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Abstract: Myocyte enhancer factor 2A (MEF2A) is a member of the myocyte enhancer factor 2 family.
MEF2A is widely distributed in various tissues and organs and participates in various physiological
processes. This study aimed to investigate the effect of MEF2A expression on the proliferation and
apoptosis of bovine myoblasts. CCK8, ELISA, cell cycle, and apoptosis analyses were conducted to
assess cell status. In addition, the mRNA expression levels of genes associated with bovine myoblast
proliferation and apoptosis were evaluated using RT-qPCR. The results showed that the upregulation
of MEF2A mRNA promoted the proliferation rate of myoblasts, shortened the cycle process, and
increased the anti-apoptotic rate. Furthermore, the RT-qPCR results showed that the upregulation of
MEF2A mRNA significantly increased the cell proliferation factors MyoD1 and IGF1, cell cycle factors
CDK2 and CCNA2, and the apoptotic factors Bcl2 and BAD (p < 0.01). These results show that the
MEF2A gene can positively regulate myoblast proliferation and anti-apoptosis, providing a basis for
the analysis of the regulatory mechanism of the MEF2A gene on bovine growth and development.

Keywords: MEF2A; myoblasts; proliferation; apoptosis

1. Introduction

Muscle yield and the quality of livestock are key indicators of the quality of livestock
products. The growth and development of skeletal muscle and genetic characteristics signif-
icantly influence muscle yield and the quality of livestock [1]. Meanwhile, the productive
performance of livestock is determined by the proportion of skeletal muscle. The type and
amount of protein within skeletal muscle fibres and the content of intramuscular fat also
affect muscle tenderness [2,3]. In addition, skeletal muscle is crucial for body coordination,
metabolism, and homeostasis in mammals and is associated with a strong regenerative
capacity [4,5]. Myogenesis (myoblast proliferation, differentiation, and fusion) is crucial for
skeletal muscle development, including embryonic development, postnatal growth, and
muscle regeneration after injury [6].

Myocyte enhancer factor 2 (MEF2), belonging to the MADS transcription factor su-
perfamily, can regulate muscle-specific gene expression [7]. The MEF2 protein was first
identified in developing the skeletal muscle myotubes of vertebrates. The MEF2 protein can
anchor A/T-rich DNA sequences in the muscle creatine kinase (MCK) gene promoter [8].
The MEF2 gene family has four members in vertebrates: MEF2A, MEF2B, MEF2C, and
MEF2D. However, this family is a single gene in Drosophila and nematodes [9,10]. MEF2
family members have similar structures, containing the MADS-box region, MEF2 central
structural domain, and C-terminal transcriptional activation region [11]. The MADS-box
region mainly binds to abundant A/T DNA sequences, the MEF2 central structural domain
enhances the binding of A/T sequences in the regulatory regions of target DNA, and the
C-terminal region participates in many key transcriptional processes during cell growth
and development. Furthermore, the structural differences among MEF2 family members
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are mainly found in the C-terminal transcriptional region [12,13]. MEF2 is involved in some
biological processes, including musculogenesis, skeletal development, and neurological
development [14]. MEF2A activates many muscle-specific, growth factor-induced, and
stress-induced genes. Moreover, MEF2A participates in life processes, such as cell prolifera-
tion and differentiation, apoptosis, and morphological changes [15,16]. MEF2A is located
downstream of the signalling pathway regulating the expression of musculogenic genes.
MEF2A functions as a regulatory factor and a structural protein carrier. Moreover, MEF2A
performs a transcriptional activity not carried out by any other factors in the family [17].
Clark et al. found that the MEF2A gene specifically binds to the Gtl2/Dio3 locus, upregu-
lates transcriptional cofactor CITED2, and promotes cardiomyocyte proliferation [18]. The
MEF2A gene is one of the first genes detected during muscle regeneration in mice. Liu et al.
showed that toxin injection in mouse tibialis anterior muscle can significantly downregulate
MEF2A and MEF2C on day 2, and significantly upregulate MEF2A during later muscle
regeneration [19]. Zhou et al. found that interference with MEF2A expression can promote
atherosclerotic lesions in apoE knockout mice [20]. Studies have also shown that MEF2A
can regulate vascular endothelial cell migration and anti-apoptotic cell death [21]. Besides
the key activating and regulatory role of MEF2A in myogenesis, MEF2A is also involved
in lipid metabolic pathways and plays a role in various biological processes. Moreover,
MEF2A regulates muscle tissue growth and development, depending on tissue type [22,23].

However, no study has evaluated MEF2A in large domestic animals. Furthermore,
systematic MEF2A studies on cattle are lacking. Guanling cattle are a unique breed in
Guizhou Province, China, which have the advantages of strong physique and disease
resistance, but their growth is slow and meat yield is low. In this study, Guanling cattle
were used as experimental subjects with the aim of investigating the effects of changes in
MEF2A gene expression on the proliferation and apoptosis of bovine myoblasts. Therefore,
this study can help to investigate the regulation mechanism of beef qualitative traits and
provide basic theoretical references for bovine growth and development.

2. Materials and Methods
2.1. Ethical Approval

Animal experiments were approved by the Laboratory Animal Ethics of Guizhou
University (No. EAE-GZU-2021-E023, Guiyang, China; 1 November 2021).

2.2. MEF2A Overexpression and Construction of Interference Vector

The full-length CDS region sequence of bovine MEF2A (NM_001083638.2) was ampli-
fied and ligated to the PMD-19T vector. The recombinant MEF2A vector and pEGFP-C1
vector were double-enzymatically digested using EcoR I and Sal I. The recombinant digest
product was obtained to obtain the MEF2A overexpression vector and negative control
(NC) was supplied by our laboratory. Four interfering group target sequences and one
NC group sequence were set based on the sequence of the coding region of MEF2A and
shRNA design principles. The vector with the best interfering effect was selected for further
analysis. The primer sequences were synthesized by GEMA Ltd. (Shanghai, China). The
detailed shRNA target sequences are shown in Table 1.

Table 1. shRNA sequences.

Name Sequence (5′-3′)

sh-NC TTCTCCGAACGTCTCACGT
sh-RNA1 GCAGAACCAACTCGGATATTG
sh-RNA2 GCCTCCACTGAATACCCAAAG
sh-RNA3 GCAGCACCATTTAGGACAAGC
sh-RNA4 GCAGTTATCTCAGGGTTCAAA
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2.3. Cell Identification and Transfection

Myoblasts were isolated and cultured from three healthy 3-day-old Guanling calves.
The calves were born in Guanling Cattle Industrial Park, Anshun (Guizhou, China) then
slaughtered. The longest dorsal muscle tissue was obtained, cut, and digested with type
II collagenase. The filtrate was centrifuged, and the supernatant was discarded. The
cells were then resuspended in DMEM-F/12 (Gibco, San Diego, CA, USA) containing
12% foetal bovine serum and 1.5% penicillin-streptomycin. The purity of the myocytes
was determined using immunofluorescence. α-actin (Bioss, Beijing, China) was used as
primary antibody and Alexa Fluor594 (proteintech, Suzhou, China) as secondary antibody.
Cells were inoculated into 6-well cell plates. Each vector was transfected into cells using
Lipofectamine 3000 (Thermo Fisher Scientific, Waltham, MA, USA) transfection reagent
when cell density reached about 80%. The cells were harvested after 48 h of transient
transfection for subsequent assays, including CCK8, ELISA, RT-qPCR, flow cytometry, cell
cycle, and apoptosis analyses.

2.4. Cell Proliferation Activity Assay

The effect of MEF2A overexpression and the expression interference on the prolifera-
tive capacity of adult myoblasts was examined using CCK8 reagent (APExBIO, Houston,
TX, USA). Briefly, myoblasts were inoculated in 96-well plates and incubated at 37 ◦C in 5%
CO2 for 0, 6, 12, 24, 48, and 72 h, followed by the addition of CCK8 reagent (10 µL) to each
well. An enzyme marker (Thermo Fisher Scientific, Waltham, MA, USA) was used to detect
absorbance at 450 nm.

2.5. ELISA for GH and INS

First, each vector was transfected into myoblasts for 48 h. The cells were washed with
PBS, then 180 µL of RIPA lysis solution (Solarbio, Beijing, China) was added, and they were
lysed on ice for 5 min. Total protein was collected by vortexing at 12,000 rpm for 15 min.
Absorbance was measured at 450 nm using an enzyme marker (Thermo Fisher Scientific,
Waltham, MA, USA) according to the instructions of the GH and INS kits. Linear regression
equations were calculated for the standards based on OD values.

2.6. Flow Cytometry for Cycle Assay

Cells were cultured in 6-well plates, and each vector was transfected into myoblasts
for 48 h. The cells were collected via centrifugation after trypsin digestion, followed
by the addition of 2 mL of 70% ethanol, then fixed at 4 ◦C overnight. the fixed cells
were centrifuged and the supernatant was discarded. The cells were washed with PBS,
resuspended with 100 µL of RNase A, and placed in a 37 ◦C water bath for 30 min. Then,
500 µL of PI staining solution was added, and the sample was left to react for 30 min at
4 ◦C away from light. The DNA content of the different transfected and control groups was
measured via flow cytometry (CytoFLEX, Beckman, Brea, CA, USA).

2.7. Flow Cytometry Assay for Apoptosis Detection

Cells were collected and prepared, as described above. The cells were centrifuged
and washed with precooled PBS, resuspended with 100 µL binding buffer, and incubated
with propidium iodide (PI) solution and FITC Annexin V (Thermo Fisher Scientific) at
room temperature for 15 min while away from light. The samples were analysed via
flow cytometry.

2.8. Real-Time Quantitative PCR

Total RNA was extracted using TRIZOL reagent (Solarbio, Beijing, China). The total
RNA was reverse-transcribed using StarScrip II First Strand cDNA Kit (Genstar, Beijing,
China) to obtain cDNA. The effects of MEF2A expression changes on the expression levels
of cell cycle factors CDK2 and CCNA2, apoptosis factors Bcl2 and BAD, and cell growth
factors IGF1 and MyoD1 were detected via RT-qPCR analysis. qRT-PCR primer information
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is shown in Table 2. The RT-qPCR program was run via Bio-Rad CFX96™ (Thermo
Fisher Scientific, Waltham, MA, USA). The reaction system consists of 5 µL of SsoFASTTM
EvaGreen® SuperMix, 0.5 µL each of upstream and downstream primers, 0.5 µL of cDNA,
and 4 µL of ddH2O. Each sample had three triplicates. The reaction program consisted
of pre-denaturation at 95 ◦C for 30 s, denaturation at 95 ◦C for 5 s, and annealing for
5 s (39 cycles). GAPDH was used as the internal reference gene. Gene expression was
calculated via the 2−∆∆Ct method.

Table 2. Primer information.

Gene Accession Numbers Primer Sequence(5′-3′) Product Size (bp)

MEF2A NM_001083638.2 F: AATGAACCTCACGAAAGCAGAAC
R: TTAGCACATAGGAAGTATCAGGGTC 106

CDK2 NM_001014934.1 F: CCTGGATGAAGATGGACG
R: CTTGGAAGAAAGGGTGAG 101

CCNA2 NM_001075123.1 F: GCAGCCTTTCATTTAGCACTCT
R: ATTGACTGTTGTGCGTGCTG 155

Bcl2 NM_001166486.1 F: ATGTGTGTGGAGAGCGTCAA
R: ATACAGCTCCACAAAGGCGT 138

BAD NM_001035459.2 F: TCCCAGAGTTTGAGCAGAGTG
R: TTAGCCAGTGCTTGCTGAGAC 108

MyoD1 NM_001040478.2 F: AACCCCAACCCGATTTACC
R: CACAACAGTTCCTTCGCCTCT 162

IGF1 NM_001077828.1 F: TGCGGAGACAGGGGCTTTTATTTC
R: AAGCAGCACTCATCCACGATTCC 95

GAPDH NM_001034034.2 F: TTGTGATGGGCGTGAACC
R: GTCTTCTGGGTGGCAGTGAT 169

Note: F represents the upstream primer and R represents the downstream primer.

2.9. Statistical Analysis

Data are expressed as mean ± SD of three biological replicates. One-way analysis of
variance (ANOVA) and the independent t-test were used to assess differences between
groups via SPSS 18.0 software (IBM SPSS Statistics 18, Inc., Chicago, IL, USA). Statistical
significance was analysed at p < 0.05.

3. Results
3.1. Cell Purity

The cells were identified via indirect immunofluorescence (Figure 1). Myocytes ap-
peared red when bound to the anti-α-actin, while the DAPI nuclear stain was blue. The
cytoplasmic and nuclear staining overlapped perfectly, indicating that the cultured cells
were myoblasts.
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Beijing, China); nuclei stained with DAPI (blue) (200×).
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3.2. Carrier Efficiency

The expression of the MEF2A gene and the efficiency of the interfering vector were
analysed using qRT-PCR. The gene expression of the overexpressed OE-MEF2A was about
100 times (p < 0.01) higher than that of the control OE-NC (Figure 2A). Moreover, the
expression of sh-RNA3 significantly decreased in the interference group compared with the
control sh-NC (Figure 2B)(interference efficiency; 94.66%) (p < 0.01). The sh-RNA3 vector
(sh-MEF2A) was selected for subsequent experiments.
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3.3. Cell Viability Assay

The CCK8 results showed that OE-MEF2A significantly promoted the proliferative
activity of myogenic cells after 6 h compared with OE-NC (Figure 3A). However, sh-
MEF2A significantly reduced the proliferative activity of myoblasts cells after 6 h onwards
compared with sh-NC (Figure 3B).
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Figure 3. (A) CCK8 assay showing cell proliferation activity after transfection with OE-MEF2A and
(B) sh-MEF2A. Two asterisks (**) represent highly significant differences (p < 0.01).

3.4. GH and INS Analysis

The ELISA results showed that MEF2A overexpression slightly increased GH content
(p < 0.01) and INS content in myoblasts (p > 0.05) compared with OE-NC (Figure 4A).
However, MEF2A interference decreased GH and INS content in myoblasts (p < 0.01)
(Figure 4B), suggesting that the MEF2A gene can promote cellular activity.
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OE-MEF2A transfection on the changes in GH and INS in myoblasts. (B) ELISA showing the effect
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highly significant differences (p < 0.01).

3.5. Cell Cycle and Apoptosis

The effect of MEF2A overexpression and interference on myoblast cell cycle and
apoptosis was examined via flow cytometry. Compared with OE-NC, the number of OE-
MEF2A myoblast cells was significantly reduced in the G1 phase (p < 0.05). Furthermore,
the number of S-phase myoblast cells was significantly increased (p < 0.01). Furthermore,
G2/M was not significantly changed in the S-phase (p > 0.05) (Figure 5A), while the
apoptosis rate of myoblast cells was reduced (p < 0.01) (Figure 5B). Compared with the
sh-NC group, the number of myofibroblasts in the sh-MEF2A group significantly increased
(p < 0.05) in the G1 phase and significantly decreased (p < 0.01) in the S and G2/M phases
(Figure 5C). Moreover, the apoptosis rate significantly increased after the suppression of
the MEF2A gene (p < 0.01). Furthermore, the inhibition of the MEF2A gene significantly
increased the apoptosis rate of myoblast cells (p < 0.01) (Figure 5D). These findings suggest
that the MEF2A gene can promote the proliferation of adult myoblasts. Moreover, MEF2A
can stabilize cell activity.
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Figure 5. Detection of myoblast cycle and apoptosis via flow cytometry. (A) Characterization of
myoblast cell cycle after OE-MEF2A transfection. (B) Characterization of apoptosis in myoblast cells
after OE-MEF2A transfection. (C) Characterization of myoblast cell cycle after sh-MEF2A transfection.
(D) Characterization of apoptosis in myoblasts cells through transfection with sh-MEF2A. One
asterisk (*) indicates significant differences (p < 0.05). Two asterisks (**) represent highly significant
differences (p < 0.01).
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3.6. RT-qPCR

MEF2A overexpression significantly increased the expression of the MyoD1, IGF1,
CCNA2, CDK2, and Bcl2 genes (p < 0.01) and significantly decreased the expression of the
BAD gene (p < 0.05) in myoblasts (Figure 6A). In contrast, MEF2A interference significantly
downregulated the MyoD1, IGF1, CCNA2, and Bcl2 genes in myoblast cells (p < 0.01),
significantly reduced the expression of the CDK2 gene (p < 0.05), and slightly upregulated
the BAD gene (p > 0.05) (Figure 6B). These results further confirm the effect of the MEF2A
gene on myoblast cells.
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showing the effect of OE-MEF2A transfection on the expression of MyoD1, IGF1, CDK2, CCNA2, Bcl2
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4. Discussion

The protein encoded by MEF2A can participate in various cellular processes as
homo/heterodimers, including muscle development, cell growth control, and apopto-
sis. The proliferation and differentiation of myoblast cells are crucial in muscle tissue
growth through cell proliferation and protein deposition [24]. MEF2A promotes myofibril
formation and participates in the regeneration and differentiation of skeletal muscle stem
cells and myoblasts cells [25]. Wang et al. reported that the MEF2A-MEG3/DIO3-PP2A
axis promotes bovine muscle regeneration [26]. Chen et al. also demonstrated that MEF2A
can promote postnatal muscle growth and development in goat kids. Moreover, MEF2A
significantly increases muscle fibre diameter in the loin [27]. CDK2 is a cell cycle regulator
that promotes the transition from the G1 to the S phase by forming a complex with CCNA2,
thereby regulating cell cycle progression [28]. In this study, MEF2A upregulation or down-
regulation changed CDK2 and CCNA2 expression. MEF2A overexpression significantly
decreased the number of G1-phase cells and significantly increased the number of S-phase
cells, thus greatly shortening the G1-S phase process. Moreover, MEF2A interference did
not affect the G1-S phase process, indicating that MEF2A accelerates the cell cycle process,
consistent with the study of Wang et al. [29].

MyoD1 positively regulates skeletal muscle growth and development, thus affect-
ing the development and repair of muscle tissue [30]. IGF1 can play a synergistic role
with growth hormone (GH) to accelerate cell proliferation and differentiation and other
physiological functions [31]. Herein, the CCK8 results showed that MEF2A upregulation
significantly increased the viability of myoblast cells. Other assays also showed that MEF2A
upregulation increased the expression of the MyoD1 and IGF1 genes, while MEF2A inhibi-
tion decreased these expressions. Growth hormone promotes growth, cell division, and
proliferation, thus accelerating metabolism [32]. Insulin can be a long-term regulator of
feed intake in ruminants, promoting glucose uptake from the blood. The glucose is then
converted to glycogen for storage in the liver and muscle [33]. In this study, ELISA showed
that MEF2A overexpression significantly increased GH levels and slightly increased INS
levels. Moreover, MEF2A inhibition significantly decreased both INS and GH levels.
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Zhou et al. reported that siRNA inhibition of MEF2A expression in apoE−/−mice
increased the levels of pro-inflammatory cytokines, such as IL-6, MCP-1, TNF-α, and MMP-
8, and atherosclerosis in apoE−/−mice [20]. Lu et al. also found that MEF2A deletion
increased the risk of haemorrhage, inflammation, and hypercoagulable state in mice [34].
Resveratrol can delay the senescence and apoptosis of vascular endothelial cells (VECs).
Resveratrol can also significantly upregulate the expression of MEF2A in VECs, thereby
preventing apoptosis-induced oxidative stress [35]. In this study, MEF2A upregulation
increased the activity of myogenic cells and had an anti-apoptotic effect. RT-qPCR also
showed that MEF2A overexpression inhibited the expression of the pro-apoptogenic gene
BAD and increased the expression of the anti-apoptogenic gene Bcl2. Furthermore, MEF2A
inhibition increased the rate of apoptosis. One study reported that MEF2A reduced the
expression level of Hspb7 in mouse skeletal muscle, which was effective in preventing
muscle atrophy [36]. However, studies have also shown that MEF2A overexpression can
disrupt myoblast differentiation patterns and apoptosis [29].

In addition, several studies have shown that MEF2A, MEF2C, and MEF2D have
synergistic roles in muscle growth and development, especially MEF2A [37,38]. Synder
et al. reported that mice with an overall deletion of MEF2A are defective in terms of skeletal
muscle regeneration [38]. Deletion-of-function mutations in MEF2A, or MEF2A knockout,
can significantly cause a disease phenotype in mice [39,40], suggesting that MEF2A has
an irreplaceable function. Wu et al. found that MEF2A is evolutionarily higher on the list
than MEF2C through phylogenetic analysis [41]. These findings reveal the importance and
specificity of the MEF2A gene among the MEF2 family members.

5. Conclusions

In conclusion, MEF2A can positively regulate the proliferation and anti-apoptosis
of bovine myoblasts through the regulation of key genes of the cycle (CDK2, CCNA2),
growth (MyoD1, IGF1), and apoptosis (Bcl2, BAD). These results provide a basic theoretical
reference for analysing the mechanisms through which MEF2A regulates bovine growth
and development.
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