, NSP9, ExoN, and, more interestingly, the
RdRp as promising targets for antiviral development [18]. Furthermore, our previous work
on drug resistance in Mycobacterium [20–26], Acinetobacter baumannii [27], and hepatitis
C [28] utilized similarly characterized variant effects to identify resistance mechanisms. In
this work, we apply a similar ethos on SARS-CoV-2 circulating variation prior to antiviral
selective pressure to assess the potential of resistance development upon widespread
clinical use.

Specifically, we characterized the structural consequences of missense mutations on
different protein properties, including stability and interactions with binding partners, and
analyzed them in a gene-level, statistical, and structural context (Figure 1). Combining these
aspects enabled us to identify variants having inherent resistance to either antiviral, which
was more prominent for NMV/r than for molnupiravir. This work offers important clinical
implications towards drug stewardship and resistance prevention, while also informing
SARS-CoV-2 genomic surveillance.
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Figure 1. Workflow overview. Mutations were obtained from Genbank, COG, and the literature and
were mapped to antiviral targets MPro and RdRp. Ligands were docked to their respective protein
structures. Protein properties such as mutation tolerance, stability and binding partner interactions
were generated. The effect of these mutations on these protein properties was investigated for
putative resistance hotspots.

2. Materials and Methods
2.1. Data Curation

Initial curation of 179,931 genome sequences from GenBank [29] and the COVID-19
Genomics UK Consortium [30] permitted the alignment to the SARS-CoV-2 reference
genome (NC_045512.2) to identify unique circulating missense mutations for all mature
proteins including the antiviral targets, the RdRp complex (n = 4794), and MPro dimer
(n = 2756; Table 1). For our analyses, we split the mutation data into high- and low-
frequency mutations based on frequency distribution, where loci having a frequency under
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the 1st quartile (Q1) were considered as low frequency, while mutations with frequencies
in the 4th quartile (Q4) we considered high frequency.

Table 1. Mutation distribution densities across RdRp and MPro antiviral targets. Considering unique
genes across the target complexes, NSP12 harboured the highest proportion of mutations, however,
NSP5 monomers in MPro harboured a higher number of mutations within interaction distance of
ligand binding.

Target Gene Mutations
per Gene

High-Frequency
Mutations

Low-Frequency
Mutations

Mutations
within 10 Å of
Ligand Binding

MPro NSP5 1378 345 345 357

RdRp

NSP7 299

1199 1199 247NSP8 560

NSP12 3935

2.2. Protein Curation

Experimental crystal structures of MPro (7SI9 [31]) and RdRp (7BV2 [32]) as biological
assemblies were obtained from the RCSB Protein Data Bank [33]. These structures were
then subjected to pre-processing in Maestro (Schrodinger suite, v. 2017-4) and Modeller [34]
to remove water molecules beyond 5 Å of ligand binding and fill the missing atoms in
these assemblies. The experimental structures were bound to the drugs nirmatrelvir (MPro)
and remdesivir (RdRp), which were used to guide the docking of ritonavir and molnupi-
ravir, respectively. In both cases, docking was carried out under standard parameters
(Supplementary Table S1) in Glide (Schrodinger suite, v. 2017-4), using chemical struc-
tures obtained from PubChem and prepared in LigPrep (Schrodinger suite, v. 2017-4).
Docking of missing ligands was carried out to obtain separate protein structures bound to
the antivirals in this study, which were required inputs for mmCSM-lig [35] to calculate
the effects of circulating variants on ligand affinity. The resultant docked ligands occu-
pied similar orientations to their reference ligands, at binding free energies ranging from
–6.17 kcal/mol to –7.68 kcal/mol (Supplementary Figure S1). Despite the often limiting
assumptions introduced by docked poses compared to experimental co-crystallized ligands,
these resultant pose properties were consistent with prior work and appropriate for our
subsequent calculations.

2.3. Mutational Tolerance

The mutational tolerance of MPro and RdRp was calculated for the NSP5, NSP7, NSP8,
and NSP12 sequences on a per-gene and per-residue basis using the missense tolerance
ratio (MTR) [18,36,37] in R. The MTR score represents the ratio between the observed
proportion of missense mutations compared to synonymous mutations against the same
proportion of expected mutations within a residue window surrounding a residue or
considering the whole gene (Equation (1)). Negative MTR values represent residues under
negative selection, whereas a score of 1 represents residues in neutral selection and positive
values represent residues under positive selection. Whilst calculating the residue level
MTR, a sliding window of 21 residues centred around the residue of interest accounted for
mutational tolerance counts. The score is calculated based on mutation information from a
population and can, therefore, act as a measure of deleteriousness across a specific gene or
gene region.

MTR =

nonsynonymous SNPsobserved
Total SNPsobserved

nonsynonymous SNPsexp ected
Total SNPsexp ected

(1)
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2.4. In Silico Mutation Characterization

The effects of all mutations on protein stability (DynaMut2) [38] and interaction
affinity with other proteins (mmCSM-PPI) [39], ligands (mmCSM-lig) [35], and nucleic
acids (mCSM-NA) [40] were calculated using in silico biophysical tools that rely on graph-
based signatures accounting for mutant environment. Mutation distances to different
interaction sites were also generated to filter ligand, nucleic acid, and protein–protein
affinity values to those mutations which occurred within 10 Å. These filtered values were
used to assess the overall effects of high-frequency mutations on the protein, as a proxy for
fitness. As MPro is a homodimer, with duplicate mutations across both chains, values for
effects of mutations were calculated solely on chain A. However, as NMV/r binding occurs
at the interface, the changes in ligand affinity to either nirmatrelvir or ritonavir analyzed
were those closest to ligand binding, which, at times, occurred on chain B.

2.5. Qualitative Analyses

High-frequency mutations were subjected to a qualitative analysis, as previously
described in tuberculosis [20]. Briefly, the data were categorized based on mutational effect
on the ∆∆G threshold: those which imparted a negligible effect (+/−0.05 kcal/mol), a mild
effect (+/−0.05–+/−0.5 kcal/mol), a moderate effect (+/−0.5–+/−1kcal/mol), or a large
effect (>+/−1 kcal/mol). Negligible effects were considered neutral, while other effects
were prioritized according to interacting molecule size, as follows: ligand affinity, nucleic
acid affinity, protein–protein interaction affinity, and overall protein stability.

Finally, these effects, along with auxiliary features describing mutation environment
were also statistically compared between high-frequency and low-frequency mutations
using an unpaired two-sided t-test (R Studio, v. 1.4.1717). Auxiliary features included
residue depth and relative solvent accessibility (RSA) generated using Biopython [41],
along with residue-level interaction counts forged by wildtype residues at mutation sites,
and their changes upon mutation, calculated using Arpeggio [42].

3. Results
3.1. Mutations Distributed across the Full Gene Targets

Circulating genetic variation compiled prior to antiviral approval highlighted that,
over the course of 18 months, every residue across targets MPro (NSP5) and RdRp (NSP 7,
8, 12) was subject to variation. A total of n = 2756 missense mutations were observed for
the MPro dimer, while n = 4794 were observed for the RdRp complex (Table 1; Figure 2,
Supplementary Figure S2). Considering absolute frequencies, our MPro low-frequency mu-
tations all had a density of 1, while high-frequency mutations had a count ranging from 45
to 124,622. Almost a third (27.2%) of the high-frequency mutations had a prevalence below
100, while 17.4% were above 1000, with a median lying at 213 (Supplementary Table S2).
When considering data available for the RdRp complex, mutation densities across genes
NSP7, NSP8, and NSP12 within the low-frequency group were comparable to those in
MPro and ranged from 1 to 2 (mean: 1.12). Densities within the high-frequency group
ranged from 50 to 3,968,858, which was broader than that observed in MPro. However, the
median observed for RdRp was lower, sitting at 175. This suggests that although certain
unique residues had a higher frequency in RdRp, overall, MPro had a higher proportion
of high-frequency mutations (Supplementary Table S2). Notably, across the targets, the
distributions of the medium-frequency mutations (Q2–Q3) had similar ranges, between 2
and 50 (Supplementary Figure S3).
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Figure 2. Distribution of Missense mutations across antiviral targets. Low-(yellow) and high-(red)
frequency mutations across NSP12 within the RdRp (A,B), and MPro (C,D). Extremely-high-frequency
mutations were observed close to NMV/r binding within MPro ((C); Supplementary Figure S2A),
as compared to molnupiravir binding in the RdRp ((A); Supplementary Figure S2B–D). Ligands
rendered as green spheres, while Mg2+ and Zn2+ ions in the RdRp are rendered as blue and red
spheres, respectively.

3.2. MPro and the RdRp Had Different Levels of Gene Mutational Tolerance

To further assess the likelihood of target gene innate resistance to the approved
antivirals, we generated the likelihood of genes NSP5, NSP7, NSP8, and NSP12 to become
enriched in missense mutations compared to their synonymous counterparts, through the
missense tolerance ratio [18,36,37].

An initial comparison of the target gene-level mutation tolerances with non-target
SARS-CoV-2 genes revealed that genes NSP5 and NSP12 have a lower tolerance to accumu-
lation of missense mutation, indicating that they are under strong purifying selection [18].
As missense mutations have been observed to cause drug resistance in other infectious
diseases like tuberculosis [43], particularly in the absence of horizontal gene transfer, this
purifying selection suggests that the target genes present an inherently lower opportunity
for antiviral resistance to eventually emerge.

When considering both targets, NSP12 was observed to be less tolerant than NSP5,
suggesting that eventual resistance to molnupiravir is less likely to develop than to NMV/r
(Figure 3, Supplementary Table S3). In observing residue-level scores for both targets,
general statistics (Supplementary Table S3) indicate a large range in values across each
protein, where regions were observed under positive selection, suggesting allowance of
mutation accumulation, while most residues across both proteins were observed to be
under neutral selection (MTR = 1; Supplementary Table S3).
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Figure 3. Visualisation of mutation tolerance in SARS-CoV-2 MPro dimer (A) and RdRp NSP12 (B),
NSP7 (C), and NSP8 (D). All protein chains are colored according to their respective MTR score, where
red indicates residues under negative selection, white indicates residues under neutral selection,
and blue indicates that the residue is under positive selection. Ligands are represented as green
spheres, while magnesium and zinc ions within the RdRp are represented in dark blue and dark
red, respectively.

3.3. Molecular Drivers of Mutation Retention

Given the extent to which the gene targets were mutated, and their inherent tolerance
to this mutation, we next determined what factors lead to different mutation frequencies,
and the subsequent establishment of mutations within a population. High-frequency
(4th quartile) and low-frequency (1st quartile) mutations were extracted from our dataset,
and their effects on protein stability, dynamics, and affinity to other proteins, nucleic
acids, and antivirals were generated. Our previous work on tuberculosis [20] mutations
identified a link between resistance mutation frequency and the extent of effects imparted.
Specifically, in tuberculosis drug targets, resistance mutations with lower molecular impact
were observed to occur at higher frequencies, suggesting that fitness can be estimated
based on in silico measures [20]. This finding served as a basis for a statistical comparison
between the effects imparted by SARS-CoV-2 high- and low-frequency mutations, as a
measure of possible resistance development.

MPro low-frequency mutations localized at more buried residues (RSA p-value:
<0.0001; residue depth p-value: <0.0001) and were observed to cause larger destabilizing
effects (DynaMut2 p-value: <0.0001) than high-frequency mutations. When considering the
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effects on protein interactions, low-frequency mutations resulted in larger decreases in ho-
modimer (mmCSM-PPI p-value: <0.0001) and ligand affinities (mmCSM-lig p-values: <0.01),
while also localizing closer to ligand binding (p-values < 0.0001), and to the protein–protein
interface (p-value < 0.001; Supplementary Table S4). These effect profiles suggest that
lower-frequency mutations tend to impart a higher fitness cost to the target homodimer,
MPro, a pattern also observed in tuberculosis resistance mutations [20].

Mutations in NSP12, which binds molnupiravir within the RdRp, followed similar patterns.
Specifically, the low-frequency group localized closer to the protein core (RSA p-value < 0.0001,
residue depth p-value < 0.0001), molnupiravir binding (p-value < 0.0001), and the nucleic acid
(p-value < 0.001), and protein–protein interfaces (p-value < 0.05) than higher-frequency ones.
Within these loci, lower-frequency mutations also lead to more considerable reductions in
protein stability (Dynamut2 p-value < 0.0001) and protein–protein affinity (p-value < 0.0001),
and increases in nucleic acid affinity (p-value < 0.0001; Supplementary Table S5). Similar ef-
fects on protein–protein interactions have been observed as a result of M. tuberculosis
rifampicin-resistant mutations, however, opposite effects on nucleic acid affinity were
observed [20]. While this discrepancy can be explained through the contrasting molnupi-
ravir and rifampicin modes of action, the resistance potential of low-frequency mutations
in the RdRp appears to be lower than that within MPro, especially when considering that
lower-frequency mutations, in spite of their lower observed frequency, offer less drastic
protein fitness effects.

3.4. Effects of High-Frequency Mutations across the Functional Protein Complex

While lower-frequency mutations were observed to be more detrimental, we assessed
the effects of high-frequency mutations, due to their higher likelihood of innate resistance
development. When considering the combined effects of all high-frequency mutations
observed in MPro (n = 345), 49.3% of mutations primarily lead to protein destabilization,
while 19.4% directly reduced ligand affinity (mmCSM-lig; 17.4% for nirmatrelvir, 2.0% for
ritonavir) and 14.8% affected dimer stability (mCSM-PPI2). No high-frequency mutations
were observed to increase affinity to either ligand, while some were observed to increase
protein (10.4%) and complex (4.1%) stabilities. Notably, a further 2.0% (n = 7) was observed
to confer overall mild effects, which, in our previous work on tuberculosis drug-resistance
mutations, had higher frequencies [20]. The frequencies of this mild cohort ranged from 55
to 5376, meaning that just under half of these mutations (42.9%): Q69R, D248E, and T196M,
had higher frequencies than the median (213; Supplementary Table S2). This suggests
that these mutations may facilitate resistance development through compensatory effects,
similar to what was observed in tuberculosis resistance [20].

On the other hand, when analyzing the overall effect of high-frequency mutations
in the RdRp (n = 1119), we noticed that, while most (47.9%) of mutations caused protein
destabilization, direct disruptions in affinity to molnupiravir only accounted for 2.8%
of mutations. Instead, similar to what has been observed when analyzing tuberculosis
DNA-dependent RNA polymerase resistance mutations, some mutations reduced overall
complex stability (20.9%), but, unlike what was observed in the same study, decreases in
nucleic acid affinity, which would directly interfere with the molnupiravir mode of action,
were limited to 1.2% of mutations. In contrast, 6.0% of mutations lead to an increase in
nucleic acid affinity, while 0.08% (n = 1) lead to an increase in molnupiravir affinity—both
of which can be beneficial upon widespread molnupiravir use. Finally, 1.5% of mutations
(n = 18) were observed to confer mild effects, whose frequencies ranged from 61 to 1736. Of
these, 44.4% had higher frequencies than the median (175; Supplementary Table S2): D258Y,
M174I, N743S, I223M, M615I, P178H, N177S, and T226M. While this still implies that such
mutations can have compensatory effects enabling resistance, the drug-naïve frequencies
observed suggest that this risk is lower than that for MPro mild mutations.
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3.5. Effects of High-Frequency Mutations across the Antiviral Binding Site

To further assess the mechanisms imparted by mutations with respect to innate resis-
tance development, we carried out a similar analysis on high-frequency mutations localized
at the drug-binding sites of our targets, which was considered to include residues within
10 Å of drug binding. Within MPro, 17.7% (n = 61 for either ligand) of high-frequency
mutations occurred within 10 Å of nirmatrelvir or ritonavir binding. Of these, 61.8%
of mutations decreased protein stability (DynaMut2; mildly: 14.7%; moderately: 30.9%;
highly: 16.2%) while 29.4% increased protein stability (mildly: 25.0%; moderately: 4.4%).
Some mutations at the binding site also occurred at the protein–protein interaction surface
(32.4%), and 54.5% of which (17.6% of all binding site mutations) caused mild reductions
in dimer stability. Due to nirmatrelvir and ritonavir localized binding, mutation subsets
within 10 Å of either ligand differed minimally (9.8%) amongst themselves. All mutations
within interaction distance of either ligand greatly reduced the affinity to the antiviral.
When comparing the effects of overlapping mutations (n = 55) on affinity to either ligand,
we observed that 98.2% (n = 54) of mutations preferentially reduced nirmatrelvir binding
affinity to a greater extent than that to ritonavir. This is similar to other smaller-scale
studies [16] and corroborates the notion that, even though nirmatrelvir is the newer drug
within this SARS-CoV-2-specific combination, it does not offer any advantage over ritonavir
in terms of innate resistance protection from MPro drug-naïve circulating mutations.

On the other hand, within the RdRp, only 2.9% (n = 35) of high-frequency mutations
localized within 10 Å of molnupiravir binding. These mutations were only present in
NSP12 and amounted to 3.6% of high-frequency mutations within this subunit. Of these
binding site mutations, 91.4% decreased protein stability (DynaMut2; mildly: 5.7%; mod-
erately: 42.9%; highly: 42.9%) while 5.7% mildly increased protein stability. As the RdRp
consisted of three subunits, some binding site mutations were also present within 10 Å
of other proteins (57.1%) or the nucleic acid transcript (22.9%). Interestingly, while most
effects on protein–protein affinity observed from this subset are mild (45.7%), most binding
site mutations (14.3%) within interaction distance of nucleic acids drastically increased
affinity. Considering that molnupiravir requires affinity to nucleic acids to act as a nucleic
acid analogue, molnupiravir-naïve circulating mutations at the active site likely enhance
the mode of action of the antiviral. When noting the direct effect of binding site muta-
tions on molnupiravir affinity, 77.1% of mutations cause mild reductions in affinity, while
17.1% reduce affinity moderately. This suggests that, even though circulating mutations
already affect affinity, the risk of resistance development remains lower than that observed
for NMV/r.

3.6. Antiviral Binding Sites Were More Enriched in Low-Frequency Mutations

Examining the antiviral binding sites more closely also revealed that 25.9% (n = 357)
of all the MPro mutations localized within the active site, most occurred in, but were not
limited to, the chain bound to the drug (A: 93.0%; B: 7.0%). Across the RdRp, however,
only 0.05% (n = 247) of the total mutations were localized within molnupiravir binding,
and were mostly localized within NSP12 (98.4%; n = 243), with minimal occurrence within
NSP7 (Table 1; Figure 4C,D).

Generally, it was observed that distribution of mutation frequencies was different
to that expected by normal distribution. When considering the MPro dimer, while most
binding site mutations 51.5% (n = 184) lay in the interquartile range, 29.6% (n = 106) were
low-frequency and only 18.7% (n = 67) were high-frequency. Similar patterns were observed
for the RdRp, where 48.2% (n = 119) lay within the interquartile range, 37.7% (n = 93) were
low-frequency, and only 14.2% (n = 35) were high-frequency.

While the frequencies at the direct binding site suggest low risk of innate resistance,
the presence of mutations, whether high- or low-frequency, at close proximity to antiviral
binding could still pose a risk of resistance emergence when selective pressure is applied. Of
note, the observed antiviral-naïve mutation frequency distribution, coupled with the mild
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effects observed when analyzing some high-frequency mutations, suggests possible com-
pensatory epistasis development, similar to what has been observed in M. tuberculosis [20].
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Figure 4. Mutation Properties at the binding site. Mutations located within 10 Å of ligand bind-
ing mapped onto MPro (A,C) and RdRp (B,D) show different levels of mutation tolerance across
targets (A,B), as well as different frequencies (C,D). The residues surrounding ritonavir and nirma-
trelvir binding site are under positive selection (A), meaning they are more tolerant to mutation
accumulation when compared to the greater number of residues under negative selection in the mol-
nupiravir binding site (B). Meanwhile, the RdRp binding site has a greater number of high-frequency
mutations (D) when compared to the binding site of MPro (C).

3.7. Mutational Tolerance Patterns at the Antiviral Binding Sites Highlight Different Inherent
Resistance Propensities

Finally, to fully assess the variables attributing to potential innate resistance at the
antiviral binding site, we analyzed the mutation tolerance patterns, using MTR [18,36,37],
within this region. Specifically, we found that the NMV/r binding site at the MPro ho-
modimer interface was relatively tolerant to mutation (Figure 4A; blue), having a mean
MTR score of 1.08. In practice, this implies that any emerging mutations at this site would
impart a minimal fitness cost to protein thermodynamics, suggesting a higher propensity
for resistance development under widespread antiviral usage. At the molnupiravir binding
site within NSP12, on the other hand, we observed a lower tolerance to missense mutation
(Figure 4B; red), where binding site residues had a mean MTR score of 0.45.

Mutations that occurred at a high frequency close to the NMV/r binding site were
associated with large decreases in drug-binding affinity (∆∆G < −2.00 kcal/mol; Figure 4C).
Considering the observed high mutational tolerance at this MPro region, NMV/r affinity-
disrupting mutations do not seem to confer large fitness costs on the overall folding and
function of the protein. This again suggests that, given the high-frequency circulating
mutations, there is a high risk for NMV/r resistance to develop as the antiviral becomes
more routinely used.
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In contrast, the high-frequency mutations located near the molnupiravir binding site
in RdRp had milder effects on ligand binding affinity (∆∆G < −1 kcal/mol; Figure 4D).
Paired with the lower mutational tolerance, this suggests that the introduction of affinity-
disrupting mutations to this binding site is associated with a fitness penalty and, hence,
is less likely to occur. This, in turn, reduces the chances for resistance development upon
repeated antiviral exposure.

Compared to MPro, the RdRp has a more essential role in viral replication and survival.
Consequently, any mutations which accumulate in NSP12 and, possibly, contributing to
resistance are under greater purifying selection than observed in the NMV/r binding
site, as there may confer larger fitness costs. These findings, congruent with our other
findings, suggest that resistance upon widespread clinical use is less likely to develop
against molnupiravir than it is for NMV/r.

4. Discussion

The emergence of SARS-CoV-2 in 2020 led to the largest, modern-day health emergency
faced by the global population. While the state of emergency for the pandemic has officially
been revoked in May 2023, COVID-19 remains a highly infectious and potentially lethal
pathogen. Because of this, appropriate stewardship of the novel antivirals is crucial to
prevent further disease prevalence due to drug resistance emergence.

Early in the pandemic [18], we had identified regions across the SARS-CoV-2 genome
tolerant to missense mutation accumulation, in the absence of antiviral selective pressure.
These regions can be considered as potential “resistance hotspots”, as they can accommo-
date the introduction of resistance-causing mutations. That work hinted at the inherent
inadequacy of MPro, and the potential for NSP12 as robust drug targets, from a genetic
variation tolerance standpoint [18]. This work builds upon that initial knowledge and
investigates the effect of genetic variation on the now-approved antivirals. Using updated,
but drug-naïve, genetic variation, this work established that the NMV/r binding site in
MPro had a higher mutational tolerance and a greater proportion of low-frequency mu-
tations when compared to the molnupiravir-binding site in RdRp. Notably, even at the
whole-gene level, MPro exhibited a greater tolerance to missense mutation than RdRp,
implying that mutations which lead to drug resistance are more likely to accumulate. Prior
research on resistance in viruses found that increased mutation rates, as those implied for
MPro through increased tolerance, lead to an increase in resistance development [44,45].

Next, we explored the molecular mechanisms underpinning the observed mutation
frequencies, and found that, statistically, low-frequency mutations in RdRp and MPro
had significantly greater effects on protein properties, suggesting detrimental effects on
viral and protein fitness. Previous knowledge on other organisms indicates that mutations
which lead to drug resistance typically exert a negative effect on the protein [20,43]. In
M. tuberculosis, this was particularly the case for lower-frequency mutations [20], and
similar patterns were observed for SARS-CoV-2 variants in this study. While milder effects
on protein function have been observed for high-frequency mutations, these variants tend
to be more transmissible [46], meaning that they are more likely to be exposed to antiviral
selective pressure, and still lead to resistance.

To address this possibility, we also assessed the effects of high-frequency mutations
in a combined manner and found that most mutations across either target primarily lead
to protein destabilization. Notably, however, the proportion of mutations which directly
reduced antiviral affinity was higher for MPro than for the RdRp, further suggesting that,
even when considering ‘less detrimental’ high-frequency mutations, the risk of innate
resistance is higher for MPro than for RdRp.

Towards highlighting the risk of innate resistance across MPro and RdRp, this work
identified the susceptibility to, and consequential effect of, missense mutations within
these antiviral targets. By predicting the effects of circulating variation computationally,
it was possible to identify general trends linked to resistance development. Collectively,
our findings strongly indicate that NMV/r has a greater risk of encouraging potentially
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drug-resistant mutation development upon widespread use. Notably, our findings offer a
robust theoretical foundation for assessing resistance development, which would greatly
benefit from experimental validation prior to clinical application. Practically, this infor-
mation would be especially useful to guide drug stewardship efforts, so that resistance
development can be delayed as much as possible. Further to that, similar approaches can be
applied to assess resistance to novel antivirals, while also helping guide resistance-resistant
drug discovery.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes14091699/s1, Table S1: Parameters used for ligand docking; Table S2:
Mutation frequency statistics across antiviral targets; Table S3: Mutational Tolerance Statistics across
antiviral targets; Table S4: Significant In silico features distinguishing MPro high and low frequency
mutations; Table S5: Significant in silico features distinguishing NSP12 high and low frequency
mutations; Figure S1: Antiviral docking modalities; Figure S2: Mutation frequency distribution across
gene targets; Figure S3: Distribution of Medium Frequency mutations across genes.
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