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Abstract: RNA splicing is a key regulatory step in the proper control of gene expression. It is a
highly dynamic process orchestrated by the spliceosome, a macro-molecular machinery that consists
of protein and RNA components. The dysregulation of RNA splicing has been observed in many
human pathologies ranging from neurodegenerative diseases to cancer. The recent identification
of recurrent mutations in the core components of the spliceosome in hematologic malignancies has
advanced our knowledge of how splicing alterations contribute to disease pathogenesis. This review
article will discuss our current understanding of how aberrant RNA splicing regulation drives tumor
initiation and progression. We will also review current therapeutic modalities and highlight emerging
technologies designed to target RNA splicing for cancer treatment.

Keywords: alternative splicing; splicing factor mutations; spliceosome inhibitors; anti-sense oligonu-
cleotides; immuno-oncology therapies

1. Introduction

RNA splicing is a fundamental mechanism of gene regulation in eukaryotes whereby
premature mRNA (pre-mRNA) molecules are processed to form mature mRNA transcripts
for protein translation. Most multi-exon genes undergo alternative splicing (AS), which
generates multiple mature mRNA molecules to diversify the proteome and contributes to
fundamental cellular processes, including cellular differentiation, development, and cell
death. It is now widely appreciated that AS dysregulation is a key hallmark of multiple
human diseases, including neurodegeneration, immune disorders, and cancer. Here, we
review the basic mechanisms of splicing and how neoplastic cells co-opt splicing machinery
in tumor initiation and progression. We will also review therapeutic targeting of splicing
dysregulation with small molecules and emerging technologies.

2. Regulation of Splicing

RNA splicing is a complex and highly regulated process involving the removal of
introns and the ligation of exons to produce mature mRNAs for protein translation. This is
mediated by the spliceosome, a large complex consisting of ribonucleoproteins (RNPs) and
small nuclear RNAs (snRNAs). Landmark studies in the last few years have increased our
understanding of the structure and function of the eukaryotic spliceosome and are reviewed
in [1]. The major spliceosome, which consists of five small nuclear RNPs (snRNPs), U1,
U2, U4, U5, and U6, is responsible for removing ~99% of human introns, while the U5,
U11, U12, U4atac, and U6atac snRNPs are responsible for minor intron splicing. Splicing
catalysis is initiated when the spliceosome complex recognizes cis-regulatory sequences in
the pre-mRNA such as the GU- and AG-dinucleotide sequences on the 5’ and 3′ splice sites
(ss), respectively, the polypyrimidine tract, and the branchpoint sequence (BPS) (Figure 1A).
The U1 snRNP binds the 5′ss, followed by the binding of splicing factor 1 (SF1) to the
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BPS located proximal to the 3’ss. The U2 auxiliary factors (U2AF1/U2AF2 heterodimer)
recognize the 3’ss and the polypyrimidine tract. The distinction of the 3′ splice site is
reinforced by the polypyrimidine tract, which serves as an essential signal for recruiting
additional trans-acting factors to the 3’ splice site. Following the establishment of the
early complex (complex E), the U2 snRNP, which contains the splicing factor 3b subunit 1
(SF3B1), displaces SF1 at the branchpoint via base pairing with U2 snRNAs and interacts
with the U2AFs to form complex A. This is followed by the recruitment of the U4/U5/U6
tri-snRNP to form the activated B and catalytically active spliceosome (B*) complex, which
executes the first trans-esterification reaction, followed by the second trans-esterification
reaction by the catalytically active C (C*) complex. At the final step of splicing catalysis, the
spliceosome components and the intron lariat dissociate from the ligated exons, forming
a mature mRNA molecule (Figure 1B). Splicing can be further regulated by trans-acting
RNA binding proteins (RBPs), including the serine/arginine (SR) and the heterogenous
nuclear ribonuclear protein (hnRNP) family proteins, which possess the ability to promote
or repress splicing by the sequence-specific recognition of cis-elements known as the exonic
splicing enhancers (ESEs), intronic splicing enhancers (ISEs), exonic splicing silencers (ESSs),
and intronic splicing silencers (ISSs) (Figure 1A), which are reviewed extensively here [2].
Together, the combination of cis-elements and trans-acting factors dictate the final usage of
splice sites, resulting in a single gene that encodes multiple distinct protein isoforms.
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snRNP replaces SF1 and recognizes the branchpoint adenosine via base pairing, forming the A
complex. The U4/5/6 tri-snRNP complex is recruited to the A complex to form the B complex
(pre-activated spliceosome). Through a series of conformational changes that displaces the U1 and U4
snRNPs and results in the formation of the activated B (Bact) and catalytic B (B*) complexes, resulting
in the first trans-esterification reaction step. This is followed by the formation of the activated C
complex and the catalytic C complex (C*), which executes the second trans-esterification reaction.
The completion of the cycle results in the formation of mature mRNAs via exon ligation and the
release of the remaining splicing proteins and the intron lariat.

3. Altered Splicing Factor Expression in Cancer

In the last decade, multiple studies revealed that the splicing machinery could be
corrupted by cancer cells for disease initiation and progression. This includes altered
expression and somatic mutations in trans-acting core splicing factors and synonymous
mutations in cis-regulatory elements that inhibit the productive splicing of tumor suppres-
sor genes [3,4]. Similarly, altered expression levels of multiple splicing factors have been
observed in various solid tumors, resulting in the widespread dysregulation of alternative
splicing patterns (summarized in Table 1). One of the most well-studied pro-tumorigenic
splicing factors is SRSF1 [5,6], which is a part of the serine/arginine-rich (SR) protein
family. SRSF1 is overexpressed in many cancers, including breast, lung, and colon, via
copy number gain and altered expression regulation. Overexpression of SRSF1 promotes
the growth of breast cancer cells and drives the alternative splicing of isoforms associated
with various cancer hallmarks such as apoptosis (e.g., BIN1 and BIM), proliferation (e.g.,
RON, MKNK2, and S6K1), and DNA damage response (e.g., PTPMT1) [5,7,8]. SRSF1 is
a known transcriptional target of MYC; SRSF1 overexpression collaborates with MYC in
tumorigenesis in vitro and in vivo, in part, via an increased activation of the mTORC1
signaling pathway and protein translation. Other commonly mis-expressed splicing factors
in solid tumors include multiple SR proteins, hnRNP proteins, and members of other RNA
binding proteins, including RBM5, RBM10, and RBFOX2 (reviewed extensively here [9]).

Table 1. Splicing factor alterations in cancer.

Organ Splicing Factor Type of Alterations

Brain SRSF1, SRSF3, HNRNPA1, HNRNPA2,
HNRNPHK Upregulation

Breast

SRSF1, SRSF3, SRSF4, SRSF5, SRSF6, TRA2B,
HNRNPA1, HNRNPI

RBM5, RBFOX2, HNRNPK
SF3B1

Upregulation
Downregulation

Somatic mutation

Bladder SRSF1, SRSF3 Upregulation

Colon SRSF1, SRSF3, SRSF6, SRSF10, TRA2B
HNRNPK, RBFOX2

Upregulation
Downregulation

Intestine SRSF1 Upregulation

Kidney SRSF1, SRSF3 Upregulation

Liver SRSF3 Upregulation

Lung
SRSF1, SRSF3, SRSF5, SRSF6, TRA2B

RBM5, QKI
RBM10, U2AF1

Upregulation
Downregulation

Somatic mutation

Skin
SRSF3

HNRNPK
SF3B1, SRSF2

Upregulation
Downregulation

Somatic mutation



Genes 2023, 14, 1378 4 of 21

Table 1. Cont.

Organ Splicing Factor Type of Alterations

Thyroid SRSF1, SRSF3
RBM10

Upregulation
Somatic mutation

Myeloid leukemias SF3B1, SRSF2, U2AF1, ZRSR2 Somatic mutation

Chronic
lymphocytic

leukemia
SF3B1 Somatic mutation

4. Recurrent Mutations in Splicing Factors in Cancer

A decade ago, several landmark studies identified recurrent mutations in core splic-
ing factors in myelodysplastic syndromes [10] (MDS) and other additional malignancies,
including chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), myelo-
proliferative neoplasms (MPN), uveal melanoma, pancreatic ductal adenocarcinoma, lung
adenocarcinoma, and breast cancers (reviewed in [11]). Genes most frequently targeted
for mutations are found in SF3B1, SRSF2, U2AF1, and ZRSR2. Mutations in SF3B1, SRSF2,
and U2AF1 occur exclusively as heterozygous missense mutations at “hot-spot” regions
(Figure 2), whereas ZRSR2 mutations are scattered across the gene and are predicted to
confer a loss-of-function. Recently, mutations targeting U1, U2, and U11 snRNAs have
been found in CLL and medulloblastoma (reviewed in [12]). Taken together, these studies
provide strong evidence linking splicing perturbations to cancer pathogenesis. Even though
the spliceosome machinery contains more than 180 proteins, the reason as to why there
are only a few frequent targets of somatic mutations in cancers remains an open question.
The following section will review how mutations in splicing factors affect normal splicing
and the potential functional role of these mutations in myeloid neoplasms. We will then
discuss the potential for targeting these mutations or reversing their effects with splicing
modulators in cancer.
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Figure 2. Somatic mutations in the four most commonly mutated spliceosome-associated proteins
SF3B1, SRSF2, U2AF1, and ZRSR2. Plots showing the locations of recurrent mutations. HD—Heat
domain; RRM—RNA recognition motif, RS—serine/arginine-rich; ZnF—zinc finger; UHM—U2AF
homology motif; fs—frameshift; sp—splice site.
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4.1. SF3B1 Mutations

SF3B1 is a component of the U2 snRNP that binds to the branchpoint in the early
stages of pre-spliceosome formation, and is involved in recognizing the majority of 3’ss [13].
Transcriptomic analyses revealed that cancer-associated SF3B1 mutations are generally
associated with the usage of alternative 3’ (a3′ss) ~10–30 nucleotides upstream of the
canonical 3’ss. The region around the cryptic 3’ splice site coincides with the enrichment of
adenosines that also appear to have a stronger base-pairing affinity with the cognate U2
snRNA relative to the region around the canonical BPS. Structural analyses suggest that mu-
tant SF3B1 may alter the charge and shape of the corresponding amino acid residues, which
disrupts the interaction with pre-mRNA by approximately 10–30 nucleotides, consistent
with bioinformatic predictions [14–17].

Mutations in SF3B1 are enriched in a specific MDS subtype known as refractory anemia
with ring sideroblasts (RARS), characterized by dysplastic erythroblasts with abnormal
iron accumulation in the mitochondria that manifests as a “ring” of blue granules. Most
of the mutations in SF3B1 are clustered near the HEAT repeat domains 4 to 7 (HR4–HR7),
with the most frequently mutated residues being K700 and K666 in MDS and CLL; while
mutations in the R625 position are the most commonly occurring allele in uveal melanoma.
The functional relevance of these distinct mutations to disease subtypes remains unclear
and is an interesting area of focus for future studies.

Multiple studies predicted that mutant SF3B1-induced a3’ss usage results in the in-
troduction of premature termination codons (PTCs), resulting in the nonsense-mediated
decay (NMD) of the target transcript. To date, thousands of aberrantly mis-spliced tran-
scripts have been identified across multiple cancer types, illustrating the robust effect of
SF3B1 mutations on splicing. However, only a few targets have been causally implicated
in disease phenotypes, including ABCB7, TMEM14c, ALAS2 in heme biosynthesis [18],
BRD9 in the initiation and maintenance of solid tumors [19], and PPP2R5A in MYC regula-
tion [20]. Overall, while global transcriptomic studies are powerful tools for inferring direct
targets of aberrant splicing, these studies also highlight current challenges associated with
identifying the functionally relevant and causative mis-splicing events that drive specific
disease phenotypes.

4.2. U2AF1

U2AF1 is mutated in ~15% of MDS, ~10% of CMML, and ~10% of secondary AML
(s-AML) patients and is associated with poor prognosis. It is also found in a subset of
pancreatic ductal adenocarcinomas and non-small cell lung adenocarcinomas. U2AF1/2
heterodimer recognizes the AG-dinucleotide at the 3’ss during the early steps of splicing
catalysis in a sequence-specific manner [21]. U2AF1 mutations are found in two hotspots,
S34 and Q157, located within the zinc finger domains. Mutant U2AF1 affects splicing at the
3’ss: the S34 allele is associated with increased cassette exon inclusion if the nucleotide pre-
ceding the 3′ss is C/A over T, while the Q157 allele preferentially excludes exons containing
A and includes exons containing G in the +1 position of the 3′ss [22]. Several mis-spliced
targets include H2AFY, BCOR, ATR, and GNAS; aberrant H2AFY and STRAP isoforms
are associated with myeloid-biased hematopoietic differentiation in CD34+ hematopoietic
progenitors in ex vivo colony assays [23]. Further functional validation is needed to identify
additional disease-causing isoforms.

4.3. SRSF2

SRSF2 mutations are found in ~50% of chronic myelomonocytic leukemia (CMML),
~20% of MDS, and ~15% of AML patients and ~3–5% of healthy individuals with clonal
hematopoiesis (CH). The presence of SRSF2 mutation in MDS is often associated with poor
prognosis and a higher risk of transformation to acute leukemia [12]. SRSF2 belongs to
the serine/arginine-rich (SR) protein family and is involved in exon inclusion by binding
RNA via the RNA recognition motif (RRM). Substitution at the proline 95 region of SRSF2
alters its RNA binding affinity in a sequence-specific manner such that wildtype SRSF2
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binds C-rich and G-rich motifs in the ESE with similar affinity, while mutant SRSF2 prefers
C-rich motifs and suppresses G-rich motifs [24]. Mutant SRSF2 mis-splices several key
targets, including chromatin modifiers EZH2, BCOR, transcriptional regulator INTS3, and
cell death regulator CASP8 [25].

4.4. ZRSR2

Somatic ZRSR2 mutations are scattered across the coding region, typically occurring
as frameshift indels, splice site, or nonsense mutations, and are predicted to disrupt the
open reading frame (Figure 2). As an X-linked gene, the mutations of ZRSR2 are found
predominantly in male patients in ~10% of MDS and ~5% of CMML cases [12]. As a
core component of the minor spliceosome, ZRSR2 is responsible for the splicing of minor
introns, which accounts for ~1% of human introns. Interestingly, ZRSR2 mutations can
sometimes co-occur in patients with existing SF3B1, SRSF2, or U2AF1 mutations. A loss
of ZRSR2 is associated with an increased retention of U12-type containing introns, while
the splicing of U2-type-containing introns were largely unaffected [26]. Functional work
has identified that ZRSR2 mutation is sufficient to promote the clonal advantage of bone
marrow progenitors in vivo, partly via the mis-splicing of LZTR1 [27].

4.5. Other Spliceosome Components

In addition to SF3B1, U2AF1, SRSF2, and ZRSR2, mutations in several spliceosome
components have also been reported in both solid and hematologic malignancies, al-
beit at much lower frequencies. This includes genes encoding DDX41 [28], LUC7L2 [29],
PRPF8 [30], PRPF40B [10], RBM10 [31], U2AF2 [10], SF3A1 [10], SF1 [10], and SRRM2 [32].
Moreover, hotspot mutations in U1, U2, and U11 snRNAs were recently observed in a
subset of medulloblastoma, CLL, non-Hodgkin B-cell lymphoma (NHL), hepatocellular
carcinoma, and pancreatic cancer patients [12]. Further functional validation experiments
are required to dissect the relevance of these mutations to tumorigenesis.

4.6. Splicing in Metastasis and Treatment Resistance

Dissemination of tumor cells to colonize distal parts of the body is a hallmark of
cancer and an indicator of poor prognosis and overall survival. Metastasis is driven, in
part, by epithelial-to-mesenchymal transition (EMT) which enhances mobility, invasion
and resistance to apoptotic stimuli. Research has found that dysregulation of RNA splicing
is critical to disrupt the cell state to promote metastasis and extend cell survival. Epithelial
splicing regulatory proteins (ESRPs), including ESRP1 and ESRP2, and RBFOX2 as have
been identified as important regulators of metastasis [33]. ESRPs regulate RNA variants
critical for epithelial identity and function [34]. Oncogenic dysregulation of ESRPs is
facilitated by genetic and epigenetic alterations and post-transcriptional modifications,
which modulate ESRP protein levels and splicing activity to govern the metastatic behavior
of a variety tumor types (reviewed in [35]). Conversely, RBFOX2 governs mesenchymal
splicing patterns [36]. Recent work has identified RBFOX2 as a metastatic suppressor in
pancreatic cancer and correlated metastatic progression based on RBFOX2 expression levels
and alternative splicing signatures in patient samples. Reduced RBFOX2 levels increased
focal adhesion formation in vitro and increased metastatic lesion in vivo [37]. In addition to
ESRPs and RBFOX2, other splicing factors are shown to govern alternative splicing events,
which promote metastasis in a variety of solid tumors, including SF2/ASF (e.g., RON [38]),
RBM4 (e.g., MAP4K4 [39,40]), SRSF3 (e.g., MAP4K4 [39], HER2 [41]), and hnRNPs (e.g.,
HER2, CD44, integrin β1 [40–43]).

Alternative splicing as a mechanism for drug resistance has also been widely reported.
Changes in splicing can result from mutations in intragenic regions, which disrupt canonical
splicing (e.g., BIM, SLC29A1, dCK [44,45]). Cancer cells can also alter the expression of
splicing factors and splicing patterns to confer resistance, several of which are outlined
in Table 2. Recent work has highlight alternative splicing as a mechanism of resistance to
chimeric antigen receptor expressing T cell therapy (CART). While CART has been highly
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successful in treating several hematologic malignancies, a subset of patients experience
relapse. In pediatric B-ALL, CD19-directed CART (CART-19) resistance has been shown to
be mediated, in part, by changes in splicing. The skipping of exon 2 results in a reduced
CD19 cell surface expression and abolishes CART-19 antigen recognition due to the removal
of the FMC63 epitope [46]. Additionally, other variants, such as cassette exon skipping
of exons 2, 5, or 6 result in NMD-mediated CD19 degradation or loss of cell-surface
localization, respectively [47]. While some of these isoforms are predicted to occur at low
levels prior to CART-19 therapy [48], research suggests that they may become the dominant
splice variant due to alterations in splicing factor expression levels [46,47].

Table 2. Alternative splicing events associated with resistance to cancer therapy.

Gene Splice Variant AS Event Therapeutic
Resistance Cancer Mechanism Ref.

AR AR-V7 Cryptic exon
usage

Androgen
deprivation

therapy
Prostate

Removes
ligand-binding

domain
[49]

BIM Tyrosine kinase
inhibitors Lung

BRACA1 BRCA1-∆11q Alternative SS
usage

PARP
inhibitors Breast, ovarian Mutation

removal [50]

BARD1 BARD1β Exon 2,3
skipping

PARP
inhibitors Colon

Prevents
BARD1/BRACA1

dimerization
[51]

BRAF p61BRAF(V600E) Exon 4-8
skipping BRAF inhibitors Thyroid, Skin Inhibits downstream

signaling [52,53]

HER2 ∆HER2 Exon 16
skipping mABs Breast Homodimer

stabilization [54]

MS4A1 CD20-V1, -V2 Aberrant 5’
UTR splicing mABs Lymphoma,

Leukemia Translation inhibition [55]

TAK1 TAK1∆E12 Exon 12
skipping Chemotherapy Breast JNK/p38

activation [56]

PKM PKM2 Isoform switch Chemotherapy Pancreatic Unknown [57]

5. Therapeutic Targeting of RNA Splicing in Cancer

Given the importance of alternative splicing dysregulation in cancer initiation and
progression, there has been significant interest in developing therapeutic strategies to target
aberrant splicing in cancer. Various therapeutic modalities have been proposed and are
at different stages of pre-clinical and clinical development ranging from small molecules
(summarized in Figure 3) to oligonucleotide-based approaches (summarized in Figure 4).
The following section summarizes current strategies used to target RNA splicing and
explore novel technologies that are under pre-clinical development.

5.1. Targeting the Core Spliceosome with Small Molecule Inhibitors

FR901463, FR901464, and FR901465, isolated from Pseudomonas sp., were the first
natural products shown to target core spliceosome components. Initial studies showed that
these compounds had an antiproliferative effect in both murine and human solid tumor
models. Based on the low IC50 value required to reduce tumor volume, FR901464 showed
promise as a novel cancer therapeutic. Treatment with FR901464 led to enhanced SV40
promoter driven transcription, stalled cells in G1 and G2/M phase of the cell cycle, and
induced inter-nucleosomal breakdown of chromatin [58]. Further analysis in vitro and
in vivo showed that FR901464 treatment led to the production of a C-terminally truncated
p27 isoform, resulting from aberrant splicing. To identify FR901464’s binding partners,
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a more chemically stable methyl ketal derivative, spliceostatin A (SSA), was developed.
Through a series of biotin pull down assays, it was determined that both spliceostatin A
and FR901464 associate with SF3B1 (Sap155), SF3B2 (SAP145), Sap130, and SF3B4 (SAP49),
indicating that both molecules likely interact with the U2 snRNP, leading to impaired
splicing [59]. Further mechanistic analysis of SSA revealed that, upon binding, SSA alters
U2 snRNA branchpoint sequence preference by disrupting the SF3B1-RNA interaction. This
hypothesis was supported by evidence from splicing microarrays showing that splicing
patterns induced by SSA are partially recapitulated by the knockdown of SF3B1 [60]. The
impact of SSA on splicing-independent functions has recently been demonstrated. This
includes the premature cleavage, polyadenylation and cytoplasmic localization of a subset
of transcripts, including the non-coding RNA MALAT1 [61].
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Other natural products have been discovered, which inhibit the SF3B complex. GEX1
compounds, isolated from Streptomyces sp., were shown to induce apoptosis in solid tumors.
GEX1A, one of several compounds tested, upregulated SV40 and cell cycle promoter driven
transcription, stalled cell cycle progression at G1 and G2/M, and reduced CDK1 mRNA
length in a dose-dependent manner [62]. In vitro, GEX1A treatment resulted in variable
responses across multiple leukemic cell lines, which corresponded to overall survival in
pre-clinical models [63]. Hasegawa et al. showed that GEX1A bound SF3B1, leading to
splicing inhibition. As a consequence of GEX1A treatment, p27 was mis-spliced, which was
hypothesized to contribute to cell cycle arrest [64]. In an attempt to understand GEX1A
treatment variability, Hasegawa et al. found that the alternative splicing of pro-survival
mRNAs encoding MCL-1 or pro-apoptotic mRNA encoding BIM were not predicters of
resistance. It was determined, however, that resistant cell lines and pre-clinical models
could be sensitized to GEX1A through treatment with BCL-xL inhibitors, which resulted in
a synergistic increase in apoptosis [63].

Pladienolides are another class of natural products identified for their anticancer
effects. Isolated from Streptomyces plantensis Mer-11107 [62], pladienolides (B–D), were first
tested in a large cohort of drug-resistant solid tumor cell lines, and were shown to inhibit
cell proliferation, disrupt cell cycle progression, and induced increased apoptosis. More
excitingly, in vivo patient-derived xenograft (PDX) models treated with pladienolide B were
shown to achieve complete remission following treatment [65]. Mechanistic evaluation
revealed that pladienolides co-precipitated with U2 snRNP components SF3B1, TMG,
SM BB’, D1, and U2B’. Additionally, pladienolides were also shown to associate with
cyclin E, which form a complex with the U2 snRNA along with CDK2. Upon further
evaluation, it was determined that pladienolide binds to SAP130 of the U2 snRNP to inhibit
splicing [65,66].

While these initial studies were promising, the use of natural compounds remained
limited. SF3B-targeting natural products are chemically complex and unstable in biological
fluids, making them difficult to synthesize and limiting their clinical application. Efforts to
improve natural products led to the development of several synthetic analogues, which
could be used in research and further developed for clinical applications [64,67–70]. E7107,
a synthetic analogue of pladienolide, was tested in 28 human tumor xenograft models.
E7107-treated mice showed significant tumor regression, with a few animals achieving
complete remission, some at a fraction of maximum tolerated dosage [64]. E7107 was the
first splicing inhibitor to enter phase I clinical trials. In an open-label, single arm, dose
escalation study, E7107 was administered to 26 patients with metastatic or locally advanced
solid tumors experiencing relapse following treatment and for whom no other therapies
were available. Unfortunately, this study was forced to terminate early due to two patients
developing bilateral scotomas, leading to temporary or permanent visual loss [68,69].

More recently, an orally bioavailable small molecule splicing inhibitor, H3B-8800, was
developed, which inhibited ATP-dependent 17S U2 snRNP complex formation, interfering
with the association of SF3B complex with the BP sequence. Pre-clinical studies showed
that H3B-8800 led to the preferential killing of splicing factor mutant cells in vitro and a
lowered leukemic burden in SF3B1 and SRSF2 mutant PDX models [71]. These results are
consistent with prior studies demonstrating that splicing factor mutations confer prefer-
ential sensitivity to spliceosome inhibitors [72–74]. In a phase I dose escalation clinical
trial, 84 patients from the Unites States and Europe with hematologic malignancies (MDS,
CMML, AML) underwent treatment with H3B-8800. While no complete or partial clinical
response was observed (2006 IWG criteria), 15% of participants achieved some level of
transfusion independence [75].

Recently, several small molecules targeting the U2AF heterodimer have emerged as
novel modulators of RNA splicing. In a screen of 1593 compounds from the National
Cancer Institute (NCI) Diversity Set V, NC 194308 was identified as a potent splicing
inhibitor. In vitro studies showed that NC 194308 treatment increased the affinity of
the SF1-U2AF1-U2AF2 complex to RNA but led to an accumulation of spliceosome A
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complex. It was determined that NC 194308 binds between U2AF2 RRMs, stabilizing it
in a conformation favorable to RNA binding but prevents spliceosome assembly at the
U2AF-dependant checkpoint for the polypyrimidine track. NC 194308 treatment perturbed
alternative splicing of several well-characterized transcripts in vitro, events which were
further perturbed in the presence of U2AF2 mutation [76]. Additionally, a phenothiazine
derivative, 7,8-dihydroxyperphenazine, was recently identified as a U2AF inhibitor. In vitro
splicing assays showed that 7,8-dihydroxyperphenazine inhibits spliceosome complex A-
to-B transition by binding to the U2AF homology motif (UHM) on U2AF2, preventing
interactions with the U2AF ligand motifs (ULMs) on SF1 and SF3B1 [76,77]. While further
in vitro and pre-clinical testing is needed, preliminary data indicate that small molecules
targeting the U2AF heterodimer may prove beneficial in the future.

Currently, the direct targeting of the spliceosome is not a viable method for the
treatment of cancer. However, the development of drugs targeting the U2 snRNP have
proven to be invaluable for scientific research. Compounds such as SSA are still routinely
used to deconvolute the role-splicing plays in cancer development and maintenance. Thus,
while the clinical application of splicing inhibitors has thus far proven to be fruitless, they
may allow for the development of novel splicing-based treatment modalities for cancer.

5.2. Targeting Splicing Regulatory Proteins

Given the disappointing results from clinical trials aiming to directly target the spliceo-
some, leverage splicing regulatory proteins as an orthogonal therapeutic approach may
prove to be advantageous. Splicing factor phosphorylation regulates their biochemical
activity and sub-cellular localization. The altered expression of splicing regulatory proteins
is observed across cancer types and are potential targets for anticancer therapies. Serine-
rich protein kinases (SRPKs) and CDC-like kinases (CLKs), as well as the dual specificity
tyrosine-regulated kinases (DYRKs) are well-known kinases that regulate the localization
of splicing factors and alternative splicing.

SRPKs constitute an evolutionarily conserved subfamily of serine-threonine kinases that
phosphorylate serine residues in serine-arginine/arginine-serine dipeptide motifs. SRPKs
are found dispersed throughout the cell, and both expression and nuclear/cytoplasmic
localization are tightly regulated by homeostatic pathways (reviewed in [78]). Mechanisti-
cally, both cytoplasmic and nuclear fractions assist in splicing modulation—cytoplasmic
SRPKs phosphorylate newly synthesized SR proteins to facilitate nuclear translocation, and
nuclear SRPKs are almost exclusively associated with ATP-dependent SR protein phospho-
rylation. Work published by Siqueira et al. demonstrated that SRPK protein expression
varies across leukemia cell lines, with the most marked increase occurring in the cell lines
of lymphoid origin [79]. In vitro, treatment with the SRPK1/2 dual inhibitor, SRPIN340,
reduced cell viability regardless of SRPK expression levels and modulated MAPK and
AKT signaling by changing the expression or splicing patterns of MAP2K1 and MAP2K2
or VEGF and FAS, respectively. Additionally, SRPK1 has been identified as a potential
therapeutic vulnerability in a CRISPR dropout screen in AML [80].

The CLK family, which comprises CLK1-4, collaborates with SRPKs to adjust the
degree of phosphorylation of RS dipeptides on SR proteins to modulate alternative splicing.
Changes in CLK expression and activity are associated with cancer development and
progression, and both depletion and chemical inhibition have been shown to alter splicing
and decrease cell proliferation. The orally bioavailable pan-CLK inhibitor, T-025, exhibited
anti-tumor activity in solid tumor xenografts and modulated the phosphorylation of SR
proteins. T-025 treatment was shown to increase exon skipping across a variety of solid
tumor lines in a dose-dependent manner and exhibited significant anti-tumor efficacy [81].
CTX-712, another CLK inhibitor, was recently developed and tested in the context of SRSF2
mutant hematopoietic malignancy. SRSF2 mutant MDS and AML PDX models showed
a significant response to CTX-712, with many mice achieving complete remission [82],
prompting the initiation of a currently ongoing multicenter, single-arm dose, phase I
clinical trial for patients with hematologic malignancy (NCT05732103) [83]. To date, 18
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unique CLK inhibitors have been investigated for their anti-tumor activity (reviewed
in [84]).

Of the five members of the DYRK family (DYRK1A, 1B, -2, -3, -4), only DYRK1A is
known to localize to nuclear speckles where it phosphorylates SR proteins and SF3B1 [85].
An increased gene dosage of DYRK1A, which is located on chromosome 21, is implicated in
aberrant splicing associated with neurodegeneration in Downs syndrome [86]. Additionally,
DYRK1A has been shown to play a role in homeostatic processes, such as lymphoid
development and oncogenic pathways, such as DNA damage response, angiogenesis, and
stem-like cell maintenance in neurological malignancy [87,88]. Pan-cancer analysis across
The Cancer Genome Atlas (TCGA) indicates that many solid tumors and hematologic
malignancies deregulate DYRK1A to promote tumor survival and growth. Research has
shown that Cituvivint (SM08502), a pan-CLK/DYRK inhibitor, induced programmed cell
death at concentrations which inhibited the accumulation of phosphorylated SR proteins
in a panel of hematologic PDXs. Alternative splicing analysis showed that, of the drug-
induced alternative splicing events, pathways known to drive hematopoietic lineages such
as MAP kinase and mTOR signaling were enriched [89]. Interestingly, dual treatment with
DYRK1A inhibitors and venetoclax synergize to increase cell death in several AML cell
lines, while DYRK1A/CLK inhibition has also been proposed as a method to overcome
venetoclax resistance in AML [90,91].

Another promising approach to targeting splicing involves targeting protein arginine
methyltransferases (PRMTs), which catalyze arginine dimethylation on various substrates,
including RBPs and splicing factors. PRMTs can be broadly categorized into Type-I (PRMT1,
2, 3, 4, 6, and 8) or Type-II PRMTs (PRMT5, 7, and 9) that catalyze asymmetric and
symmetric arginine dimethylation, respectively. Among the major PRMT substrates are Sm
proteins (B/B’, D1, and D3), which are important for spliceosome assembly and maturation.
Deletion or chemical inhibition of PRMT5 causes hematopoietic failure and is linked to
apoptosis, reduced quiescence, and inefficient splicing, resulting in intron retention and
exon skipping in murine hematopoietic stem and progenitor cells [92]. The inhibition
of PRMT5 has been shown to result in the aberrant splicing of genes associated with
apoptosis and cell cycle in an Eµ-MYC-driven lymphoma model [93]. Additionally, pre-
clinical studies showed that spliceosome-mutant leukemia cells show greater dependency
on PRMT1 and PRMT5 [94]. Pre-clinical studies in SF3B1 mutant uveal melanoma using
PRT543, an oral PRMT5-selective inhibitor in conjunction with other therapeutic agents
such as DNA alkylating agents or PARP inhibitors, resulted in synergistic reductions
in cell viability [95]. This work formed the foundation of a phase I multicenter dose-
escalation study to treat patients with U2AF1 and RBM10 mutant non-small-cell lung
cancer (NCT03886831).

5.3. Targeting RNA Binding Proteins

Recently, the discovery that indisulam (E7070), an aryl sulfonamide-based anticancer
compound, exerts its anti-tumor activity through the degradation of RBM39 [96,97] presents
a new therapeutic opportunity to target splicing in cancer. Initial studies using indisulam
reported that treatment in two colorectal carcinoma lines lead to G2/M-phase accumu-
lation [98,99]. A subsequent analysis of indisulam’s effectiveness across 42 tumor types
found that indisulam had a unique anti-proliferative spectrum with a wide range of IC50
values [100]. Since its development, indisulam has been tested in 11 clinical trials, both
alone and in combination with other cancer therapeutics in solid tumors and hematologic
malignancies to varying degrees of success.

Mechanistically, indisulam was found to induce RBM39 protein degradation through
the proteosome by recruiting the CUL4-DCAF15 E3 ligase [96,97]. RBM39, also known as
CAPER-α or HCC1, was first discovered in a chronic liver disease patient who later progressed
to hepatocellular carcinoma [101]. RBM39 expression is tissue-specific—hematopoietic cells of
myeloid and lymphoid lineages have the highest expression levels [102]. Increased RBM39
expression has also been identified across a host of solid tumors and hematologic malig-
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nancies [103]. A pan-cancer analysis of RBM39 correlates expression with clinical outcome
for patients in terms of overall survival, dependent on tumor type [104]. Additionally,
RBM39 has been proposed as a unique vulnerability in leukemias bearing splicing factor
mutations [105].

RBM39 is an SR-related protein containing an N-terminus RS domain, two central
RNA recognition motifs and a C-terminal U2AF homology motif (UHM), a specialized
RNA recognition motif, which bind U2AF ligand motifs (ULMs). RBM39 has been shown
to play a role in regulating transcription and alterative splicing [106,107]. Structural,
localization, and pull-down assays have demonstrated that RBM39 interacts with U2AF1,
U2AF2, and SF3B1, which is mediated by interactions between their UHM and ULM,
respectively [106–108]. The splicing analysis of cells with RBM39 knockdown or treated
with indisulam show that both inhibition or loss of RBM39 leads to a dramatic increase in
exon skipping and intron retention [105].

5.4. Targeting Splicing Using Oligonucleotide-Based Therapy

As most broad-spectrum splicing inhibitors possess inherent risks relating to toxi-
city and off-target effects, there has been significant progress in developing alternative
approaches to target pathogenic RNA splicing defects in diseases. Oligonucleotide-based
modalities such as decoy oligonucleotides and antisense oligonucleotides (ASOs) offer the
potential to target disease-causing isoforms with a high level of specificity. ASOs come in a
variety of flavors based on chemical modifications, which can affect function (reviewed
in [109]). Additionally, ASOs can be designed to pair with different regions of a transcript to
selectively fine-tune splicing or trigger quality surveillance pathways to promote transcript
degradation.

Using ASOs to modify splicing was first described in 1993 by Dominski and Kole—
ASOs were used to correct pathogenic splicing events in vitro, which resulted from SNPs
seen in β-thalassemia patients [110]. Mechanistically, splice-switch ASOs (SSOs) work
by binding, via Watson–Crick base pairing to RNA sequences recognized by splicing
machinery. SSOs can be designed to bind cryptic branch points, forcing the splicing
machinery to use canonical 3’ splice sites, as in the case of β-thalassemia, or they can
alter the inclusion or exclusion of exons by binding intronic or exonic splice enhancers or
silencers. Since Dominski and Kole’s seminal work, SSOs have been tested in a variety of
diseases to correct or alter splicing outcomes. We will highlight several recent applications
as they pertain to the use of SSOs as cancer therapeutics. A more comprehensive summary
on the use SSOs as splicing modulators across multiple human diseases is reviewed in [111].

A recent study published by Ma et al. used SSOs to correct pyruvate kinase (PK)
isoform switching in hepatocellular carcinoma (HCC) [112]. In HCC, the pro-tumorigenic
M2 isoform of PK (PKM2) is upregulated over the M1 isoform (PKM1) and promotes
glucose uptake and lactate production in the presence of oxygen, a process known as
aerobic glycolysis (known as the “Warburg effect”). These isoforms arise due to differential
exon inclusion, where PKM1 includes exon 9 but not 10 and PKM2 includes exon 10 but
not 9. In healthy cells, PK isoforms mark the stages of differentiation—PKM1 is expressed
in more terminally differentiated cells and PKM2 is highly expressed in proliferating
embryonic cells. Ma et al. reduced exon 10 inclusion by blocking the recognition of an
ESE in exon 10 [112]. In vitro, both transfection and passive SSO uptake in several HCC
cell lines led to a modest but significant increase in PKM1 levels and concomitant decrease
in cell proliferation and increase in apoptosis. These results were recapitulated in vivo
where systemic treatment or ectopic expression of the SSO reduced tumor volume and
increased overall survival in PDX and murine HCC tumor models. This is merely one of
many studies using SSOs to overcome pathogenic isoform changes arising from oncogenic
transformation [113–117]. Moreover, SSOs have been used to target splicing changes
resulting from drug resistance [57,118,119], and alter splicing to affect protein localization
or isoform expression as a means of inhibiting tumor growth [120,121].
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SSOs can also be used to reduce transcript levels—altering canonical splicing can shift
a transcript’s reading frame to create PTC-containing species, which are then degraded by
NMD. In a proof-of-concept study, Li et al. sought to reduce the level of ERG, an oncogenic
driver in prostate cancer, using SSOs targeting exon 4 of ERG. In half of prostate cancers,
ERG overexpression results from a 3Mb deletion, which fuses an androgen responsive
promoter of TMPRSS2 to exon 4 of ERG [122]. To target both the endogenous and fusion
transcript for degradation, SSOs were designed to hybridize with 5’ or 3’ splice sites to block
the binding of the U1 snRNP or U2AF heterodimer, respectively, leading to its exclusion. A
loss of ERG exon 4 was predicted to create a PTC resulting from a shift in the reading frame,
leading to ERG transcript degradation by NMD. Treatment with either 5’ or 3’ SSOs led to
a modest but significant reduction in ERG4 mRNA and protein levels as well as reduced
cellular proliferation and increased apoptosis in vitro. These results were recapitulated
in vivo, where mice treated with the 3’ SSO showed a mild but significant reduction in
tumor volume. Additionally, 3’ SSO-treated human prostatectomy cores had reduced ERG
protein [115].

Correcting aberrant splicing resulting from splicing factor gene mutations is another
potential avenue for the use of SSOs in cancer treatment. Inoue et al. investigated the
consequences of BRD9 aberrant splicing, which reduced BRD9 expression via NMD, in
SF3B1-mutant in uveal melanoma [19]. SF3B1 mutation causes the use of a cryptic 3’
splice site, leading to the inclusion of exon 14a, termed a “poison exon” due to the fact
that it contains a PTC. The inclusion of exon 14a leads to the degradation of the BRD9
transcript, resulting in increased cell proliferation and cytokine-independent growth of
murine myeloid cells. Inoue et al. designed SSOs to block the 5’-splice site of exon 14a,
preventing its inclusion, which restored BRD9 expression. SSO-treated SF3B1 mutant cells
and PDX models had a significant reduction in proliferation and tumor volume.

Another method, which has yet to be tested but bears some consideration, is modulat-
ing pathogenic RNAs with ASOs, post-splicing. Since cancer alters splicing to produce RNA
species not detected or detected as low levels in healthy cells, ASOs could be designed to
leverage quality control mechanisms to target only aberrantly spliced transcripts. A paper
published by Liang et al. demonstrated that ASOs can degrade cytoplasmic RNAs in vitro.
In their proof-of-concept paper, the group tiled ASOs across the length of several mature
transcripts and demonstrated that ASOs targeting 3’ regions of the RNA lead to an increase
in lighter polysome fractions and with a concomitant reduction in target mRNA levels in a
translation-dependent manner. Their work indicated that ASO-bound transcripts were tar-
geted for degradation by no-go decay (NGD) [123]. NGD is a translation-dependent mRNA
quality surveillance mechanism triggered by cytoplasmic RNAs with stalled and colliding
ribosomes (reviewed in [124]). While this method for targeting RNA occurs independent of
splicing, this could be a novel method to reduce pathogenic transcript levels resulting from
alternative or aberrant splicing due to oncogenic transformation. While this method would
require that pathogenic splicing occurs in 3’ regions of the transcript, it may present a novel
method to specifically target cancer cells by leveraging oncogenic splicing aberrations.

In addition to targeting RNA, oligonucleotides can function as decoy molecules for
splicing machinery. Denichenko et al. developed a novel method to perturb the splicing
machinery by creating decoy nucleic acids designed to bind specific auxiliary splicing
factors [125]. Upon hybridizing with their target proteins, these oligos inhibit protein-RNA
binding while leaving RNA-independent cellular functions unperturbed. They selected
four splicing factors, SRSF1, RBFOX1/2, and PTBP1, which are known to bind well-defined
consensus mRNA sequences to modulate the alternative splicing of select transcripts.
Sense oligonucleotides showed high specificity for their cognate protein and affected its
ability to modulate splicing while leaving its ability to participate in RNA-independent
cellular functions intact. Phenotypic analysis then linked splicing inhibition to published
phenotypes for each protein. As an example, MKNK2, a SRSF1 target, activates the p38-
MAPK stress response pathway, a tumor suppressive pathway. In vitro transfection of
SRSF1 decoy oligonucleotides led to an increased phosphorylation of p38-MAPK targets
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and reduced oncogenic proliferation and anchorage-independent growth. In vivo, ectopic
SRSF1 decoy oligonucleotide expression reduced murine tumor volume [119]. While this
method is limited to splicing factors with highly conserved consensus motifs and the
systemic administration of decoy oligos has yet to be tested, preliminary results from this
paper indicate that this may be a promising method to target oncogenic splicing factors to
modulate their function.

5.5. Immunotherapeutic Approaches Targeting RNA Splicing

The introduction of immune checkpoint blockade therapies has resulted in significant
clinical improvement in various cancers. A major determinant of a positive response rate to
immune checkpoint therapy is the amount of cancer-specific neoantigens, primarily driven
by a higher tumor mutation load and acquired mutations in mismatched repair genes.
In addition to neoantigens driven by somatic variants in coding genes, peptides derived
from non-coding mutations and aberrant RNA splicing and processing can theoretically
contribute to the pool of cancer-specific neoantigens. While multiple studies analyzing
TCGA RNAseq data have concluded that tumor-specific alternative splicing is a regular
occurrence and DNAseq data analysis has identified recurrent mutations in 119 splicing
factors across both solid tumors and hematologic malignancies [126–128], few studies exist
to determine if neoantigens resulting from tumor-derived splice events can be leveraged
for the immunotherapeutic treatment of malignancy.

In a recent proof-of-concept study, Lu et al. sought to determine if splicing modulation
could generate neoantigens, which elicited anti-tumor immunity [129]. This study was initi-
ated when it was noticed that a sub-lethal treatment of cancer cells with indisulam resulted
in sustained growth defects, following engraftment into mice, despite no substantial growth
defects in vitro. Tumor volume could be further decreased by treating mice with anti-PD1
therapy, following the engraftment of tumors pretreated with indisulam. It was determined
that this defect was T cell- and MHC I expression-dependent. In silico analysis of alternative
splicing, proteomics, and MHC binding identified 109 candidate peptides resulting from
indisulam treatment with predicted binding to one of the two murine MHC I haplotypes.
The functional validation of these neoepitopes showed that 11 of these predicted events
elicited a CD8+ T cell response in vitro and in vivo. Additionally, neoantigen-immunized
T cells were able to recognize and selectively kill cancer cells pretreated with indisulam
prior to transplantation. This study establishes that aberrantly spliced neo-peptides could
potentially be exploited as strong inducers of the immune response. Currently, there
is an emerging interest in developing improved neo-antigen identification technologies.
Coupling this with rapid advances in cellular therapies such as chimeric antigen receptor
(CAR) or synthetic T-cell receptor (TCR)-based therapies, bi-specific antibodies, and new
generations of antibody–drug conjugates would lead to the development of promising
immunotherapeutic modalities for precision anticancer therapies.

5.6. Synthetic Introns for Mutation-Specific Gene Expression

While small molecule-based splicing inhibitors and oligonucleotide-based approaches
offer distinct advantages in targeting spliceosome-mutant cancers, their true effectiveness
are significantly limited by the lack of target specificity and scalability. To overcome these
challenges, a recent publication has suggested that leveraging the neomorphic effects of
splicing mutations could be utilized as a mechanism to target cancer cells containing this
mutation. North et al. hypothesized that mutant SF3B1-bearing cells could leverage this
aberrant splicing activity to generate mutation-dependent protein products, which would
allow for the selective killing of these cells by anti-viral medication [130] (Figure 5). The
authors queried 20 cancer types with at least one SF3B1 mutation to identify intronic
sequences, which were strongly predicted to be recurrently mis-spliced via the use of
cryptic 3’ splice sites. Following validation using minigene luciferase splicing reactions,
six candidate exons were inserted in the herpes simplex virus-thymidine kinase (HSV-
TK). Treatment of HSV-TK expression cells with the antiviral prodrug ganciclovir causes
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cytotoxic metabolite production, leading to cell death. Further optimization through a
series of mutations and deletions tested with massively parallel splice assays yielded an
exogenous expression cassette, which preferentially killed SF3B1 mutant cells but not SF3B1
WT cells in the presence of ganciclovir both in vitro and in vivo.

Figure 5. Synthetic introns as therapeutics in cancers with splicing factor mutations. A summary of
methods used to develop and test synthetic introns. From left to right: MTERFD3 was identified as a
strong candidate for the preliminary design of an optimal synthetic intron; massive parallel screening
and mutagenesis were used to optimize the intronic sequence to generate synMTERFDi1-150; in vitro
studies show that synthetic intron splicing occurs in SF3B1 mutant cells, leading to HSVTK expression
and cell death upon ganciclovir (GCV) treatment.

6. Conclusions

Over the past decade, significant advances have been made in understanding how
aberrant RNA splicing drives tumorigenesis. How cancer cells hijack the splicing ma-
chinery to propagate, survive, and withstand cancer therapies, however, requires further
exploration. Novel developments in functional genomics (e.g., CRISPR/Cas-based tech-
nologies), chemogenomic, chemical biology, and synthetic biology tools will continue to
guide the discovery of disease-related mechanisms and therapeutically actionable targets
against aberrant RNA splicing in cancer.
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