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Abstract: Urinary extracellular vesicles (uEV) hold non-invasive RNA biomarkers for genitourinary
tract diseases. However, missing knowledge about reference genes and effects of preanalytical
choices hinder biomarker studies. We aimed to assess how preanalytical variables (urine storage
temperature, isolation workflow) affect diabetic kidney disease (DKD)—linked miRNAs or kidney—
linked miRNAs and mRNAs (kidney-RNAs) in uEV isolates and to discover stable reference mRNAs
across diverse uEV datasets. We studied nine raw and normalized sequencing datasets including
healthy controls and individuals with prostate cancer or type 1 diabetes with or without albuminuria.
We focused on kidney-RNAs reviewing literature for DKD-linked miRNAs from kidney tissue, cell
culture and uEV/urine experiments. RNAs were analyzed by expression heatmaps, hierarchical
clustering and selecting stable mRNAs with normalized counts (>200) and minimal coefficient of
variation. Kidney-RNAs were decreased after urine storage at −20 ◦C vs. −80 ◦C. Isolation workflows
captured kidney-RNAs with different efficiencies. Ultracentrifugation captured DKD -linked miRNAs
that separated healthy and diabetic macroalbuminuria groups. Eleven mRNAs were stably expressed
across the datasets. Hence, pre-analytical choices had variable effects on kidney-RNAs—analyzing
kidney-RNAs complemented global correlation, which could fade differences in some relevant RNAs.
Replicating prior DKD-marker results and discovery of candidate reference mRNAs encourages
further uEV biomarker studies.

Keywords: urinary extracellular vesicles; exosomes; urine; diabetic kidney disease; reference genes;
miRNA; mRNA; sequencing

1. Introduction

Extracellular vesicles (EV) are nowadays a hot topic in the biomarker research field [1–4].
Urinary EV (uEV) are of particular interest for pathologies of the genitourinary tract [5–8].
Specifically for diabetic kidney disease (DKD), a microvascular complication of diabetes,
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uEV are a promising source of non-invasive biomarkers [9–11] that might complement, re-
duce the need for or eventually even replace kidney biopsies and facilitate early diagnostics
and prognosis.

Currently, effort is put on research and to set forth recommendations for uEV work, e.g.,
in sample handling, storage, uEV isolation and reporting [12–18]. This is highly important
because there are vast differences in the pre-analytical, analytical and reporting procedures.
For example, a recent survey by the Spanish Society for Research and Innovation (Spain) in
Extracellular Vesicles (GEIVEX) found that the variability of preanalytical procedures can
be as high as 94% [18]. Without some level of standardization, the biomarker discovery
results are seldom highly robust or reproducible [19].

More specifically, one of the most pressing problem in the preanalytical part is
that many collections in laboratories and biobanks may not be handled and stored op-
timally for uEV research. Moreover, only few studies have characterized the effect of
pre-analytical variables on the uEV, especially regarding the end-point biomolecular
level used in biomarker studies, e.g., the transcriptome [14]. Equally, only a few stud-
ies have comprehensively characterized the effect of EV isolation methods on transcrip-
tomics [13,15,16,20–22]. Thus, it is difficult to compare results between dissimilar studies.

Urinary EV capture kidney transcriptome and proteome ([7,9,23–26]. With focus on
uEV RNAs, we and others have shown that uEV can capture the dysregulation of RNAs
associated with pathological mechanisms of DKD such as oxidative stress [9], fibrosis [27],
and inflammation [28]. We have previously shown by RNA sequencing technologies that
some preanalytical variables such as urine storage temperature and isolation methods affect
the uEV RNA yield and global miRNA and mRNA profiles [9,14]. However, for kidney
research, it would be important to understand how exactly the pre-analytical choices affect
the uEV as a “liquid kidney biopsy”. Are all the uEV miRNAs and mRNAs—highly or
specifically expressed by the kidney and from different disease mechanism pathways—
affected by the different preanalytical variables and to which extent? Are the kidney
derived RNAs for example missing completely or just downregulated and therefore still
available as biomarkers?

Urinary EV reference genes represent another unmet need in the EV field. Both
research on EV reference genes and recommendations on how to select the reference genes
are increasing [29,30]. However, only a moderate number of sequencing datasets are
currently available for rigorous search of robust reference genes that would be stable across
studies, at least for uEV. Again, the effect of preanalytical variables, or demographic and
disease status variables, on the stability of reference genes is not clear. This represents a
problem for qPCR validation experiments. GAPDH is commonly utilized to normalize gene
expression but does not work equally fine for all tissues, biofluids, or disease status [31–33].
In conclusion, it is unclear how candidate markers reported by different studies could be
replicated under different experimental conditions.

In this study, we assessed the effect of storage temperature and uEV isolation work-
flows on uEV transcriptome by focusing on highly expressed miRNAs and enriched genes
of the kidney. We assessed the replicability of previously described candidate miRNA
markers of DKD and explored the existence of reference genes across diverse uEV sequenc-
ing datasets.

2. Methods
2.1. miRNA and mRNA Sequencing Datasets

The datasets included in this study were retrieved from previous publications from
our group describing the pre-analytical and analytical parts including quality control
in detail [6,9,13,14]. Details for each dataset are included in Table 1. For the storage
temperature study, urine samples were divided in two aliquots on the collection day, and
they were stored at −20 ◦C or −80 ◦C for 13–16 months. Importantly, temperature sample
pairs were always stored for equal times i.e., the isolation of extracellular vesicles was done
the same day. Similarly, there were no differences in the storage time for isolation workflow,
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overnight (ON)/24 h collections (24 h), and pre-clearing studies between the sample pairs.
Of note, except for the isolation workflow dataset, the rest of the samples were processed
by ultracentrifugation.

2.2. Kidney Top Expressed miRNAs and Kidney Enriched mRNAs in uEV

Kidney enriched genes (“At least four-fold higher mRNA level in kidney compared
to the average level in all other tissues”) were retrieved from The Human Protein Atlas,
v20 [34,35] (www.proteinatlas.org) (accessed on 19 November 2020). For miRNAs, we
used top kidney expressed miRNAs (40 miRNAs with highest expression in the kidney)
which were retrieved from miRNATissueAtlas2 [36] (https://ccb-web.cs.uni-saarland.de/
tissueatlas2) (accessed on 17 June 2022). For these analysis, raw sequencing counts were
normalized as described in the original publications by using TMM (trimmed mean of M
values) [37] in edgeR [38] or DEseq2 normalization [39,40].

2.3. Literature Review of miRNAs Associated with DKD

We did a literature review of miRNAs associated with DKD based on evidence from
tissue (human or animal models) or in vitro models and for miRNAs based on evidence
from human urine, urinary sediments or uEV (differential expression padj < 0.05). For the
latter, some studies reported miRNAs with nominal p-values, and in such cases we included
only the miRNAs that had been also validated with another quantification method or by
using in-vitro or in-vivo models. To search the DKD associated miRNAs in our uEV dataset
we used the reported identifiers i.e., if the literature only provided the stem identifier, we
searched the immature miRNA in our dataset and not the mature miRNAs (-3p/-5p).

2.4. Stable mRNAs across Datasets

All datasets were normalized using TMM normalization. Of note, samples from
overnight and 24 h collections, with and without pre-clearing and technical replicas were
normalized together and we refer to this dataset as “technical dataset”. Genes with nor-
malized counts of CPM > 200 in all samples were filtered to calculate the coefficient of
variation (CV). The top 100 genes with the lowest CVs were selected from each experi-
mental dataset and the gene lists were compared to identify shared genes across datasets.
To assess the stable genes functions we used gene cards [41] (www.genecards.org) (ac-
cessed on 27 June 2023) and to assess to which pathways the stable genes contribute to,
we used Uniprot knowledge base (UniProt Consortium 2023) (https://www.uniprot.org/)
(accessed on 28 April 2023). Protein interaction was assessed using STRING V11.5 [42]
(https://string-db.org/) (accessed on 28 April 2023).

2.5. Data Visualization

For data visualization, built-in R functions or packages ggplot2 [43], pheatmap [44],
and reshape2 [45], were used. Values are represented as mean ± SEM (standard error of the
mean). Figure panels were prepared using corelDRAW 2022 v24.1.0360 (Corel Corporation,
Ottawa, ON, Canada). Some of the results presented here are part of Karina Barrreiro’s
dissertation which is accessible in the Digital Repository of the University of Helsinki
(HELDA).

www.proteinatlas.org
https://ccb-web.cs.uni-saarland.de/tissueatlas2
https://ccb-web.cs.uni-saarland.de/tissueatlas2
www.genecards.org
https://www.uniprot.org/
https://string-db.org/
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Table 1. Datasets included in this study. Diabetic kidney disease (DKD), hydrostatic filtration dialysis (HFD), overnight (ON), prostate cancer (PCa), ultracentrifuga-
tion (UC), urinary extracellular vesicles (uEV), Urine Exosome Purification and RNA Isolation Midi Kit (NG). * NG was not included in the analysis due to the poor
performance on RNA sequencing. ** 24 h urine collections were not pre-cleared and ON urine collections were pre-cleared.

Study Description Storage Temp PI * Pre-Clearing Isolation
Method

Urine Sample Type and
Disease n (Donors) Analysis Type Reference

Isolation
workflows

uEV were isolated
from urines −80 ◦C yes no UC, HFD,

and NG

24 h urine samples from
healthy controls and T1D
patients with
macroalbuminuria.
All men.

healthy controls = 5
macroalbuminuria = 5

miRNA and mRNA
sequencing [13]

Storage
temperature

uEV were isolated
from paired urine
aliquots stored at
−20 ◦C or−80 ◦C.

−80 ◦C/−20 ◦C yes no UC

24 h urine samples from
T1D patients with
normoalbuminuria,
microalbuminuria or
macroalbuminuria.
All men.

normoalbuminuria = 2
macroalbuminuria = 2

miRNA and mRNA
sequencing [14]

DNAse
treatment

uEV RNA was
isolated adding an
in-column DNAse
digestion step.

−80 ◦C yes no UC

24 h urine samples from
T1D patients with
normoalbuminuria,
microalbuminuria or
macroalbuminuria.
All men.

normoalbuminuria = 11
microalbuminuria = 2
macroalbuminuria = 6

mRNA sequencing [14]

ON/24 h

uEV were isolated
from urines derived
from donors that
provided on the same
day 24 h urine (full
void during 24 h) or
ON urine (full first
void).

−80 ◦C yes no UC

ON and 24 h urine
samples from healthy
controls and T1D patients
with normoalbuminuria or
macroalbuminuria.
All men.

ON/24 pairs = 12 mRNA sequencing. [9]

Pre-clearing

uEV isolated from
paired urine aliquots
processed +/−
pre-clearing before
storage.

−80 ◦C yes yes/no UC

24 h urine samples from
T1D patients with
microalbuminuria or
macroalbuminuria.
All men.

pre-clearing pairs = 4 mRNA sequencing [9]
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Table 1. Cont.

Study Description Storage Temp PI * Pre-Clearing Isolation
Method

Urine Sample Type and
Disease n (Donors) Analysis Type Reference

Replicability
of UC
workflow

Pairs of urine aliquots
were stored and
processed at different
time points (up to
5 months)

−80 ◦C yes no UC
24 h urine samples from
healthy controls and T1D
patients. All men.

Duplicates = 6
Triplicates = 2 mRNA sequencing [9]

DKD cohort
1

uEV isolated from
urines to
find candidate
markers of DKD.

−80 ◦C yes yes-no ** UC

24 h or ON urine samples
from T1D patients with
normoalbuminuria,
microalbuminuria or
macroalbuminuria.
All men.

normoalbuminuria = 38
microalbuminuria = 15
macroalbuminuria = 19

mRNA sequencing [9]

DKD cohort
2

uEV isolated from
urines to validate
candidate markers.

−80 ◦C yes yes UC

24 h urine samples from
T1D patients with
normoalbuminuria,
microalbuminuria or
macroalbuminuria.
All women.

normoalbuminuria = 18
microalbuminuria = 8
macroalbuminuria = 4

mRNA sequencing

unpublished
raw count
data
[9]

PCa cohort
uEV isolated from
urine samples from
PCa patients

−80 ◦C no yes UC

Spot urine samples from
healthy technical controls
and PCa patients before
and after radical
prostatectomy. Men and
a woman.

PCa = 3
healthy controls = 2 (1
man with 3 technical
replicates and 1
woman)

mRNA sequencing [6]
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3. Results

Our study focused on the kidney-linked and putative reference RNAs in uEV isolates
targeting applicability for biomarker discovery. The uEV isolates used to generate the eleven
sequencing datasets analyzed in this study were comprehensively characterized in our
original publications (Table 1) by electron microscopy, Western blotting, and nanoparticle
tracking, RNA fragment length and protein analysis. Briefly, this quality control indicated
that the main population of uEV and RNA was small in size and length (<300 nm and <300
nt, respectively) and that the presence of e.g., remnant Tamm-Horsfall protein varied, but
was not extensive.

3.1. Effect of PreAnalytical Variables on Kidney Transcriptome in uEV Isolates

In previous studies we determined that some preanalytical variables such as storage
temperature affect the global uEV transcriptome [13,14]. As the uEV have shown potential
as “liquid kidney biopsy” [9], we now assessed whether these preanalytical variables
impact the kidney transcriptome in uEV isolates. Here we analyzed the expression level of
“kidney-RNAs” i.e., top kidney expressed miRNAs and kidney enriched mRNAs.

3.1.1. Effect of Storage Temperature

To analyze the effect of urine storage temperature on miRNAs that have high expression in
the kidney, we focused on the top 40 kidney expressed miRNAs. In our dataset (n = 8 samples),
we found 29 out of the 40 miRNAs and for 22 of those, the normalized expression level was
lower in urines stored at −20 ◦C than in urines stored at −80 ◦C (Figure 1). Of note, two of the
miRNAs were not detected at all in the −20 ◦C samples (Table S2).

Genes 2023, 14, x FOR PEER REVIEW 7 of 44 
 

 

3.1. Effect of PreAnalytical Variables on Kidney Transcriptome in uEV Isolates 
In previous studies we determined that some preanalytical variables such as storage 

temperature affect the global uEV transcriptome [13,14]. As the uEV have shown potential 
as “liquid kidney biopsy” [9], we now assessed whether these preanalytical variables im-
pact the kidney transcriptome in uEV isolates. Here we analyzed the expression level of 
“kidney-RNAs” i.e., top kidney expressed miRNAs and kidney enriched mRNAs. 

3.1.1. Effect of Storage Temperature 
To analyze the effect of urine storage temperature on miRNAs that have high expres-

sion in the kidney, we focused on the top 40 kidney expressed miRNAs. In our dataset (n 
= 8 samples), we found 29 out of the 40 miRNAs and for 22 of those, the normalized ex-
pression level was lower in urines stored at −20 °C than in urines stored at −80 °C (Figure 
1). Of note, two of the miRNAs were not detected at all in the −20 °C samples (Table S2). 

 

 
Figure 1. Effect of storage temperature on kidney top expressed miRNAs and kidney enriched 
genes in uEV isolates. Urine EV were isolated by UC from urine stored at −20 °C vs. −80 °C. (A): 
Heatmap depicts the expression level of 29 out of 40 top miRNAs expressed in kidney (miRNATis-
sueAtlas2) and found in the uEV isolates (miRNAs with ≥ 1 raw count in at least 50% of the samples). 
(B). Heatmap depicts the expression of 33 out of 53 kidney enriched genes (human protein atlas) 
found in the uEV isolates (genes with ≥ 5 raw counts in at least 50% of the samples). Micro RNA 
(miRNA), messenger RNA (mRNA), ultracentrifugation (UC), urinary extracellular vesicles (uEV). 

Out of 56 kidney enriched mRNAs we found 33 in our dataset. Analysis of the ex-
pression levels showed that 15 mRNAs were poorly represented in urines stored at −20 °C 
compared to the ones stored at −80 °C (Figure 1A). Importantly, 10 of the mRNAs were 
not detected at all in the −20 °C samples (raw counts = 0) (Table S2). 

Figure 1. Effect of storage temperature on kidney top expressed miRNAs and kidney enriched genes
in uEV isolates. Urine EV were isolated by UC from urine stored at −20 ◦C vs. −80 ◦C. (A): Heatmap
depicts the expression level of 29 out of 40 top miRNAs expressed in kidney (miRNATissueAtlas2) and
found in the uEV isolates (miRNAs with ≥1 raw count in at least 50% of the samples). (B): Heatmap
depicts the expression of 33 out of 53 kidney enriched genes (human protein atlas) found in the uEV
isolates (genes with ≥5 raw counts in at least 50% of the samples). Micro RNA (miRNA), messenger
RNA (mRNA), ultracentrifugation (UC), urinary extracellular vesicles (uEV).
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Out of 56 kidney enriched mRNAs we found 33 in our dataset. Analysis of the
expression levels showed that 15 mRNAs were poorly represented in urines stored at
−20 ◦C compared to the ones stored at −80 ◦C (Figure 1A). Importantly, 10 of the mRNAs
were not detected at all in the −20 ◦C samples (raw counts = 0) (Table S2).

3.1.2. Effect of Isolation Workflows

We next analyzed the effect of the EV isolation workflows on the uEV expression
of kidney-RNAs. Out of 40 highly expressed miRNAs of the kidney, we found 36 in our
datasets (n = 26 samples). All the miRNAs were stably expressed across the different
isolation workflows but the expression of 18 miRNAs was lower in samples from HFD
workflow (Figure 2A). We then analyzed differences in the normalized counts of these
18 miRNAs between HFD and UC samples (samples that showed low expression in HFD
(4,5,6,8,9,10) and we observed that the normalized counts were systematically lower in HFD
samples compared to UC, with differences ranging between 3–58%. MiRNAs with highest
differences (>35%) were hsa-miR-101-3p, hsa-miR-26a-5p, hsa-miR-26b-5p, hsa-miR-27a-3p,
hsa-miR-29c-3p. Regarding the kidney enriched genes, we found 31 out of the 56 and all of
them had lower expression in samples from Norgen urine Exosome Purification and RNA
Isolation Midi Kit (NG) (Figure 2B). Five of the mRNA were not detected in any of the NG
samples (raw counts = 0) and generally, many of the samples had raw count 0 (Table S3).

1 
 

 

Figure 2. Cont.



Genes 2023, 14, 1415 8 of 40

1 
 

 
Figure 2. Effect of EV isolation workflows on kidney top expressed miRNAs and kidney enriched
genes in uEV isolates. Urine EV were isolated by HFD, NG and UC workflows from urine samples of
healthy controls (n = 5) and T1D patients with macroalbuminuria (n = 5). (A). Heatmap depicts the
expression level of 36 out of 40 top miRNAs expressed in kidney (miRNATissueAtlas2) and found in
the uEV isolates (miRNAs with ≥5 raw counts in at least 50% of the samples). (B). Heatmap depicts
the expression level of 31 out of 56 kidney enriched genes (Human protein atlas) found in the uEV
isolates (genes with ≥5 raw counts in at least 50% of the samples).

Both temperature and isolation workflow impacted the kidney transcriptome in uEV
isolates and these differences are in some cases better captured by analyzing kidney-RNAs
than by analyzing global expression.

3.2. Dysregulated miRNAs in Samples Stored at Suboptimal Temperature: Significance for Kidney
Disease Biomarker Discovery

Previously, we reported different miRNA profiles from uEV isolated from urines
stored at −20 ◦C vs. −80 ◦C [14] (from now on, for simplicity, we will refer to these samples
as “urines stored at −20 ◦C or −80 ◦C”). Specifically, by differential expression analysis
of normalized counts, we found 29 downregulated and 4 upregulated uEV miRNAs in
urines stored at −20 ◦C compared to the ones stored at −80 ◦C. To assess the biological
relevance of the dysregulated miRNAs, we performed a literature review and found that
25/33 miRNAs were associated with kidney diseases (Table 2). In addition, a careful
comparison of the raw and normalized counts revealed that most of the downregulated
miRNAs in urines stored at −20 ◦C failed to be detected (raw counts = 0), while the 4
downregulated miRNAs in urines stored at −80 ◦C were stably expressed across samples
and had high raw counts (Tables reftabref:genes-2445271-t002 and S1). Thus, in urines
stored at −20 ◦C, a significant number of potential kidney disease markers were lost, and
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the upregulated genes’ raw counts were actually lower than in urines stored at −20 ◦C.
−80 ◦C samples.

Table 2. Down- and up- regulated miRNAs in uEV derived from urines stored at −20 ◦C for up to
1 year. Acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD),
lipopolysaccharide (LPS), streptozotocin (STZ), urinary extracellular vesicle (uEV).

Raw Counts Normalized Counts
(Log2CPM)

ID −80 ◦C −20 ◦C −80 ◦C −20 ◦C Association with Kidney Diseases

D
ow

nr
eg

ul
at

ed

hsa-miR-21-5p 42,760 ± 22,321 230 ± 115 14.5 ± 0.4 12.1 ± 0.4 Dysregulated in DKD in human
tissue and DKD models [46–48].

hsa-miR-375 11,496 ± 4880 26 ± 13 12.9 ± 0.1 7.3 ± 2 Pro-apoptotic in an in vitro model
of AKI (renal tubular cells) [49].

hsa-miR-192-5p 10,651 ± 5178 15 ± 8 12.7 ± 0.2 9.5 ± 0.3 Dysregulatedin DKD. Associated
with fibrosis [27,50,51].

hsa-miR-378a-3p 1445 ± 740 10 ± 5 9.9 ± 0.3 3.1 ± 1.6
Upregulation observed in biopsies
from donors with glomerular
diseases [52].

hsa-miR-101-3p 971 ± 483 0 8.6 ± 1 1.4 ± 0
Downregulated in kidneys from a
mouse diabetic nephropathy model
(STZ). Antifibrotic [53].

hsa-miR-107 700 ± 270 1 ± 0.3 9 ± 0.1 3.7 ± 0.8 Downregulated in kidney biopsies
from allograft dysfunction [54].

hsa-miR-320b 466 ± 262 2 ± 1 8.2 ± 0.3 2.4 ± 1

hsa-miR-345-5p 236 ± 121 0 7.2 ± 0.4 1.4 ± 0 Upregulated in urine from a
chemical model of AKI in rats [55].

hsa-miR-328-3p 203 ± 88 0 7.1 ± 0.3 1.4 ± 0
Downregulated in proximal tubule
cells that underwent
ischemia/reperfusion [56].

hsa-miR-204-3p 202 ± 157 0 6.3 ± 0.6 1.4 ± 0
Upregulation protected podocytes
exposed to high glucose from
apoptosis [57].

hsa-miR-7-5p 174 ± 119 0 6.4 ± 0.7 1.4 ± 0 Downregulation protected proximal
tubule cells from LPS in vitro [58].

hsa-miR-197-3p 154 ± 92 0 6 ± 0.8 1.4 ± 0 Downregulated in urine from
donors with intermittent MA [59].

hsa-miR-20b-5p 151 ± 80 0 6.7 ± 0.6 1.4 ± 0
Downregulated in kidneys and cell
lines from mouse models of
polycystic kidney disease [60].

hsa-miR-148a-5p 133 ± 60 0 6.3 ± 0.3 1.4 ± 0 Increased in urine from donors with
persistent macroalbuminuria [59].

hsa-miR-10a-3p 114 ± 79 0 5.9 ± 0.7 1.4 ± 0 Downregulated in kidneys from a
mouse model of AKI [61].

hsa-miR-629-5p 109 ± 81 0 5.5 ± 0.5 1.4 ± 0
Upregulated in kidney biopsies
from donors with acute tubular
necrosis [62].

hsa-miR-92a-1-5p 101 ± 59 0 5 ± 0.4 1.4 ± 0

hsa-miR-193b-3p 100 ± 62 0 5.8 ± 0.5 1.4 ± 0 Upregulated in kidney from chronic
kidney disease biopsies [63].

hsa-miR-340-5p 99 ± 36 0 6.2 ± 0.3 1.4 ± 0
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Table 2. Cont.

Raw Counts Normalized Counts
(Log2CPM)

ID −80 ◦C −20 ◦C −80 ◦C −20 ◦C Association with Kidney Diseases

D
ow

nr
eg

ul
at

ed

hsa-miR-3065-5p 98 ± 43 0 6.2 ± 0.3 1.4 ± 0 Upregulated in a mouse model of
renal fibrosis [64].

hsa-miR-106a-5p 92 ± 50 0 5.8 ± 0.4 1.4 ± 0
Downregulation associated with
podocyte injury induced by high
glucose [65].

hsa-miR-7704 87 ± 37 0 5.8 ± 0.2 1.4 ± 0

hsa-miR-324-5p 74 ± 42 0 5.5 ± 0.3 1.4 ± 0

hsa-miR-374b-5p 60 ± 24 0 5.5 ± 0.2 1.4 ± 0 Downregulated in diabetic kidney
biopsies [66].

hsa-miR-99b-3p 59 ± 19 0 5.6 ± 0.3 1.4 ± 0

hsa-miR-4728-3p 59 ± 20 0 5.5 ± 0.6 1.4 ± 0

hsa-miR-132-3p 57 ± 12 0 5.7 ± 0.4 1.4 ± 0 Upregulation increases fibrosis in
mouse and in vitro [67].

hsa-miR-361-5p 55 ± 15 0 5.5 ± 0.6 1.4 ± 0

hsa-miR-664a-5p 54 ± 15 0 5.6 ± 0.3 1.4 ± 0
Upregulated in uEV from donors
with Idiopathic Membranous
Nephropathy [68].

up
re

gu
la

te
d

hsa-miR-10a-5p 47,380 ± 33,187 5272 ± 2636 14.4 ± 0.4 16.7 ± 0.3 Downregulated in urine of
individuals with AKI [69].

hsa-miR-125a-5p 1017 ± 399 103 ± 51 9.3 ± 0.7 12 ± 0.2
Downregulated in urine from
donors with membranous
nephropathy [70].

hsa-miR-92b-3p 864 ± 413 58 ± 29 9.1 ± 0.2 11.4 ± 0.3
Upregulated in urine from donors
with persistent
macroalbuminuria [59].

hsa-miR-3960 77 ± 44 15 ± 7 4.8 ± 1.1 9.4 ± 0.5
Upregulated in kidney biopsies
from donors with acute tubular
necrosis [62].

3.3. Replication of DKD–Associated miRNA by UC–Based uEV Isolation and
Sequencing Workflow

Prior research has reported many miRNAs that associate with DKD in T1D and/or
T2D. Thus, we carried out a literature search to generate a list of these DKD -linked miRNAs
(padj < 0.05 or p < 0.05 and other evidence of association, see methods) and used it for
studying their expression in the UC–isolated uEV from DKD patients vs. heathy controls
(n = 10 samples). We found (i) 107 miRNAs based on evidence from tissue (human or
disease models) or in vitro models and (ii) 63 miRNAs based on evidence from human
urine, urinary sediments or uEV (Tables 3 and 4). MiRNAs dysregulated in tissue or in vitro
models were associated to previously described DKD pathways including inflammation,
fibrosis, podocyte injury, and oxidative stress (Table 3). We found 12 miRNAs in common
between miRNAs deregulated in tissue or in vitro and urine/urine sediments or uEV
(highlighted in bold text in Table 4), namely hsa-miR-214-3p, hsa-miR-192, hsa-miR-200c,
hsa-miR-15b-5p, hsa-miR-30c-5p, hsa-miR-30b-5p, hsa-miR-21-5p, hsa-miR-30e-5p, hsa-
miR-200c-3p, hsa-miR-200a-3p, hsa-miR-155-5p and hsa-miR-29b-3p, which have been
shown to modulate hypertrophy, fibrosis, inflammation, and apoptosis.
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Table 3. MiRNAs associated with DKD development and/or progression with evidence in kidney tissue and/or cell lines. Reported target genes for the dysregulated
miRNAs have direct regulation evidence (e.g., luciferase reporter assay).

miRNA (Human) Targeted Genes Evidence miRNA Regulation in
Disease Group Dysregulation Effect Reference

let-7b-5p Col1a2/4a1 in vitro and in vivo Down pro-fibrotic [71]

miR-15b-5p BCL-2 in vitro and in vivo Up pro-apoptotic [72]

miR-16-5p VEGFA in vitro Down pro-apoptotic, podocyte injury [73]

miR-20b-5p SIRT7 in vitro Up pro-apoptotic [74]

miR-21-5p PTEN in vitro and in vivo Down pro-fibrotic (early DKD) [48]

miR-21-5p PTEN in vitro and in vivo Up pro-fibrotic [46]

miR-21-5p SMAD7 in vitro and in vivo Up pro-fibrotic [47]

miR-21-5p SMAD7 in vitro and in vivo - pro-fibrotic [75]

miR-21-5p n.d. in vitro and in vivo Up anti-apoptotic [76]

miR-21-5p SMAD7 in vitro and in vivo Up pro-fibrotic [77]

miR-21-5p Cdc25a, CdK6 in vitro and in vivo Up pro-inflammatory, pro-fibrotic [78]

miR-21 TGF-β, SMAD7, PTEN in vivo Up pro-fibrotic [79]

miR-22 PTEN in vitro and in vivo Up pro-fibrotic [80]

miR-23a-3p SnoN in vitro Up pro-fibrotic [81]

miR-23b-3p HMGA2 in vitro and in vivo Down pro-fibrotic [82]

miR-23b G3BP2 in vitro and in vivo Down pro-fibrotic [83]

miR-25-3p NOX4 in vitro and in vivo Down oxidative stress [84]

miR-25-3p NOX4 in vitro and in vivo Down [85]

miR-25-3p PTEN in vitro and in vivo Down pro-apoptotic, increase ROS [86]

miR-25 CDC42 in vitro and in vivo Down pro-fibrotic [87]

miR-26a-5p CTGF in vitro and in vivo Down pro-fibrotic [88]

miR-27a-3p PPARγ in vitro and in vivo Up pro-fibrotic [89]

miR-27a PPARγ in vitro and in vivo Up podocyte injury [90]
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Table 3. Cont.

miRNA (Human) Targeted Genes Evidence miRNA Regulation in
Disease Group Dysregulation Effect Reference

miR-29b-3p n.d. in vitro and in vivo Up [91]

miR-29b-3p TGF-β, SMAD3 in vitro and in vivo Down pro-fibrotic, pro-inflammatory [92]

miR-29c-3p Spry1 in vitro and in vivo Up pro-apoptotic, pro-fibrotic [93]

miR-29a HDAC in vitro and in vivo Down pro-apoptotic [94]

miR-29a n.d. in vitro and in vivo Down pro-fibrotic [95]

miR-29a/b/c family Col1a2/4a1 in vitro and in vivo Down pro-fibrotic [96]

miR-30e-5p GLIPR-2 in vitro and in vivo Down pro-fibrotic [97]

miR-30s (family) Mtdh in vitro and in vivo Down pro-apoptotic [98]

miR-30b-5p SNAI1 in vitro Down increased markers of ephitelial to mesenchimal
transition. [99]

miR-30c-5p ROCK2 in vitro and in vivo Down pro-apoptotic, reduced cell proliferation,
increased epithelial-mesenchymal transition [100]

miR-34a-5p GAS1 in vitro and in vivo Up regulated mesangial proliferation and
glomerular hypertrophy [101]

miR-34a-5p SIRT1 in vitro and in vivo Up pro-fibrotic [102]

miR-34c-5p Notch1 and Jagged1 in vitro Down pro-apoptotic [103]

miR-93-5p VEGFA in vitro and in vivo Down angiogenic, pro-fibrotic [104]

miR-124-5p n.d. in vivo Up podocyte loss [105]

hsa-miR-126-3p n.d. in vitro and in vivo Up [91]

miR-130a-3p TNF-α in vitro Down oxidative stress, pro-apoptotic [106]

miR-130b-5p snail in vitro and in vivo Down pro-fibrotic [107]

miR-133b SIRT1 in vitro and in vivo Up pro-fibrotic [108]

miR-134-5p BCL2 in vitro and in vivo Up pro-apoptotic [109]

miR-135a-5p TRPC1 in vitro and in vivo Up pro-fibrotic [110]

miR-140-5p TLR4 in vitro and in vivo Down pro-apoptotic, pro-inflammatory [111]
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Table 3. Cont.

miRNA (Human) Targeted Genes Evidence miRNA Regulation in
Disease Group Dysregulation Effect Reference

miR-145-5p n.d. in vitro and in vivo Up [112]

miR-145-5p Notch1 in vitro Down pro-apoptotic [113]

miR-146a-5p n.d. in vitro and in vivo Up pro-inflammatory [114]

miR-146a-5p ErbB4, Notch1 in vitro and in vivo Down diabetic glomerulopathy and podocyte injury. [115]

miR-146a n.d. in vivo Down pro-inflammatory [116]

miR-146a n.d. in vitro and in vivo Down oxidative stress [117]

miR-155-5p n.d. in vitro and in vivo Up pro-inflammatory [114]

miR-155-5p n.d. in vitro and in vivo Up [91]

miR-155-5p Sirt1 in vitro Up reduced autophagy, anti-fibrotic [118]

miR-181a-5p Egr1 in vitro and in vivo Down pro-fibrotic [119]

miR-192-5p Zeb2 in vitro and in vivo Up pro-fibrotic [120]

miR-192-5p Zeb2 in vitro and in vivo Down pro-fibrotic [51]

miR-192-5p Zeb2 in vitro and in vivo Up pro-fibrotic [121]

miR-192 n.d. in vitro and in vivo Up in microalbuminuria,
Down in macroalbuminuria [27]

miR-192 Zeb1/2 in vitro and in vivo Down pro-fibrotic [50]

miR-192 Zeb2 in vitro and in vivo Up pro-fibrotic [122]

miR-193a APOL1 in vitro Up Podocyte dedifferentiation [123]

miR-195 n.d. in vitro and in vivo Down anti-apoptotic [124]

miR-196a-5p p27(kip1) in vitro and in vivo Down hypertrophy [125]

miR-199a-3p IKKβ in vitro and in vivo Down pro-apoptotic, pro-inflammatory [126]

miR-199b-5p SIRT1 in vitro and in vivo Up pro-fibrotic [108]

miR-200a-3p TGF-β2 in vitro and in vivo Down pro-fibrotic [127]

miR-200 b/c-3p Zeb1 in vitro and in vivo Up pro-fibrotic [121]

miR-200 b/c FOG2 in vitro and in vivo Up Hypertrophy [128]
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Table 3. Cont.

miRNA (Human) Targeted Genes Evidence miRNA Regulation in
Disease Group Dysregulation Effect Reference

miR-214-3p PTEN in vitro and in vivo Up Hypertrophy [129]

miR-214-3p PTEN in vitro and in vivo Up Hypertrophy [130]

miR-215-5p Zeb2 in vitro and in vivo Down pro-fibrotic [51]

miR-216a-5p PTEN in vitro and in vivo Up Hypertrophy, survival [131]

miR-216a-5p Ybx1 in vivo UP pro-fibrotic [132]

miR-217-5p PTEN in vitro Up Defective autophagy, proapoptotic [133]

miR-217-5p PTEN in vitro and in vivo Up Hypertrophy, survival [131]

miR-218-5p HO-1 in vitro Up pro-apoptotic [134]

miR-301a-3p TNF-α in vitro Down oxidative stress, pro-apoptotic [106]

miR-342-3p SOX6 in vitro and in vivo Down pro-fibrotic [135]

miR-374a MCP-1 in vitro and in vivo Down pro-inflammatory [136]

miR-377-3p SOD1/2, PAK1 in vitro and in vivo Up pro-fibrotic [137]

miR-379-5p LIN28B in vitro and in vivo Down fibrotic [138]

miR-379 megacluster EDEM3, ATF3, TNRC6B, CPEB4,
PHF21A in vitro and in vivo Up pro-fibrotic [139]

miR-423-5p NOX4+D98 in vitro Down pro-apoptotic, pro-fibrotic, pro-inflammatory,
oxidative stress [140]

miR-451a LMP7 in vitro and in vivo Down pro-inflammatory [141]

miR-451a n.d. in vivo Up/Down anti-fibrotic? [142]

miR-503 E2F3 in vitro and in vivo Up podocyte injury [143]

miR-770-5p TIMP3 in vitro and in vivo Up pro-apoptotic, pro-inflammatory [144]

miR-874 LPP3 in vitro and in vivo Up (overt nephropathy) pro-fibrotic, anti-apoptotic [145]

miR-874 TLR5 in vitro and in vivo Down pro-inflammatory [146]

miR-1207-5p n.d. in vitro Up pro-fibrotic [147]
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Table 4. MiRNAs associated with DKD development and/or progression with evidence from urine, urinary sediments or uEV. Chronic kidney disease (CKD),
diabetic kidney disease (DKD), intermittent microalbuminuria (IMA), persistent microalbuminuria (PMA), microalbuminuria (MA), type 1 diabetes (T1D), type 2
diabetes (T2D). * Validated with an independent cohort, ** validated with another detection method, in kidney biopsies, in vitro or in a model organism. MiRNAs in
common with Table 3 are highlighted in bold text.

Sample Groups Upregulated miRNAs Downregulated miRNAs Reference

Urine
Urine from T1D (Normal, overt nephropathy,
intermittent microalbuminuria, persistent
microalbuminuria)

DKD vs. non DKD: miR-619, miR-486-3p,
miR-335-5p, miR-552, miR-1912, miR-1124-3p,
miR-424-5p, miR-141-3p, miR-29b-1-5p

DKD vs non-DKD: miR-221-3p

[148]MA vs. baseline: miR-214-3p, miR-92b-5p,
miR-765, miR-429, miR-373-5p, miR-1913, miR-638

MA vs. baseline: miR-323b-5p, miR-221-3p,
miR-524-5p, miR-188-3p

PMA vs. IMA: miR323b-5p, miR-433, miR-17-5p,
miR-222-3p, 628-5p

PMA vs. IMA: miR-589-5p, miR-373-5p,
miR92a-3p

Urinary sediments
Diabetic glomerulosclerosis, minimal change
nephropathy or focal glomerulosclerosis,
membranous nephropathy, and healthy donors

miR-200c miR-638, miR-192 [149]

uEV ** T1D with normoalbuminuria and
microalbuminuria and non-diabetic controls miR-130a, miR-145 miR-155, miR-424 [112]

Urine T2D DKD, T2D, and healthy donors miR-126 (T2D DKD > T2D) [150]

uEV T2D normoalbuminuric, microalbuminuric, or
macroalbuminuric

microalbuminuria vs. normoalbuminuria and
controls: miR-192, miR-194, and miR-215.

macroalbuminuria vs. microalbuminuria:
miR-192, miR-215 [27]

uEV * T2D DKD, T2D, and healthy donors miR-320c, miR-6068 [151]

urine pellets and uEV * T2D albuminuric, normoalbuminuric, and
healthy controls miR-15b, miR-34a, miR-636 [152]

uEV * T2D normoalbuminuria and microalbuminuria miR-877-3p [153]

uEV ** T1D normoalbuminuria, intermittent
macroalbuminuria, persistent macroalbuminuria,
and overt macroalbuminuria

Overt vs. normal: miR-26a-1-5p, miR-30-5p PMA
vs. IMA/non microalbuminuria: miR-200c-3p Overt vs. normal: miR144-3p

[59]
Urine ** PMA vs. IMA: miR10a-5p, miR-200a-3p

Urine * Diabetic, DKD and healthy donors miR-126-3p, miR-155-5p, and miR-29b-3p [91]
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Table 4. Cont.

Sample Groups Upregulated miRNAs Downregulated miRNAs Reference

Urine * Urine and plasma from T1D and DKD miR-30e-5p [154]

uEV * T2D DKD, T2D normal renal function, and
non-T2D CKD miR-21-5p miR-30b-5p [28]

Urine ** DKD and non-diabetic renal disease T2D vs. non-diabetic renal disease:
miR-27-3p, miR-1228 [155]

uEV * T2D and normoalbuminuria, microalbuminuria or
macroalbuminuria and healthy donors miR-15b-5p [72]

uEV * TD2 DKD and healthy donors
miR-30e-3p, miR-30c-5p, miR-190a-5p,
miR-98-3p, let-7a-3p, miR-30b-5p, and
let-7f-1-3p

[156]
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We analysed the expression levels of the miRNA from the literature review
(i.e., Tables 2 and 3) in our uEV data (UC isolation workflow dataset) using expression
heatmaps and checked whether the miRNAs could cluster the healthy control and macroal-
buminuria groups separately by hierarchical clustering. Our uEV set showed expression of
39 out of 107 miRNAs (36%) dysregulated in DKD with evidence from tissue and in vitro
studies, but they did not separate the groups (Figure 3A). However, our uEV set showed
expression of a higher proportion of miRNAs—31 out of 63 (49%)—that were dysregulated
in DKD with evidence from urine, urine sediment or uEV. Importantly, this set of miRNAs
could divide the DKD and healthy control groups into separate clusters and this was
observed both by hierarchical clustering and principal component analysis (Figure 3B,C).
We focused on the miRNAs with the biggest fold changes that were located on the first and
fourth (last) cluster of the heatmap in Figure 3B—they separated the groups by principal
component analysis even more evidently than the 31 mRNAs (Figure 3D). From those
miRNAs, we compared the direction of change between the literature review and our
dataset. For the first cluster, miR-30b-5p, miR-221-3p, let-7f-1-3p, and let-7a-3p followed
the same direction of change in both i.e., downregulated in DKD. In contrast, miR-15b-
5p was upregulated in the literature with evidence from uEV/urine or urine sediments
but downregulated in our uEV dataset. For the fourth cluster, all miRNAs (miR-424-5p,
miR-486-3p, miR-335-5p, miR-126-3p) had the same direction of change than what was
found in the literature i.e., upregulated in DKD. Moreover, all the miRNAs had evidence
of association with DKD in vitro or in vivo and/or association with DKD pathways (in
kidney or other cells) (Table 5).

To assess whether these 31 miRNAs would show some specificity for DKD, we carried
a similar analysis using our uEV PCa dataset. Supporting DKD specificity, the analysis did
not separate the PCa patients from healthy controls (Figure 3E).

Taken together, despite variability between experimental setups, some of the uEV/urine/
urine sediment miRNAs presenting candidate markers associated with DKD in the literature
were confirmed in our uEV dataset and expression level changes between experimental
groups were concordant.

3.4. Exploratory Analysis of Reference mRNAs in uEV

To select the most stable mRNAs that could serve as candidate reference genes we
first focused on uEV samples from our DKD studies that included men only. This choice
was due to expected and higher sample-linked [9] and also biological heterogeneity in the
women’s cohorts. Datasets were analyzed separately to avoid batch effects i.e., isolation
workflows (n = 20 samples), in-column DNAse treatment (n = 19 samples), technical dataset
(type of collection, pre-clearing, and replicability, see methods) (n = 39 samples), and DKD
cohort 1 (T1D, men) (n = 72 samples). Of note, NG isolation workflow data and storage
temperature dataset were excluded from the analysis due to the low expression level of
many mRNAs (for raw counts, see Table S3). The top 100 uEV genes with the lowest
CV were selected from each dataset and the genes overlapping between all of them were
selected for further analysis. We found 32 uEV genes in common between the datasets
(Figure 4A).

We next expanded our reference gene analysis to check the stability of expression in-
cluding women’s uEV samples. Here we searched genes in common between the DKD male
(32 uEV stable mRNAs from first search) and DKD cohort 2 (T2D, women) (n = 30 samples)
using again the top 100 uEV RNA with low CV (in cohort 2), which showed 18 mRNAs in
common (Figure 4B). Finally, we assessed whether some of these 18 mRNAs could also be
found from the PCa dataset (n = 8 samples) listing the top 100 uEV mRNAs with low CV.
This analysis showed 11 mRNAs in common (HSPD1, SRSF3, VAPA, RAB1A, MORF4L1,
PGK1, RHOA, UBE2D3, DAZAP2, UBC, ACTG1) with low CV (Figure 4C, Table 6).
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healthy control and T1D macroalbuminuria groups ([13] ,, part of our UC miRNA dataset in Tables 
3 and 4). (E). The 31 miRNAs that could separate individuals with DKD and macroalbuminuria (as 
shown in B) were analyzed in the PCa uEV miRNA dataset [6]. Diabetic kidney disease (DKD), 
Prostate cancer (PCa), ultracentrifugation (UC), urinary extracellular vesicles (uEV). 

Figure 3. Urinary EV capture miRNAs associated with DKD. (A,B,E). Expression Heatmaps depict
the expression of miRNAs associated with DKD and expressed in our uEV datasets. (C,D). Depict
principal component analysis. (A). MiRNAs with evidence of dysregulation in kidney tissue and or
cell lines and (B,C). miRNAs dysregulated in uEV/urine/urinary sediments. (D). MiRNAs with the
highest fold changes from figure B which are part of the first and fourth cluster. The uEV expression
data used in (A–D) corresponds to the UC isolation workflow dataset comprising healthy control
and T1D macroalbuminuria groups ([13], part of our UC miRNA dataset in Tables 3 and 4). (E). The
31 miRNAs that could separate individuals with DKD and macroalbuminuria (as shown in B) were
analyzed in the PCa uEV miRNA dataset [6]. Diabetic kidney disease (DKD), Prostate cancer (PCa),
ultracentrifugation (UC), urinary extracellular vesicles (uEV).
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Figure 4. Stable mRNA in common across diverse uEV datasets. Venn diagrams depict elements in
common between the different datasets. (A–C). A 3-step search for the stable uEV mRNA using the
top 100 genes with the lowest CV from each dataset. Diabetic kidney disease (DKD), prostate cancer
(PCa), urinary extracellular vesicles (uEV).

We analyzed the counts per million (CPM) of the stable genes across samples. In
addition, we included GAPDH, a commonly used reference gene, and a gene with high CV
(UPK1A) for comparison (Table 6). CPM analysis showed that CPM variation of ACTG1
across samples was similar to the variation observed for GAPDH (both with high and
comparable CPM, the rest of the stable mRNA had lower CPM than ACTG1 and GAPDH)
but in both cases the variation was low compared to the gene with the highest CV (UPK1A)
in all datasets (Figures 5, 6, S1 and S2). For visualization of CPM values across samples,
the candidate reference genes were sorted by decreasing standard deviation (SD) value.
The 5 genes with the lowest SD value are plotted in Figures 5 and 6A–D and the remaining
6 genes are plotted in Figures S1 and S2A,B. We also summarized the data in boxplots to
visualize the CPM dispersion per gene (Figures 5E–H and 6C,D).
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Table 5. miRNAs dysregulated in uEV/urine/urinary sediments from individuals with DKD. Cluster
1 and 4 (see Figure 3B) miRNAs and association with diabetic kidney disease or diabetic kidney
disease associated mechanisms in kidney and/or other cells. Acute kidney injury (AKI), diabetic
kidney disease (DKD), type 2 diabetes (T2D), urinary extracellular vesicle (uEV).

Regulation
in UC
Dataset

Regulation in
uEV/Urine/Urine
Sediments
Literature

Examples of Association with Diabetic Kidney Disease or
Kidney Diseases, or Pathways Associated with DKD (e.g.,
Fibrosis, Inflammation, Autophagy, and Oxidative Stress)

Cluster 1

miR-30b-5p down down
In hyperglycemic conditions, expression levels reduced in
HK-2 cells and epithelial-mesenchymal transition was
increased [99].

miR-221-3p down down
In HUVEC cells, hyperglycemia induced this miRNA and was
associated with impairment of endothelial cell migration and
homing [157].

miR-15b-5p down up
Upregulated in urine from db/db mouse and T2D patients. In
mesangial cell lines hyperglycemia upregulates this miRNA
and targets BCL-2 inducing apoptosis [72].

let-7f-1-3p down down Downregulated in plasma extracellular vesicles from patients
with DKD [156].

let-7a-3p down down Downregulation after exposure to hypoxia in HT-29 cells [158].

Cluster 4

miR-424-5p up up

Upregulated in high fat diet fed mice and in hepatocytes
treated with palmitate. MiR-424-5p suppressed insulin
receptor expression in hepatocytes i.e., suggesting a role in
insulin resistance [159].

miR-486-3p up up Downregulated in biopsies from patients with diabetic
nephropathy [160].

miR-335-5p up up
In mesangial cells, overexpression of miR-335 induces
senescence and increses reactive oxigen species by taregting
SOD2 [161].

miR-126-3p up up Increased in kidney biopsies from patients with DKD [91].

Table 6. Coefficient of variation (CV) of the stable genes across datasets. Diabetic kidney disease
(DKD), prostate cancer (PCa), type 1 diabetes (T1D). * Commonly used reference gene for normaliza-
tion of qPCR data. ** Gene with high CV in all datasets.

CV

Isolation
Workflows

DNAse
Treatment

Technical
Datasets

DKD Cohort 1
(T1D, Men)

DKD Cohort 2
(T1D, Women) PCa

HSPD1 0.23 0.13 0.15 0.14 0.16 0.12

SRSF3 0.21 0.13 0.17 0.15 0.18 0.16

VAPA 0.26 0.13 0.16 0.16 0.23 0.16

RAB1A 0.26 0.19 0.15 0.18 0.21 0.17

MORF4L1 0.22 0.13 0.17 0.21 0.16 0.16

PGK1 0.22 0.20 0.21 0.19 0.24 0.16

RHOA 0.17 0.16 0.19 0.15 0.22 0.16

UBE2D3 0.18 0.14 0.13 0.15 0.20 0.11
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Table 6. Cont.

CV

Isolation
Workflows

DNAse
Treatment

Technical
Datasets

DKD Cohort 1
(T1D, Men)

DKD Cohort 2
(T1D, Women) PCa

DAZAP2 0.26 0.19 0.19 0.20 0.17 0.16

UBC 0.19 0.16 0.16 0.20 0.38 0.11

ACTG1 0.13 0.19 0.14 0.15 0.25 0.08

GAPDH * 0.18 0.20 0.17 0.19 0.24 0.29

UPK1A ** 0.70 0.36 0.59 0.63 0.49 0.49

It has been suggested that a combination of reference genes could provide a more
reliable and accurate normalization approach compared to individual reference genes. For
generating such a normalization factor, it is important that genes are not co-regulated. In
order to spot genes that may be co-regulated, we examined the functions and associated
biological processes of the stable genes. As shown in Table 7, the reference gene’s functions
(at the protein level) are varied including protein folding, glycolysis, signaling cascades,
intracellular vesicular trafficking, and splicing. They also participate in several different
prominent pathways. Of note, UBE and UBE2D3 both ubiquitylate proteins. Moreover,
an analysis of protein interaction (based on experimental evidence from literature) using
STRING showed interaction of UBC with UBE2D3 and DAZAP2 and of MORF4L1 with
ACTG1 (Figure 7). In addition, RHOA is involved in some biological processes shared
with other stable genes i.e., with RAB1A (cell migration and substrate adhesion-dependent
cell spreading), ACTG1 (response to mechanical stimulus and regulation of focal adhesion
assembly), DAZAP (positive regulation of protein serine/threonine kinase activity), and
VAPA (positive regulation of I-kappaB kinase/NF-kappaB signaling) (Table 7).
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monly for normalization (GAPDH) and a gene with high CV in all datasets (UPK1A) were included. 
(A,E). EV isolation workflows, (B,F). In column DNAse treatment during uEV RNA extraction, 
(C,G). A technical dataset (type of urine collection, pre-clearing the urine before freezing, and tech-
nical replicates) and (D,H). DKD cohort 1. Sample pairs or triplicates are named similarly apart from 
the abbreviation of the tested variable. Centrifuged (C), Coefficient of variation (CV), counts per 
million (CPM), hydrostatic filtration dialysis (HFD), macroalbuminuria (Macro), microalbuminuria 
(Micro), normoalbuminuria (Normo), ultracentrifugation (UC). 

 

Figure 5. The mRNA sequencing read counts of candidate reference genes in pre-analytical and
DKD uEV datasets from men. The uEV datasets included healthy controls and individuals with type
1 diabetes and different stages of albuminuria as well as comparisons of preanalytical variables
(all male). (A–D). Line graphs depicts CPM of HSPD1, SRSF3, VAPA, RAB1A and MORF4L1
across samples and (E,F). Boxplots depict CPM per candidate reference genes. A reference gene
used commonly for normalization (GAPDH) and a gene with high CV in all datasets (UPK1A)
were included. (A,E). EV isolation workflows, (B,F). In column DNAse treatment during uEV
RNA extraction, (C,G). A technical dataset (type of urine collection, pre-clearing the urine before
freezing, and technical replicates) and (D,H). DKD cohort 1. Sample pairs or triplicates are named
similarly apart from the abbreviation of the tested variable. Centrifuged (C), Coefficient of variation
(CV), counts per million (CPM), hydrostatic filtration dialysis (HFD), macroalbuminuria (Macro),
microalbuminuria (Micro), normoalbuminuria (Normo), ultracentrifugation (UC).

Genes 2023, 14, x FOR PEER REVIEW 25 of 44 
 

 

 
Figure 5. The mRNA sequencing read counts of candidate reference genes in pre-analytical and 
DKD uEV datasets from men. The uEV datasets included healthy controls and individuals with 
type 1 diabetes and different stages of albuminuria as well as comparisons of preanalytical variables 
(all male). (A–D). Line graphs depicts CPM of HSPD1, SRSF3, VAPA, RAB1A and MORF4L1 across 
samples and (E–F). Boxplots depict CPM per candidate reference genes. A reference gene used com-
monly for normalization (GAPDH) and a gene with high CV in all datasets (UPK1A) were included. 
(A,E). EV isolation workflows, (B,F). In column DNAse treatment during uEV RNA extraction, 
(C,G). A technical dataset (type of urine collection, pre-clearing the urine before freezing, and tech-
nical replicates) and (D,H). DKD cohort 1. Sample pairs or triplicates are named similarly apart from 
the abbreviation of the tested variable. Centrifuged (C), Coefficient of variation (CV), counts per 
million (CPM), hydrostatic filtration dialysis (HFD), macroalbuminuria (Macro), microalbuminuria 
(Micro), normoalbuminuria (Normo), ultracentrifugation (UC). 

 

Figure 6. Cont.



Genes 2023, 14, 1415 23 of 40Genes 2023, 14, x FOR PEER REVIEW 26 of 44 
 

 

 
Figure 6. The mRNA sequencing read counts of the candidate reference genes in uEV datasets 
from DKD study of women and from prostate cancer patients. (A,B). Line graphs depicts CPM of 
HSPD1, SRSF3, VAPA, RAB1A and MORF4L1 across samples and (C,D). Boxplots depict CPM per 
candidate reference genes. A reference gene used commonly for normalization (GAPDH) and a gene 
with high CV in all datasets (UPK1A) were included. The uEV datasets included A. DKD cohort 2 
(women with type 1 diabetes and different stages of albuminuria) and B. PCa patients and healthy 
controls (technical replicates, R1-3). Samples PCa1, 3 and 4 were obtained before prostatectomy. 
Sample PCa2 was obtained after proctectomy from the same donor as PCa1. Coefficient of variation 
(CV), counts per million (CPM), macroalbuminuria (Macro), microalbuminuria (Micro), normoal-
buminuria (Normo), prostate cancer (PCa). 

It has been suggested that a combination of reference genes could provide a more 
reliable and accurate normalization approach compared to individual reference genes. For 
generating such a normalization factor, it is important that genes are not co-regulated. In 
order to spot genes that may be co-regulated, we examined the functions and associated 
biological processes of the stable genes. As shown in Table 7, the reference gene’s func-
tions (at the protein level) are varied including protein folding, glycolysis, signaling cas-
cades, intracellular vesicular trafficking, and splicing. They also participate in several dif-
ferent prominent pathways. Of note, UBE and UBE2D3 both ubiquitylate proteins. More-
over, an analysis of protein interaction (based on experimental evidence from literature) 
using STRING showed interaction of UBC with UBE2D3 and DAZAP2 and of MORF4L1 
with ACTG1 (Figure 7). In addition, RHOA is involved in some biological processes 
shared with other stable genes i.e., with RAB1A (cell migration and substrate adhesion-
dependent cell spreading), ACTG1 (response to mechanical stimulus and regulation of 
focal adhesion assembly), DAZAP (positive regulation of protein serine/threonine kinase 
activity), and VAPA (positive regulation of I-kappaB kinase/NF-kappaB signaling) (Table 
7). 

Figure 6. The mRNA sequencing read counts of the candidate reference genes in uEV datasets from
DKD study of women and from prostate cancer patients. (A,B). Line graphs depicts CPM of HSPD1,
SRSF3, VAPA, RAB1A and MORF4L1 across samples and (C,D). Boxplots depict CPM per candidate
reference genes. A reference gene used commonly for normalization (GAPDH) and a gene with high
CV in all datasets (UPK1A) were included. The uEV datasets included A. DKD cohort 2 (women
with type 1 diabetes and different stages of albuminuria) and B. PCa patients and healthy controls
(technical replicates, R1-3). Samples PCa1, 3 and 4 were obtained before prostatectomy. Sample
PCa2 was obtained after prostactectomy from the same donor as PCa1. Coefficient of variation (CV),
counts per million (CPM), macroalbuminuria (Macro), microalbuminuria (Micro), normoalbuminuria
(Normo), prostate cancer (PCa).
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Table 7. Functions and gene ontology biological processes associated with the stable genes (GeneCards, www.genecards.org, accessed on 27 June 2023) and (Uniprot,
https://www.uniprot.org/, accessed on 28 April 2023).

Gene Name Entry Protein Names Function Gene Ontology (Biological Process)

PGK1 P00558 Phosphoglycerate kinase 1

It catalyses the glycolytic pathway
conversion of 1,3-diphosphoglycerate to
3-phosphoglycerate. It may act as a co-factor
of polymerase alpha.

canonical glycolysis [GO:0061621]; cellular response to hypoxia
[GO:0071456]; epithelial cell differentiation [GO:0030855]; gluconeogenesis
[GO:0006094]; glycolytic process [GO:0006096]; negative regulation of
angiogenesis [GO:0016525]; phosphorylation [GO:0016310]; plasminogen
activation [GO:0031639]

UBC P0CG48 Polyubiquitin-C

Polyubiquitin precursor. Ubiquitination has
been associated with processes such as
protein degradation, DNA repair, and cell
cycle regulation.

modification-dependent protein catabolic process [GO:0019941]; protein
ubiquitination [GO:0016567]

HSPD1 P10809 60 kDa heat shock protein,
mitochondrial

Member of the chaperonin family. Essential
role in folding and assembly of newly
imported proteins in the mitochondria.

‘de novo’ protein folding [GO:0006458]; activation of cysteine-type
endopeptidase activity involved in apoptotic process [GO:0006919];
apoptotic mitochondrial changes [GO:0008637]; B cell activation
[GO:0042113]; B cell proliferation [GO:0042100]; biological process involved
in interaction with symbiont [GO:0051702]; cellular response to interleukin-7
[GO:0098761]; chaperone-mediated protein complex assembly [GO:0051131];
isotype switching to IgG isotypes [GO:0048291]; mitochondrial unfolded
protein response [GO:0034514]; MyD88-dependent toll-like receptor
signaling pathway [GO:0002755]; negative regulation of apoptotic process
[GO:0043066]; positive regulation of apoptotic process [GO:0043065]; positive
regulation of interferon-alpha production [GO:0032727]; positive regulation
of interleukin-10 production [GO:0032733]; positive regulation of
interleukin-12 production [GO:0032735]; positive regulation of interleukin-6
production [GO:0032755]; positive regulation of macrophage activation
[GO:0043032]; positive regulation of T cell activation [GO:0050870]; positive
regulation of T cell mediated immune response to tumor cell [GO:0002842];
positive regulation of type II interferon production [GO:0032729]; protein
folding [GO:0006457]; protein import into mitochondrial intermembrane
space [GO:0045041]; protein maturation [GO:0051604]; protein refolding
[GO:0042026]; protein stabilization [GO:0050821]; response to cold
[GO:0009409]; response to unfolded protein [GO:0006986]; T cell activation
[GO:0042110]

www.genecards.org
https://www.uniprot.org/
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Table 7. Cont.

Gene Name Entry Protein Names Function Gene Ontology (Biological Process)

UBE2D3 P61077 Ubiquitin-conjugating enzyme
E2 D3

Member of the E2 ubiquitin-conjugating
enzyme family. This enzyme participates of
the ubiquitination of proteins.

apoptotic process [GO:0006915]; DNA repair [GO:0006281]; negative
regulation of BMP signaling pathway [GO:0030514]; negative regulation of
transcription by RNA polymerase II [GO:0000122]; positive regulation of
protein targeting to mitochondrion [GO:1903955]; proteasome-mediated
ubiquitin-dependent protein catabolic process [GO:0043161]; protein
autoubiquitination [GO:0051865]; protein K11-linked ubiquitination
[GO:0070979]; protein K48-linked ubiquitination [GO:0070936]; protein
modification process [GO:0036211]; protein monoubiquitination
[GO:0006513]; protein polyubiquitination [GO:0000209]; protein
ubiquitination [GO:0016567]

RHOA P61586 Transforming protein RhoA
Member of the Rho family of small GTPases.
These proteins function as molecular
switches in signal transduction cascades.

actin cytoskeleton organization [GO:0030036]; actin cytoskeleton
reorganization [GO:0031532]; actin filament organization [GO:0007015];
alpha-beta T cell lineage commitment [GO:0002363]; androgen receptor
signaling pathway [GO:0030521]; angiotensin-mediated vasoconstriction
involved in regulation of systemic arterial blood pressure [GO:0001998];
aortic valve formation [GO:0003189]; apical junction assembly [GO:0043297];
apolipoprotein A-I-mediated signaling pathway [GO:0038027]; beta selection
[GO:0043366]; cell junction assembly [GO:0034329]; cell migration
[GO:0016477]; cell-matrix adhesion [GO:0007160]; cellular response to
chemokine [GO:1990869]; cellular response to cytokine stimulus
[GO:0071345]; cellular response to lipopolysaccharide [GO:0071222]; cerebral
cortex cell migration [GO:0021795]; cleavage furrow formation [GO:0036089];
cortical cytoskeleton organization [GO:0030865]; cytoplasmic microtubule
organization [GO:0031122]; endothelial cell migration [GO:0043542];
endothelial tube lumen extension [GO:0097498]; establishment of epithelial
cell apical/basal polarity [GO:0045198]; establishment or maintenance of cell
polarity [GO:0007163]; forebrain radial glial cell differentiation [GO:0021861];
GTP metabolic process [GO:0046039]; kidney development [GO:0001822];
mitotic cleavage furrow formation [GO:1903673]; mitotic spindle assembly
[GO:0090307]; motor neuron apoptotic process [GO:0097049]; negative
chemotaxis [GO:0050919]; negative regulation of cell migration involved in
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Gene Name Entry Protein Names Function Gene Ontology (Biological Process)

RHOA P61586 Transforming protein RhoA
Member of the Rho family of small GTPases.
These proteins function as molecular
switches in signal transduction cascades.

sprouting angiogenesis [GO:0090051]; negative regulation of cell size
[GO:0045792]; negative regulation of cell-substrate adhesion [GO:0010812];
negative regulation of I-kappaB kinase/NF-kappaB signaling [GO:0043124];
negative regulation of intracellular steroid hormone receptor signaling
pathway [GO:0033144]; negative regulation of motor neuron apoptotic
process [GO:2000672]; negative regulation of neuron differentiation
[GO:0045665]; negative regulation of neuron projection development
[GO:0010977]; negative regulation of oxidative phosphorylation
[GO:0090324]; negative regulation of reactive oxygen species biosynthetic
process [GO:1903427]; negative regulation of vascular associated smooth
muscle cell migration [GO:1904753]; negative regulation of vascular
associated smooth muscle cell proliferation [GO:1904706]; neuron migration
[GO:0001764]; neuron projection morphogenesis [GO:0048812];
odontogenesis [GO:0042476]; ossification involved in bone maturation
[GO:0043931]; positive regulation of actin filament polymerization
[GO:0030838]; positive regulation of alpha-beta T cell differentiation
[GO:0046638]; positive regulation of cell growth [GO:0030307]; positive
regulation of cysteine-type endopeptidase activity involved in apoptotic
process [GO:0043280]; positive regulation of cytokinesis [GO:0032467];
positive regulation of I-kappaB kinase/NF-kappaB signaling [GO:0043123];
positive regulation of leukocyte adhesion to vascular endothelial cell
[GO:1904996]; positive regulation of lipase activity [GO:0060193]; positive
regulation of neuron apoptotic process [GO:0043525]; positive regulation of
neuron differentiation [GO:0045666]; positive regulation of NIK/NF-kappaB
signaling [GO:1901224]; positive regulation of podosome assembly
[GO:0071803]; positive regulation of protein serine/threonine kinase activity
[GO:0071902]; positive regulation of stress fiber assembly [GO:0051496];
positive regulation of T cell migration [GO:2000406]; positive regulation of
translation [GO:0045727]; positive regulation of vascular associated smooth
muscle contraction [GO:1904695]; regulation of actin cytoskeleton
organization [GO:0032956]; regulation of calcium ion transport [GO:0051924];
regulation of cell migration [GO:0030334]; regulation of cell shape
[GO:0008360]; regulation of dendrite development [GO:0050773]; regulation
of focal adhesion assembly [GO:0051893]; regulation of microtubule
cytoskeleton organization [GO:0070507]; regulation of modification of
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Gene Name Entry Protein Names Function Gene Ontology (Biological Process)

RHOA P61586 Transforming protein RhoA
Member of the Rho family of small GTPases.
These proteins function as molecular
switches in signal transduction cascades.

postsynaptic actin cytoskeleton [GO:1905274]; regulation of modification of
postsynaptic structure [GO:0099159]; regulation of neural precursor cell
proliferation [GO:2000177]; regulation of osteoblast proliferation
[GO:0033688]; regulation of systemic arterial blood pressure by endothelin
[GO:0003100]; regulation of transcription by RNA polymerase II
[GO:0006357]; response to amino acid [GO:0043200]; response to ethanol
[GO:0045471]; response to glucocorticoid [GO:0051384]; response to glucose
[GO:0009749]; response to hypoxia [GO:0001666]; response to mechanical
stimulus [GO:0009612]; response to xenobiotic stimulus [GO:0009410]; Rho
protein signal transduction [GO:0007266]; Roundabout signaling pathway
[GO:0035385]; skeletal muscle satellite cell migration [GO:1902766]; skeletal
muscle tissue development [GO:0007519]; stress fiber assembly [GO:0043149];
stress-activated protein kinase signaling cascade [GO:0031098]; substantia
nigra development [GO:0021762]; substrate adhesion-dependent cell
spreading [GO:0034446]; trabecula morphogenesis [GO:0061383]; Wnt
signaling pathway, planar cell polarity pathway [GO:0060071]; wound
healing, spreading of cells [GO:0044319]

RAB1A P62820 Ras-related protein Rab-1A
Member of the Ras superfamily of GTPases.
These proteins act as regulators of
intracellular membrane trafficking.

autophagosome assembly [GO:0000045]; autophagy [GO:0006914]; cell
migration [GO:0016477]; COPII-coated vesicle cargo loading [GO:0090110];
defense response to bacterium [GO:0042742]; endocytosis [GO:0006897];
endoplasmic reticulum to Golgi vesicle-mediated transport [GO:0006888];
Golgi organization [GO:0007030]; growth hormone secretion [GO:0030252];
intracellular protein transport [GO:0006886]; melanosome transport
[GO:0032402]; positive regulation of glycoprotein metabolic process
[GO:1903020]; positive regulation of interleukin-8 production [GO:0032757];
substrate adhesion-dependent cell spreading [GO:0034446]; vesicle transport
along microtubule [GO:0047496]; vesicle-mediated transport [GO:0016192];
virion assembly [GO:0019068]
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Gene Name Entry Protein Names Function Gene Ontology (Biological Process)

ACTG1 P63261 Actin, cytoplasmic 2 Cytoplasmic actin expressed in all cell types.

angiogenesis [GO:0001525]; cellular response to type II interferon
[GO:0071346]; maintenance of blood-brain barrier [GO:0035633];
morphogenesis of a polarized epithelium [GO:0001738]; platelet aggregation
[GO:0070527]; positive regulation of cell migration [GO:0030335]; positive
regulation of gene expression [GO:0010628]; positive regulation of wound
healing [GO:0090303]; protein localization to bicellular tight junction
[GO:1902396]; regulation of focal adhesion assembly [GO:0051893];
regulation of stress fiber assembly [GO:0051492]; regulation of synaptic
vesicle endocytosis [GO:1900242]; regulation of transepithelial transport
[GO:0150111]; response to calcium ion [GO:0051592]; response to mechanical
stimulus [GO:0009612]; retina homeostasis [GO:0001895]; sarcomere
organization [GO:0045214]; tight junction assembly [GO:0120192]

SRSF3 P84103
Serine/arginine-rich splicing
factor 3 (Pre-mRNA-splicing
factor SRP20)

Member of the serine/arginine (SR)-rich
family of pre-mRNA splicing factors. This
protein is part of the spliceosome.

cellular response to leukemia inhibitory factor [GO:1990830]; mRNA export
from nucleus [GO:0006406]; mRNA splicing, via spliceosome [GO:0000398];
primary miRNA processing [GO:0031053]; regulation of mRNA splicing, via
spliceosome [GO:0048024]

DAZAP2 Q15038

DAZ-associated protein 2
(Deleted in
azoospermia-associated
protein 2)

Proline rich protein that is involved in
various biological processes by interacting
with proteins such as DAZ and function.

positive regulation of protein serine/threonine kinase activity [GO:0071902];
positive regulation of RNA polymerase II regulatory region sequence-specific
DNA binding [GO:1905636]; protein destabilization [GO:0031648]; stress
granule assembly [GO:0034063]

VAPA Q9P0L0
Vesicle-associated membrane
protein-associated protein A
(VAMP-A)

Transmembrane protein which may involve
function in vesicle trafficking, membrane
fusion, protein complex assembly and cell
motility.

cell death [GO:0008219]; ceramide transport [GO:0035627]; COPII-coated
vesicle budding [GO:0090114]; endoplasmic reticulum to Golgi
vesicle-mediated transport [GO:0006888]; membrane fusion [GO:0061025];
negative regulation by host of viral genome replication [GO:0044828]; neuron
projection development [GO:0031175]; phospholipid transport [GO:0015914];
positive regulation by host of viral genome replication [GO:0044829]; positive
regulation of I-kappaB kinase/NF-kappaB signaling [GO:0043123]; protein
localization to endoplasmic reticulum [GO:0070972]; sphingomyelin
biosynthetic process [GO:0006686]; sterol transport [GO:0015918]; viral
release from host cell [GO:0019076]
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Gene Name Entry Protein Names Function Gene Ontology (Biological Process)

MORF4L1 Q9UBU8
Mortality factor 4-like protein
1 (MORF-related gene 15
protein)

Involved in transcriptional activation by
being part of the NuA4 histone
acetyltransferase (HAT) complex.

chromatin organization [GO:0006325]; double-strand break repair via
homologous recombination [GO:0000724]; fibroblast proliferation
[GO:0048144]; histone acetylation [GO:0016573]; histone deacetylation
[GO:0016575]; histone H2A acetylation [GO:0043968]; histone H4 acetylation
[GO:0043967]; positive regulation of DNA-templated transcription
[GO:0045893]; positive regulation of double-strand break repair via
homologous recombination [GO:1905168]; regulation of apoptotic process
[GO:0042981]; regulation of cell cycle [GO:0051726]; regulation of
double-strand break repair [GO:2000779]
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Further we analyzed the stability of the candidate reference genes in datasets from
samples that did not perform well in mRNA sequencing i.e., urines stored at −20 ◦C and
uEV isolated with NG isolation workflow. We found that all genes were less stable in
samples stored at −20 ◦C and in NG isolates (Figure S3). Of note, in many NG samples
the candidate reference genes were not detected. Despite of this, HSPD1, SRSF3, VAPA,
RAB1A, MORF4L1, PGK1, RHOA, UBE2D3, DAZAP2, UBC, ACTG1, showed to be stable
in all other diverse experimental conditions and across disease groups. Thus, they may
serve as reference genes for uEV mRNA related research.

4. Discussion

Urinary EV have been regarded as a promising source of biomarkers [5] and this idea
is getting support from an increasing number of studies reporting candidate markers for
diseases of diverse etiology [8,9,28,162,163]. However, many obstacles prevent replication
of biomarker results and, as a consequence, clinical translation. In this study, we approached
three of these obstacles: urine storage, uEV isolation and reference genes in kidney disease
transcriptomic research.

The first obstacle is the lack of guidelines to handle and store urine. Urine storage
temperature (−20 ◦C vs. −80 ◦C) has been shown to affect the size and concentration
of uEV [164] and recovery of uEV protein markers but the latter could be sorted out by
vortexing samples after thawing [165]. In addition, qPCR-based research has been done on
uEV RNA by comparing storage temperatures—including −80 ◦C, 4 ◦C, room temperature
and 37 ◦C with variable results [166–168]. Our group showed that the global uEV miRNA
and mRNA profiles were affected when urines were stored at −20 ◦C vs. −80 ◦C [14]
and we found sets of downregulated and upregulated genes. As particularly the −20 ◦C
downregulated genes were involved e.g., in carbohydrate or lipid metabolism, the result
suggested that −20 ◦C stored samples are less useful for studying kidney diseases. Here,
analyzing further the data, we found that a striking 75% of the −20 ◦C downregulated
miRNAs were associated with various kidney diseases (Table 2). Thus, the result reinforces
the idea of avoiding urine samples stored at suboptimal temperatures [14], because such
samples might not contain putative valuable disease markers anymore.

We also observed that despite the normalized differential expression, miRNAs that
were up-regulated in samples stored at −20 ◦C had still lower raw counts than the same
miRNAs in −80 ◦C stored samples. Thus, the result was the opposite than what the
normalized counts showed. TMM normalization is a method based on library size that
uses scaling of raw reads to render library sizes comparable which is needed for differential
expression analysis [169]. Considering that the library size of the −20 ◦C samples was
smaller (higher number of 0 raw counts and lower expression in general) than that of the
−80 ◦C samples, the upregulation of miRNAs in −20 ◦C samples may be an artifact of the
data analysis. Further, we showed that kidney-RNAs were detected in small quantities after
storage at −20 ◦C (Figure 1). In particular, kidney enriched mRNAs in uEV isolates were
highly affected since almost one third (30%) of them were not detected at all in samples
stored at −20 ◦C. Our results agree with and provide further support to a set of urine
storage guidelines that has been published recently [17].

The second obstacle is the lack of standardization of uEV isolation methods. Cur-
rently, many isolation principles and workflows are available [170] and it is well known
that they typically produce different results [13,15,16,168,171]. Obviously, this represents
a problem for study comparisons, even if reporting guidelines now help to identify dif-
ferences, facilitate replication and/or explain the lack of it [12,172]. Prior studies have
explored the effect of uEV isolation workflows on uEV RNA sequencing profiles focusing
on miRNA sequencing [15,20–22]. We have previously demonstrated that the uEV isola-
tion workflow (UC, HFD and NG) has a surprisingly variable impact on the miRNA and
mRNA profiles [13]. Specifically, global miRNA profile analysis suggested that the three
workflows were similar overall or—at least—did not differ systematically. This was in
contrast to the global mRNA results, where UC and HFD were similar while NG clustered
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separately [13]. Here, by analyzing the top expressed miRNAs of the kidney, we found that
the expression of 18 miRNAs was lower for a set of HFD samples compared to UC and NG
samples (Figure 2). While for 13 miRNAs the differences in the expression levels between
UC and HFD were small (3–35%) and could be related to technical bias, for 5 miRNAs
differences were in the range of 35–55% and could represent real differences. Of note,
miRNA hsa-miR-101-3p (a top kidney expressed miRNA) was significantly downregulated
in HFD relative to UC samples [13]. The observation that methods capture slightly different
kidney enriched miRNAs could be explained, at least partly, by differences in the uEV
populations and/or non-EV components captured by the isolation workflows [13]. On the
other hand, analysis of kidney enriched mRNAs was consistent with the global analysis
i.e., NG samples could not capture these genes as well as UC and HFD (Figure 2). Thus,
this shows that for a specific research topic like kidney research, it is best to evaluate the
differences between methods using specific end-point targets (kidney-RNAs) in addition to
a global level analysis.

In addition to urine storage temperature and uEV isolation workflows, many other
preanalytical experimental conditions impact the analytical endpoints as well [12]. As
experimental set-ups can differ greatly between studies [18], biomarker results cannot be
replicated hindering translation of findings to clinic [173]. Considering all the variability,
we were positively surprised that our UC workflow replicated some of the previous results
from DKD miRNA studies using uEV or urine/urine sediments (see Table 4) i.e., a set of the
miRNAs separated experimental groups (healthy controls vs. T1D with macroalbuminuria)
(Figure 3). Further, specifically eight miRNAs followed the same regulation direction
in both the literature and our dataset. Three of the eight miRNAs had also evidence of
DKD-linked dysregulation in kidney or plasma of individuals with DKD and two showed
to be dysregulated in kidney cell lines under hyperglycemic conditions in vitro (in addition
to evidence in urine/uEV) and all of them related to pathological mechanisms in DKD such
as fibrosis and impaired autophagy [174–176] (Table 5). However, our dataset had a low
number of samples and thus replication of findings in bigger and more varied cohorts is
still needed. Interestingly, we found 12 miRNAs in common between the two literature
review generated DKD miRNA lists. These miRNAs were associated with pathological
pathways involved in DKD such as hypertrophy and fibrosis. These results suggest that
the uEV capture a specific subset of DKD-associated miRNA reflecting the differences in
the tissue.

The third obstacle jeopardizing the biomarker replication is the lack of normalizers—in
the EV transcriptomics field, this means lack of stable reference genes across e.g., many
preanalytical workflows and disease conditions. Urinary EV reference genes are a poorly
explored topic. While some recommendations exist on how to select reference genes or
normalize gene expression data [29,30,177], there are only few studies on this topic in urine.
GAPDH, a commonly used reference gene, and UBC were the most stable in EV derived
from liver and breast cancer cell lines [33]. In contrast, Singh et al. (2022) tested five common
reference genes (including GAPDH) and found that B2M and RPL13 were the most stable
in uEV isolated using PEG from patients with renal graft dysfunction. Thus, the stability of
GAPDH appears to be dependent on the disease, biofluid and/or EV isolation method. In
this study, using datasets available in our original publications [6,9,13,14], we discovered
11 mRNAs (HSPD1,SRSF3, VAPA, RAB1A, MORF4L1, PGK1, RHOA, UBE2D3, DAZAP2,
UBC, ACTG1) that were stable across datasets including different pre-analytical conditions,
men and women, healthy controls, T1D and T2D patients with different albuminuria status;
and prostate cancer patients (Figures 4–6, S1 and S2). However, in poor quality sequencing
datasets (urine stored at −20 ◦C and NG isolation workflow), the candidate genes showed
poor stability i.e., high CV (Figure S3). Of note, our finding regarding UBC stability in uEV
is concordant with findings of Gorgi Bahri (2021) in cell culture media derived EV. Further,
even though GAPDH was not one of the most stable mRNAs, it was less variable than
UPK1A (a highly variable mRNA selected to compare our candidate reference mRNAs).
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One of the reasons that prevents the study of uEV reference genes is the lack of data.
Many studies have focused on miRNA/small RNA sequencing, but only few on RNA
sequencing. Moreover, the few studies with a good amount of uEV samples from pa-
tients [59,178] do not have the associated raw sequencing data and/or raw sequencing
counts freely available (to date). Local regulations could hinder the publication of sequenc-
ing data but raw count data describing all the pre-processing and alignment procedures
is also helpful for the research community. Such practicalities should be considered for
the informed consent and ethical permissions. Given more available datasets in future,
the stability of our 11 candidate mRNAs could be further tested and a combination of
selected genes used as reference genes e.g., by calculating the geometrical mean [179]. As it
is recommended that reference genes should belong to different biological pathways and
that expression is regulated independently for each reference gene, caution should be taken
if using UBC and UBED3 and/or DAZAP2 or MORF4L1 and ACTG1 together since an
analysis using STRING showed evidence of experimentally validated interactions in the lit-
erature (Figure 7). In addition, UBC and UBE2D3 are co-expressed (https://string-db.org/,
accessed on 28 April 2023) and form a protein complex [180]. Moreover, RHOA shared
biological processes with RAB1A, ACTG1, DAZAP and VAPA (Table 7). It is good to keep
in mind that the uEV reference mRNA candidates could be contributing to biological pro-
cesses associated with kidney diseases e.g., RAB1A contributes to autophagy. Nevertheless,
their stability in our datasets which included isolates from healthy and type 1 diabetic
individuals with and without DKD, and diverse preanalytical setups (roughly 200 isolates)
motivates further experimental validations.

We acknowledge that a full understanding of the effect of all pre-analytical choices and
pathophysiological conditions for transcriptomic applications calls for big testing resources.
Ideally, cross-laboratory testing should be performed, and laboratories could implement
reference materials, a gold standard isolation protocol, and housekeeping normalizers. Our
results here help towards this goal by providing new insights for the three key obstacles
hindering uEV biomarker validation. For the first two, urine storage and uEV isolation,
we found that it is important to study the raw counts in addition to the normalized counts
and kidney-RNAs in addition to the global transcriptome—they offer different although
complementary results. For the third, the reference genes, we provide 11 mRNAs that
could be tested for qPCR normalization in the context of DKD and prostate cancer. Finally,
despite the known and hereby addressed variability between uEV studies, we successfully
replicated many previously found urine/uEV/urinary pellet miRNAs associated with DKD
in our UC DKD dataset. We regard this as an encouraging result for the reproducibility of
uEV biomarker research.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/genes14071415/s1, Figure S1: The mRNA sequencing
read counts of six of the eleven candidate reference genes across samples in pre-analytical and DKD
uEV datasets from men. Figure S2: The mRNA sequencing read counts of six of the eleven candidate
reference genes across samples in uEV datasets from DKD study of women and from prostate cancer
patients. Figure S3: The mRNA sequencing read counts of candidate reference genes in storage
temperature and NG datasets. Table S1: Dysregulated miRNAs in samples stored at −20 ◦C, raw and
normalized counts. Table S2: Kidney- RNAs raw and normalized counts for storage temperature
dataset. Table S3: Kidney-RNAs raw and normalized counts for Isolation workflows.
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