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Abstract: Cellular communication through biochemical signaling is fundamental to every biological
activity. Investigating cell signaling diffusions across cell types can further help understand biological
mechanisms. In recent years, this has become an important research topic as single-cell sequencing
technologies have matured. However, cell signaling activities are spatially constrained, and single-cell
data cannot provide spatial information for each cell. This issue may cause a high false discovery
rate, and using spatially resolved transcriptomics data is necessary. On the other hand, as far as we
know, most existing methods focus on providing an ad hoc measurement to estimate intercellular
communication instead of relying on a statistical model. It is undeniable that descriptive statistics
are straightforward and accessible, but a suitable statistical model can provide more accurate and
reliable inference. In this way, we propose a generalized linear regression model to infer cellular
communications from spatially resolved transcriptomics data, especially spot-based data. Our
BAyesian Tweedie modeling of COMmunications (BATCOM) method estimates the communication
scores between cell types with the consideration of their corresponding distances. Due to the
properties of the regression model, BATCOM naturally provides the direction of the communication
between cell types and the interaction of ligands and receptors that other approaches cannot offer.
We conduct simulation studies to assess the performance under different scenarios. We also employ
BATCOM in a real-data application and compare it with other existing algorithms. In summary, our
innovative model can fill gaps in the inference of cell–cell communication and provide a robust and
straightforward result.

Keywords: cellular communication; spatial transcriptomics; generalized linear regression model;
Bayesian modeling; Tweedie distribution

1. Introduction

Different biochemical signalings from cellular communications control different ac-
tivities of living organisms, which highlights the importance of understanding cell–cell
communications (CCC) on biological processes and mechanisms [1,2]. In practice, we
infer the CCC from some known ligand–receptor (LR) pairs because the interaction of LRs
mediates communication. As single-cell RNA sequencing (scRNA-seq) technologies have
matured, researchers have gradually gained opportunities to investigate CCC from scRNA-
seq data since we know more about the ligand and receptor gene expression information
and cell type annotation at the cellular level. Several approaches have been proposed for
inferring the CCC from scRNA-seq data. For example, CellPhoneDB [3] calculates the mean
of the average ligand expression level for one cell type and the average receptor expression
level for another cell type and conducts a permutation test to determine the significance
of this LR pair between two cell types. Instead of using the mean or product to measure
the communication between two cell types, SingleCellSingleR [4] introduces a regularized
product score for an LR pair and provides an ad hoc benchmark to decide an appropriate
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score threshold. In addition, CellChat [5] offers a more complicated measurement to reflect
the interaction strength of an LR pair between cell types, but it also utilizes the permuta-
tion test to identify statistical significance. Even though these methods can infer cellular
communications to some extent, one of the common limitations is that they do not consider
the spatial information for each cell, which is crucial for cell signaling activities but lost
in single-cell data. This restriction may lead to high false discovery rates in discovering
intercellular communications [1].

Fortunately, in recent years, the development of various spatially resolved transcrip-
tomics (SRT) technologies has made it possible to access cellular locations, opening up
new opportunities to incorporate physical distances of cells into CCC analysis. Giotto [6]
provides a similar communication measurement as CellPhoneDB [3], but it incorporates
the spatial information. Its computations focus on proximal cells, and its permutation tests
shuffle cell locations within the same cell type rather than mixing the cell type annotations.
SpaOTsc [7] treats CCC analysis as an optimal transport problem, using a random forest
model to estimate the spatial distance of a signaling pathway and adjusting the cost matrix
of the optimal transport plan by incorporating inferred spatial constraints. COMMOT [8]
shares a similar framework with SpaOTsc [7] but accounts for the competition between cells
in the signaling analysis. SpaTalk [9] evaluates the communication scores using intercellular
and intracellular scores. The intercellular score is based on the number of one-hop neighbor
nodes of receiver cell types for each sender cell type, while the intracellular score is com-
puted from their integrated LR transcription factor knowledge graph. More comprehensive
introductions to the existing CCC methods can be found in [1,10].

One should note that the existing approaches for SRT data also have their own draw-
backs. The existing spatial CCC approaches only consider the single-cell resolution data
from technologies such as seqFISH+ [11] and STARmap [12]. However, some spot-based
technologies, such as the widely used 10X Visium [13,14] and Slide-seqV2 [15], detect gene
expression levels based on spots, which means that each pixel location may contain several
cells. This challenge persists even with high-resolution technologies that can reach the
size of mammalian cells, as cells may overlap with each other [16]. Thus, it is valuable to
interpret the mixture of multiple cell types and their corresponding proportions for CCC
analysis from the spot-based data. Some recent methods using cell type deconvolution,
such as RCTD [16], SPOTlight [17], and STRIDE [18], have considered the mixture issue
of the spot-based data, but few CCC approaches have been proposed to address it. In
addition, most of the existing CCC methods focus on providing an ad hoc measurement
to estimate intercellular communication instead of relying on a statistical model. While
it is undeniable that descriptive statistics are straightforward and accessible to interpret,
a suitable statistical model is needed to provide more accurate and reliable estimation
and inference.

In this paper, we introduce a novel generalized linear regression model with compound
Poisson–Gamma distributions, also known as Tweedie distribution with p ∈ (1, 2), to infer
the communications between cell types. The model combines the physical locations of
spots/cells and the proportions of cell types to estimate the signaling strength from one
cell type to another. Its unique structure allows it to handle both spot-based SRT data
and SRT data at the single-cell resolution, and it is able to consider the communication
between different cell types simultaneously for a particular LR pair. For spot-based SRT
data, our model uses a convolution strategy to integrate the possible interactions between
the cell types at the sender spots and the cell types at the receiver spots to the average
spot-to-spot communication scores. Furthermore, due to the properties of the regression
model, our proposed method naturally provides the direction of the association between
cell type communication and LR interaction that other approaches cannot offer. Since we
utilize Bayesian inference for this model, we refer to our approach as BATCOM, which is
shorthand for BAyesian Tweedie modeling of COMmunications.

The rest of this manuscript is organized as follows. In Section 2, we define the model
structure and demonstrate how our model estimates the communication strength from one
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cell type to another based on the gene expression matrix and the spot locations from SRT
data. In Section 3, both simulation studies and case studies are conducted to display the
usability, reliability, and robustness of the proposed model. Finally, we summarize our
conclusions and give a discussion in Section 4.

2. Materials and Methods

The workflow of our proposed approach is summarized in Figure 1. Firstly, we require
the gene expression matrix from the SRT data with a list of known LR pairs to calculate the
communication scores. We also need the spatial information (i.e., coordinate locations) of
spots/cells to determine the distances between each pair of spots/cells. Next, we combine
cell type annotations for spots/cells obtained from some upstream cell type deconvolution
tools, such as RCTD [16], STRIDE [18], and SPOTlight [17]. Specifically, for spot-based SRT
data, we should have information on the proportion of each cell type within each spot. On
the other hand, for SRT data at the single-cell resolution, it is also easy to generate a matrix
that identifies the cell type for each cell, as these data are a special case for our approach
where the membership proportion is 1 for the corresponding cell type and 0 otherwise.
For clarity, we will focus exclusively on spot-based SRT data in the following sections.
After fitting a generalized linear regression model, the communication strength between
different cell types is obtained from the regression coefficients. One can also display the
communication strengths between cell types in detail using a heatmap and construct a
network to visualize cell type communication.
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Figure 1. Overview of the workflow. BATCOM requires three main inputs: (1) a gene expression
matrix obtained from the SRT data with coordinates information, (2) a matrix that reflects the cell
type annotations of spots/cells, and (3) a list of known LR pairs. After fitting the model, a heatmap
and a network can be generated for visualization purposes.

2.1. Spot-to-Spot Communication Score

Since the spot-based SRT data only provide the gene expression level for each spot, we
define the communication score Ck

i,j (i, j = 1, 2, . . . , N) from sender spot i to receiver spot j
for the LR pair k as

Ck
i,j = Lk

i × Rk
j , (1)

where Lk
i and Rk

j are the expression level of ligand L at spot i and the expression level of

receptor R at spot j, separately. Specifically, Lk
i and Rk

j can be estimated using the arithmetic
mean if the ligand L or receptor R consists of more than one subunit. In other words,

Lk
i =

1
sL

sL

∑
s=1

yLk,s
i ,
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Rk
j =

1
sR

sR

∑
s=1

yRk,s
j ,

where sL and sR denote the numbers of subunits of ligand L and receptor R, and yi and
yj are the corresponding normalized gene expression levels of spot i and spot j in SRT
data. Although the geometric mean of subunits can be an alternative option for estimation,
this will introduce a significantly larger number of zeros present in Ck

i,j compared to the
arithmetic mean.

While public databases such as CellChatDB [5], CellPhoneDB [3], and CellTalkDB [19]
offer an extensive list of LR pairs, it is crucial to note that not all pairs are relevant for the
analysis since they may not exist in the data being studied. Therefore, we remove LR pairs
whose spot-to-spot communication scores Ci,j contain more than 98% zeros. Once we obtain
the communication scores Ck

i,j for each relevant LR pair k, we can calculate spot-to-spot
communication scores for a specific signaling pathway or the entire system by summing
up the corresponding LR pairs.

The Ck
i,j communication scores in Equation (1) will be the outcome variables in the

regression modeling yielding N2 observations. In practice, this dimensionality can be
reduced by only considering (i, j) pairs that are within a certain distance of each other.

2.2. BATCOM Model Structure

To model the signaling strength for LR pair k across all combinations of cell types
from the communication scores between two spots, we propose a generalized linear regres-
sion model

g
(

E(Ck
i,j)
)
= βk

0 +

[
∑

g1,g2

βk
g1,g2

Mi,g1 Mj,g2

]
× exp(−ρDi,j) + νL

i + νR
j , i, j = 1, 2, . . . , N, (2)

where Mi,g1 and Mj,g2 are the proportions of cell types g1(g1 = 1, 2, . . . , G) at the sender
spot i and g2(g2 = 1, 2, . . . , G) at the receiver spot j. Although the model typically includes
G2 interaction terms to account for the communications among G cell types, some of these
product terms may be filtered out in practice due to minimal or non-existent observations,
or they may be based on prior knowledge.

In addition, ρ > 0 is a communication constraint parameter, and Di,j is a suitably
chosen distance metric between spots i and j, which we considered to be Euclidean in our
applications. As spots i and j are spatially further apart (Di,j increasing), they have less
ability to communicate. This effect is captured by the exp(−ρDi,j) term in Equation (2),
which down-weights the impact of the cell type memberships as distance increases. Larger
values of ρ represent a faster spatial decay such that only adjacent spots may communicate,
while smaller values of ρ allow communication across longer distances. However, the
specific value of ρ should be chosen based on the scale of distances in the dataset. In this
paper, we scaled Dij so that adjacent spots had a distance of 1.

Based on Equation (1), Ck
i,j (i, j = 1, 2, . . . , N) are not independent of each other as they

partially come from the same spot. For example, when i = 1, all Ck
1,j (j = 1, 2, . . . , N) should

be correlated with each other because they all depend on the same sender spot expression
Lk

1. Thus, Equation (2) includes two random effect parameters νL
i and νR

j to introduce
correlation around the corresponding sender spot i for ligand L and receiver spot j for
receptor R, respectively. Returning to our example, if spot 1 exhibits high expression levels
for a specific ligand Lk

1, it will result in the corresponding communication scores Ck
1,j being

large or above average for all j. Neglecting to account for the shared structure across Ck
1,j for

j = 1, 2, . . . , N may lead to an overestimation of the effect of the cell types most prevalent
in spot 1. To address this issue, we introduce the inclusion of a large νL

1 to capture the
characteristics of spot 1, accounting for its high expression of ligand L and communication
scores C1,j. By incorporating this additional variability, the remaining variation in Ck

1,j
becomes associated with the primary target of interest: the cell type combinations.
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The regression coefficients βk
g1,g2

in Equation (2) are the parameters of interest in our
model and thus reflect the communication strength of LR pair k from sender cell type g1 to
receiver cell type g2. A positive βk

g1,g2
indicates that as the memberships of cell type g1 at

the sender spot and cell type g2 at the receiver spot jointly increase, the communication
is predicted to increase. Conversely, negative coefficients suggest that larger cell type
memberships will decrease the spot-to-spot communication of LR pair k. In this way, our
approach is capable of deconvoluting the mean spot-to-spot communication scores into the
interactions between the cell types at the sender spot and the cell types at the receiver spot.

It is important to note that the original gene expression matrix of SRT data is usually
sparse. Moreover, if the ligand L or the receptor R is not expressed, the communication
score Ck

i,j will be zero according to Equation (1). As a result, Ck
i,j(i, j = 1, 2, . . . , N) is

expected to be a sparse vector with continuous positive scores in the non-zero positions.
Considering this property of the data, one common choice would be fitting a zero-inflated
or hurdle model. However, both models require two sets of coefficients to account for
the probability of zeros and the value of non-zeros separately [20–22], and it would be
difficult to integrate these two different sets of coefficients together to reflect the strength of
communication between cell types. To that end, we utilize the compound Poisson–Gamma
distribution to model the communications scores Ck

i,j. This distribution effectively models
the zero-inflated continuous values observed in the data while simplifying the modeling
process and enhancing interpretability.

2.3. Compound Poisson–Gamma Distribution

For the compound Poisson–Gamma distribution CPG(λ, α, γ), the random variable C
can be generated as follows:

C =
T

∑
i=1

Xi, T ∼ Poisson(λ), Xi
iid∼ Gamma(α, γ), T ⊥⊥ Xi, (3)

where λ is the rate of the Poisson distribution, and α and γ are the shape and scale of the
Gamma distribution, respectively. Based on the settings in Equation (3), we have

(C|T = t) = 0 if t = 0,

(C|T = t) ∼ Gamma(tα, γ) if t > 0,

which implies that the joint distribution of C and T is

p(c, t|λ, α, γ) = p(c|t, α, γ)p(t|λ)

=

{
exp(−λ), if t = 0,

cαt−1

γtαΓ(tα) exp
(
− c

γ

)
× λt

t! exp(−λ), if t > 0.

(4)

Usually, one would integrate out T from Equation (4) to obtain a marginal distribution
of C. However, the infinite summand p(c|λ, α, γ) = ∑∞

t=0 p(c, t|λ, α, γ) does not have a
closed-form representation. We can only use approximation approaches, such as series
expansion [23] or Fourier inversion [24], to approximate the infinite number of terms. Al-
though several studies have conducted statistical estimation and inference for the marginal
distribution of C based on the approximation [25,26], in this paper, our methodology uses
the joint distribution of C and T. Our approach is related to the EM algorithm presented
in [27], although we use a Bayesian data augmentation strategy.

The compound Poisson–Gamma distribution CPG(λ, α, γ) is equivalently known as
the Tweedie distribution TW(µ, φ, p) when 1 < p < 2. The Tweedie parametrization
gradually shifts from a Poisson distribution to a Gamma distribution as p increases. Build-
ing a compound Poisson–Gamma generalized linear model in terms of the parameters of
TW(µ, φ, p) is easier than the original CPG(λ, α, γ). Thus, it is critical to know the unique
relationship between two sets of parameters (µ, φ, p) and (λ, α, γ) as follows:
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λ = µ2−p

φ(2−p) ,

α = 2−p
p−1 ,

γ = φ(p− 1)µp−1,

⇔


µ = λαγ,

φ = λ1−p(αγ)2−p

2−p ,

p = 2+α
1+α .

(5)

Smyth [28] provides a detailed description of the computational process.
Returning to the communication scores Ck

i,j, we will utilize the Tweedie parameteriza-

tion for model specification. The mean µk
i,j is parameterized through Equation (2) using a

log-link function for g(); hence, the parameters of interest βg1,g2 determine this mean of
Ck

i,j. The other parameters φ and p are global, and their values are shared across all (i, j)
pairs of spots.

2.4. Model Inference
2.4.1. Parameter Estimation

Considering the complexity and intractability of the proposed model, a Bayesian
approach for inference will be a good choice. We use the Hamiltonian Monte Carlo (HMC)
algorithm to make the sampling more efficient than the usual Gibbs sampling [29]. Because
HMC requires the gradient of the log-posterior density function, we derived the closed-
form solutions for it in Appendix A. The closed-form solutions are computationally less
intensive and hence much faster than iterative methods.

As part of the Bayesian model specification, prior distributions for all parameters must
be specified. Given the limited information available on the parameters, it is often preferable
to choose weakly informative priors that offer both convenience and simplicity. Thus, the
intercept term will have a disperse N(0, 1002) prior, and the remaining coefficients βg1,g2

have N(0, 1) priors. As for the other two Tweedie parameters φ (φ > 0) and p (1 < p < 2),
we transform them to log φ and θ = log

(
p−1
2−p

)
and assign a normal distribution and a

logistic distribution as priors, respectively. Overall, the priors are

β0 ∼ N(0, 1002),

βg1,g2
iid∼ N(0, 1), g1 = 1, 2, . . . , G, g2 = 1, 2, . . . , G,

log φ ∼ N(0, 102),

θ = log
(

p− 1
2− p

)
∼ Logistic(0, 1).

(6)

In addition to the parameters specified above, our methodology relies on the spatial
tuning parameter ρ in Equation (2). This parameter is unknown; however, we can fit
multiple models with varying values of ρ and select the most suitable model by considering
model selection statistics.

Equation (2) reflects a mixed-effect model that accounts for both fixed and random
effects. The random effects νL

i and νR
j are assumed to be independently and identically

distributed according to the standard normal distribution N(0, 1). In an initialization
step, we fit this mixed-effects model using a Newton–Raphson algorithm on the posterior
distribution. However, since the random effects are not our primary parameters of interest,
we treat the estimated νL and νR as fixed parameters in the main Bayesian framework to
reduce the computational burden.

As noted previously, we are using the joint distribution of (C, T) as the relevant likeli-
hood function in our Bayesian model specification since it has a closed-form representation.
Thus, every observation Ci,j has a corresponding unknown latent variable Ti,j, and our
HMC algorithm includes a data augmentation Gibbs step to sample values of T given
the observed c and the current parameter values. We note that when C = 0, T must
be equal to zero. Ts for the non-zero Cs are sampled from probabilities proportion to
pPoisson(t′|λ)× pGamma(c|t′α, γ) for t′ = 1, 2, . . . , Tmax. Tmax is an adaptive parameter in
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our algorithm that is increased and decreased depending on how large the sampled Ts are
relative to this maximum threshold.

In general, our Markov chain Monte Carlo (MCMC) sampling algorithm consists of
two steps. In one step, we apply HMC to jointly update the vector of model parameters
(β0, βg1,g2, φ, p) for the current values of T. The other step updates the augmentation
parameters T for the non-zero communications, given the current parameter values. We
note that there are often few changes to the T values, so it is more computationally efficient
to run multiple steps of HMC for each update to the augmentation parameters. Typically,
we consider 10 HMC steps for every single update of T.

During the implementation of the MCMC procedure, we first conduct a preliminary
run of 6500 iterations to tune the maximum threshold Tmax and the covariance matrix of
the momentum variables of HMC, so that the acceptance rate of all parameters can be
kept around 45% to 65%. We then run an additional 13,500 iterations and discard the first
3500 iterations as the burn-in period, at which point approximate convergence is achieved.
This results in 10,000 retained samples, and the inference is made using this collection.

2.4.2. Hypothesis Testing

As previously mentioned, the regression coefficients βg1,g2 from Equation (1) are
the main parameters of interest because they reflect the association between the cell-
type communication and the LR interaction. Thus, for each coefficient, we test the null
hypothesis H0 : βg1,g2 = 0 against the alternative hypothesis Ha : βg1,g2 6= 0. We calculate
the mean and variance of the samples βg1,g2 from the inference period of HMC and then

generate the statistic W =
β̂2

g1,g2
var(βg1,g2 )

for a Wald test. As stated in [30], the standard Bayesian

large sample theory implies that the test statistic W approximately follows an asymptotic
χ2(1) distribution under the null hypothesis, and we can easily obtain a pseudo-p-value
by considering the tail probability beyond the W associated with the estimated coefficient
β̂g1,g2 . The pseudo-p-values across all interactions of cell types will be adjusted for multiple
hypothesis testing using the false discovery rate (FDR) correction [31]. In this way, the
inference will be considered in a frequentist framework for ease of interpretation. In this
paper, we declare a CCC significant on an LR pair if the FDR adjusted p-value is less than
0.05.

3. Results

We validated our modeling strategy through extensive simulation studies using data
generated separately from two distinct models: our proposed compound Poisson–Gamma
model and a pseudo-hurdle Gamma model. To accurately represent the spatial positions,
we created a panel of 100 spots arranged in a 10× 10 grid. Due to a lack of a comparable
model structure among the existing CCC methods, we can only compare our model to
variations to the structure of our BATCOM model. In the subsequent sections, we present
the results of our simulation studies in Figures 2–5. For more detailed numerical results,
please refer to Appendix B. Following that, we applied the proposed model to a real dataset
and compared the results with other commonly used spatial CCC methods.

3.1. Simulation Study
3.1.1. Data Generated from the Compound Poisson-Gamma Model

To evaluate performance, we applied our method to simulated data generated from
the proposed Tweedie model. Across simulations, we varied the number of cell groups
G, the communication constraint parameter ρ, the sparsity rate of coefficients δ, and the
two Tweedie parameters φ and p. For the proportions of cell types Mi,1, . . . , Mi,G, we
randomly generated each element from U(0, 1) and then re-scaled each row so they sum
to 1. Based on the regression structure, a dense vector of original coefficients βO was
independently sampled from 1

2 U(0.1, 0.5) + 1
2 U(−0.5,−0.1), and the random effects νL

and νR were sampled from N(0, 0.4) independently. Considering the sparsity rates of
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coefficients, we randomly picked δ× G2 coefficients (excluding the intercept) in βO and
set them as zeros to get βδ. To make different scenarios comparable, we fixed the βδ, νL,
and νR across all corresponding scenarios. We also added −2 to the intercept to make the
mean value µ = exp(Xβδ + νL + νR) similar to real SRT data. For each combination of
parameters, we generated 100 different simulated datasets to avoid uncertainty and detect
variability.

For each dataset, the inference of BATCOM was performed by estimating and fixing
the random effects, running the MCMC algorithm, and considering FDR-corrected Wald
tests as discussed in Section 2.4. After obtaining these results, we generated a confusion
matrix for each simulated dataset by comparing the results with the true values. A true
positive (TP) was recorded when the estimate had the same sign as the true value and the
adjusted p-value was less than 0.05. Similarly, a true negative (TN) was counted when the
adjusted p-value was larger than 0.05, and the true value was zero. Conversely, a false
negative (FN) was registered if the adjusted p-value was greater than 0.05, but the true
value was not zero. Any estimate with an adjusted p-value less than 0.05 for a true value of
zero or an estimate with a sign different from the true value was counted as a false positive
(FP). Using the confusion matrix from the analysis of each generated dataset, we calculated
the true positive rate (TPR), false positive rate (FPR), and observed FDR. We also plotted
the receiver operating characteristic (ROC) curve by setting different cutoffs of the adjusted
p-value to compute the area under the curve (AUC). For each scenario, we calculated the
mean and standard deviations of these measurements across 100 simulated datasets.

Because we treat the communication constraint parameter ρ as a tuning parameter
and do not estimate it during MCMC, it is critical to check the performance of the proposed
model when the estimated value is close to and far away from the true value. Figure 2
presents the results of the proposed models fitted using ρ̂ = 0.2, 0.5, 0.8 under the scenarios
with the true values of ρ = 0.2, 0.4, 0.6, and 0.8, separately. Additionally, we applied a
standard Bayesian model selection strategy to choose the best value for this tuning param-
eter. To that end, we consider the widely applicable information criterion (WAIC2) [29]
according to the formula

WAICρ
2 = 2

n

∑
i=1

var(log p(ci|ρ, βs, φs, ps))− 2
n

∑
i=1

log

(
1
S

S

∑
s=1

p(ci|ρ, βs, φs, ps)

)
,

where i = 1, 2, . . . , n reflects the observation and s = 1, 2, . . . , S represents the iteration of
the inference period of HMC. For each dataset, we fit the model under ρ̂ = 0.2, 0.5, 0.8 and
select the ρ̂ that yields the lowest WAIC2 as the BEST model choice.

In Figure 2, the results indicate that when the ρ̂ used to fit the model is close to the
true value, the performance is excellent, with high TPR and AUC, as well as low FPR
and observed FDR. We also consider the value of ρ̂ = 0.5 as a useful default choice of
the distance tuning parameter since it straddles the expected range of communication
parameters (0, 1). Empirically, this value performs well across the full range of ρ with
only minor degradation in the more extreme cases of ρ = 0.2, 0.8. Thus, if running only
one version of the model, we recommend using ρ̂ = 0.5 as the tuning parameter. For the
remainder of this paper, we use the default ρ̂ = 0.5 choice. When computational resources
permit, we suggest trying a small collection of ρ and selecting the best model based on
WAIC2.

We then compared our Bayesian framework (BATCOM) with a frequentist framework
(referred to as TWGAM) using the gam function from R package mgcv [32]. TWGAM is a
frequentist implementation of our model structure with the same distribution assumption
and design matrix (scaled by distance) but without any random effect terms. Moreover, we
compared our model structure concerning the proportions of cell types in each spot with
other algorithm structures considering just one cell type. Many existing CCC methods treat
each spot as containing only one cell type without considering the heterogeneity in each
spot. To mimic this phenomenon, we constructed a corresponding zero-one matrix. For
each spot (i.e., each row of the M matrix), we assigned a 1 to the cell type with the maximum
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proportion and a 0 to the rest of the cell types (named MAXPROP). MAXPROP uses all
the other features of our proposed BATCOM except that the membership proportions
Mi,g (i = 1, . . . , N; g = 1, . . . , G) are binary. For this MAXPROP, we employed our overall
framework, including the random effect imputation, the MCMC sampling strategy for
parameter estimation, and the Wald tests for inference. In addition, we compared our
distribution assumption with the binomial logistic distribution of non-zero values (named
LOGISTICS), which does not account for random effects.
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Figure 2. Results of BATCOM with different estimated ρ’s based on the simulation data generated
from the proposed compound Poisson–Gamma model. All scenarios were G = 10, φ = 3, and
p = 1.5. TPR: true positive rate; FPR: false positive rate; FDR: false discovery rate; AUC: area under
the ROC curve.

Figure 3 displays the performance of different models using ρ̂ = 0.5 as the tuning
parameter value under different scenarios, where the true communication constraint pa-
rameter ρ is either 0.4 or 0.6. It is easy to see that our proposed model (BATCOM) maintains
a very robust performance across these different scenarios, consistently achieving high
TPR and AUC when compared to three other models. Remarkably, BATCOM also effec-
tively controls the FPR, and the observed FDR was around or below 0.05. In contrast,
the frequentist framework (TWGAM), which shares the same distribution assumption as
BATCOM, consistently performs worse, with much higher FPR and FDR. One possible
explanation for this result is that TWGAM does not integrate prior knowledge about the
parameters, and the failure to account for random effects could contribute to an increased
FDR. The model that only considers one cell type for a spot (MAXPROP) is even worse
than TWGAM in all aspects, including FPR, FDR, and AUC, with particularly high FPR
and FDR. To some extent, these results suggest that existing CCC methods that ignore
within-spot heterogeneity may produce numerous false discoveries. Additionally, although
the model with the Bernoulli distribution assumption (LOGISTICS) generally maintains a
small FPR and FDR, it has the lowest power (TPR), especially when we have a high value
of the Tweedie parameter p. In other words, it tends to make too-conservative conclusions
by inferring that most interactions among cell types are insignificant.
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Figure 3. Results of different models based on the simulation data generated from the proposed
compound Poisson–Gamma model. All scenarios were G = 10 and δ = 0.6. All methods here used
ρ̂ = 0.5. TPR: true positive rate; FPR: false positive rate; FDR: false discovery rate; AUC: area under
the ROC curve.

In our previous simulation results, we considered all spot pairs for analysis. However,
in real-world applications, we can effectively reduce the number of observations in the
model by focusing only on spot pairs (i, j) that are within a specific distance threshold
of each other, as mentioned earlier. To investigate the trade-off between efficiency and
accuracy resulting from this reduction, we conducted an additional simulation experi-
ment by varying the distance threshold and evaluating its impact on estimation accuracy.
Specifically, we set the threshold values to 10 (i.e., including all spot pairs), 7, 5, and 3, as
illustrated in Figure 4. It is evident that reducing the threshold to include fewer (i, j) spot
pairs in the model inevitably affects estimation accuracy; however, the performance did not
deviate significantly. The TPR and AUC showed a significant reduction when the threshold
was set to 3, but the change remained below 10%. In contrast, the FPR and FDR exhibited
no significant changes with varying thresholds. This observation suggests that reducing the
number of spot pairs during model fitting leads to a more conservative decision-making
process in our algorithm.

It is worth noting that the choice of the threshold is closely related to the selection of ρ.
If ρ is large, only the closest spots have a substantial contribution, making a small threshold
appropriate. However, when ρ is small, more spots contribute, and a larger threshold may
be necessary to avoid excluding relevant spots. In Figure 4, we used ρ̂ = 0.5, resulting in
a minimal weight for the exponential term of distance in Equation (2) when the distance
between two spots exceeds 5.
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Figure 4. Results of BATCOM using different thresholds of distances of spots on the simulation data
generated from the proposed compound Poisson–Gamma model. All scenarios were G = 10 and
δ = 0.6. All methods here used ρ̂ = 0.5. TPR: true positive rate; FPR: false positive rate; FDR: false
discovery rate; AUC: area under the ROC curve.

3.1.2. Data Generated from the Pseudo-Hurdle Gamma Model

To complete our comprehensive evaluation of performance, we also simulated data
from a structure that differs from our methodology while maintaining a comparable set
of model parameters describing the relationship between cell type memberships and
communication scores. We generated this additional simulated data from a pseudo-hurdle
Gamma model. In the traditional hurdle model, one needs to have two different sets of
coefficients to determine the probability of zeros and the distribution of non-zero values
separately. Here, we generated the new data using the model

Pr(Cnew = 0) = 1/(1 + µ),

Cnew|Cnew > 0 ∼ Gamma(αnew,
1 + µ

αnew
),

where µ depended on the same βs through Equation (2), the shape parameter αnew
was randomly selected from a uniform distribution U(0.5, 5), and the scale parameter
γnew = 1+µ

αnew
. In this way, the simulated data from this pseudo-hurdle Gamma model have

the same mean µ as our proposed compound Poisson-Gamma distribution, ensuring that
the parameter interpretation of β is comparable.

After switching to the pseudo-hurdle Gamma model as the data generator for our
simulation scheme, we found that the results remained consistent with our previous
findings using the compound Poisson–Gamma distribution. As shown in Figure 5, our
proposed model outperforms other models, particularly in terms of its high TPR and low
observed FDR in all scenarios. Even when faced with higher sparsity rates of coefficients
and a larger number of cell types, our proposed model strikes a balance between identifying
new discoveries and minimizing errors.
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Figure 5. Results of different models based on the simulation data generated from the pseudo-hurdle
Gamma model. All methods here used ρ̂ = 0.5. TPR: true positive rate; FPR: false positive rate; FDR:
false discovery rate; AUC: area under the ROC curve.

3.2. Case Study

We applied our methods to the Visium spatial transcriptomics data of cutaneous
squamous cell carcinoma (cSCC) [33], in which each spot contains multiple cells. Ji et al. [33]
performed scRNA-seq on both tumors and normal skin and profiled SRT data on tumors
simultaneously. As an example, we focused on the SRT data from replicate 2 of patient 2,
which had a greater sequencing depth than other samples. This sample contains 1932 spots
(after excluding spots with less than 100 genes detected) and 10,703 genes (after filtering
out genes not expressed in at least 97.5% of the spots). To perform the upstream cell type
deconvolution analysis, we utilized scRNA-seq data from the same patient as a reference
and obtained the cell type proportion matrix using the full mode of RCTD [16].

Subsequently, we conducted a comparative analysis between our proposed method,
employing ρ̂ = 0.5 as the tuning parameter, and other CCC algorithms tailored to SRT
data, including Giotto [6], COMMOT [8], and SpaTalk [9]. To ensure a fair comparison,
we utilized the same cell type proportion matrix from RCTD [16] (G = 24 cell types) and
the same list of known LR pairs from CellTalkDB [19] (3398 pairs). However, Giotto [6]
and COMMOT [8] required a single cell type to be specified for each spot, which posed a
challenge for comparison. To address this, we assigned to each spot the cell type that had
the highest proportion in the matrix, which introduced 12 cell types into the algorithms.
Furthermore, we fit our model using the MAXPROP version, which is expected to be
suboptimal for spot-based SRT data.

After filtering out LR pairs based on each algorithm’s default rules, we found that our
BATCOM and MAXPROP methods considered 712 LR pairs, whereas SpaTalk considered
515 LR pairs, Giotto considered 983 LR pairs, and COMMOT focused on 664 LR pairs.
Regarding cell-type interactions, while there were a total of 576 interactions possible
among the 24 cell types, we filtered out some interactions due to minimal or non-existent
observations; this resulted in 364 interactions (out of 576) for BATCOM and 96 interactions
(out of 144) for MAXPROP. SpaTalk does not consider interactions between the same cell
type, leading to 552 interactions under its consideration. Meanwhile, Giotto and COMMOT
dealt with 144 interactions due to the presence of 12 cell types.
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Figure 6 illustrates the UpSet plot for the number of significant CCC on LR pairs identi-
fied by different methods. As we can see, our proposed method, BATCOM, and MAXPROP
detected the third and second highest number of significant communications, respectively,
following SpaTalk, which identified the most significant results. It is not surprising that
our proposed model (BATCOM) identified fewer significant CCC results than SpaTalk,
as SpaTalk does not correct the p-values for multiple comparisons. In contrast, Giotto
and COMMOT found the fewest communication pairs. Notably, MAXPROP identified
many more significant CCCs than BATCOM, which is consistent with the higher FDR
observed in the preceding simulations. Compared to Giotto and COMMOT, which also
utilize the modal cell type, MAXPROP found more significant communications. Specifically,
one-third to one-half of the results from Giotto and COMMOT overlapped with MAXPROP
but disagreed with BATCOM, which is the version of our model that uses all available
information about the spot’s cell type makeup.

Figure 6. UpSet plot of significant CCC on LR pairs determined by different methods for the cutaneous
squamous cell carcinoma data.

All methods share a common finding of six significant CCC pairs (Table 1). The results
suggest that several LR interactions between different cell types may play a critical role
in tumor-specific cellular crosstalk. Specifically, the ligand SERPINE1, which binds to the
receptor ITGB5, has been found to promote tumor growth and angiogenesis in several types
of cancer, including skin cancer [34]. Similarly, THBS1, SDC4, and TLN1 have been linked
to the development of metastasis and chemoresistance in skin cancer [35–37]. Notably,
previous research has established PLAU and ITGA5 as critical biomarkers for various types
of squamous cell carcinoma [38–41]. Furthermore, the study by Fang et al. [39] suggests
that PLAU affects the formation of inflammatory cancer-associated fibroblasts, which is
consistent with the findings of our CCC analysis. These results emphasize the crucial role of
specific LR interactions in cancer progression and highlight potential targets for therapeutic
interventions.

Table 1. Significant CCC pairs shared in all methods.

Ligand Receptor Sender Cell Type Receiver Cell Type

SERPINE1 ITGB5 Fibroblast TSK
SERPINE1 ITGB5 TSK Fibroblast

THBS1 SDC4 Fibroblast TSK
PLAU ITGB5 TSK Fibroblast
TLN1 ITGB5 TSK Tumor KC Diff
PLAU MRC2 TSK Fibroblast

TSK: tumor-specific keratinocytes; Tumor KC Diff: tumor-differentiating keratinocyte.
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In addition to inferring CCC for a specific LR pair, exploring the overall cellular
communication or communication within a specific signaling pathway based on SRT data
can provide valuable insights. To demonstrate this, we aggregated the communication
scores across all LR pairs and fit BATCOM using Ci,j = ∑k Ck

i,j as the outcome variable in
Equation (2).

Figure 7 depicts the overall significant CCCs, indicating that cancer-related cells
communicate closely with each other. Specifically, normal-differentiating keratinocytes
(KC) exhibit positive communication with tumor-differentiating KC and plasmacytoid
dendritic cells (PDC) while showing negative communication with fibroblasts. Notably,
Ji et al. [33] found that the subpopulations of tumor KCs (basal, cycling, and differentiating)
closely resemble the normal KC subpopulations, and they identified a fourth major tumor
KC subpopulation, called tumor-specific keratinocytes (TSK), that exclusively exists in
tumor skin and distinguishes itself from other tumor cells. Furthermore, Ji et al. [33]
discovered that TSK and tumor-basal KC are both present in the leading edge of the tumor.
Our results are consistent with these findings, as Figure 7 shows that tumor-basal KC
frequently communicates with TSK.
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Figure 7. Overall CCC in the cutaneous squamous cell carcinoma data estimated by BATCOM.
(A) Heatmap of CCC between the sender cell types and the receiver cell type. The gray blocks are
the interactions of cell types that have been filtered out before fitting the model. The white blocks
represent insignificant CCC. The colored blocks represent the significant CCC. (B) Network of CCC.
The edge width reflects the strength of communication. The edge color shows the direction of
the association.

4. Discussion

In this paper, we present a generalized linear regression model for inferring CCC based
on LR interactions. Our model offers high flexibility in fitting both the single-cell resolution
SRT data and spot-based SRT data. A significant challenge in spot-based SRT data is the
presence of cell type mixtures in each spot, which we address by assuming that the mean
spot-to-spot communication score is a convolution of possible interactions between cell
types at the sender spot and the receiver spot. Our proposed model takes advantage of the
regression model’s properties to naturally handle communication between different cell
types simultaneously, while also directly providing the direction of the association between
CCC and LR interaction. Furthermore, our approach explicitly models the decreasing
ability to communicate as the distance between cells or spots increases, differing from other
algorithms that employ an arbitrary threshold to restrict communication.

Due to the limited information available on the parameters, our detailed Bayesian
algorithm assumes the prior distributions defined in Equation (6). It is crucial to recognize
that the choice of different prior distributions can lead to diverse model performances. To
explore this, we also examined alternative priors such as N(0, 0.12) and N(0, 0.012) for
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the regression coefficients βg1,g2 , and we observed that the model’s inference regarding
significant connections remained robust relative to using the default N(0, 1) prior. However,
if necessary, the prior standard deviation can be easily adjusted in practice.

When comparing Bayesian and frequentist inference with the same distributional
assumptions, we found that Bayesian inference provides more accurate estimation with
lower FDR (Figure 3). However, MCMC algorithms can be time-consuming. For instance,
in the cSCC case study, BATCOM and MAXPROP had an average running time of 67.38 and
19.80 min, respectively, per LR pair. In contrast, COMMOT and Giotto had average running
times of 2.16 and 0.18 min, respectively, for each LR pair. SpaTalk had a different approach,
identifying significant LR pairs for each cell type interaction, with an average running time
of 4.38 min per interaction. To reduce the computational burden, one potential solution is
to employ a threshold to control the number of included (i, j) spot or cell pairs. Although
this approach inevitably impacts estimation accuracy, our simulation results (Figure 4)
demonstrate that the resulting influence on performance will be minimal if using a moderate
or large ρ̂, such as 0.5. Alternatively, further exploration could focus on developing a more
precise frequentist inference framework for the compound Poisson-Gamma distribution.

Currently, in this paper, we have defined the communication score as a product of
the arithmetic mean of the ligand expressions at the sender spot and the mean receptor
expression of the receiver spot. This simple approach implicitly assumes equal importance
across the subunits of the LR pair, which may not always be the case. Certain subunits could
have varying weights or specific distributions, necessitating a more sophisticated strategy
in the future to accurately account for their expression. Moreover, we only considered
the simple multiplication of ligands and receptors as the communication score between
cells/spots (Equation (1)), while some other algorithms, such as CellChat [5], consider more
complex relationships between ligands and receptors, including agonists and antagonists.
It is certainly possible to design more intricate communication scores between cells/spots
by accounting for these relationships. Given the versatility of our model, we can apply
our approach directly to communication scores that have numerous zeros and positive
continuous data, regardless of their complexity. This flexibility enables us to adapt our
method to various scenarios and extend its applicability in future studies.

As previously mentioned, the tuning parameter ρ in Equation (2) is responsible for
controlling the rate of decay of spot-to-spot communication as the distance between two
spots increases. The appropriate value of ρ depends on the distance unit and potential
communication assumption used in a specific tissue. While the parameter is not estimated
during MCMC, we recommend using ρ̂ = 0.5 as a default value based on our simula-
tion study results (Figure 2). For those with more computational resources, we suggest
experimenting with different values of ρ and selecting the best one based on WAIC2. For
this manuscript, the utilization of Euclidean distance in our proposed model to account
for the spatial proximity of cells or spots is specifically due to the current SRT data being
derived from tissue slices relying on Cartesian coordinates. If future advancements in SRT
technology enable the measurement of tissue shapes beyond the current capabilities, it will
become imperative to explore alternative distance measurements that are better suited for
such scenarios.

Furthermore, in the proposed model, we assume a decreasing trend in the communica-
tion probability when the distance between cells/spots increases. However, long-distance
signaling is also essential in biological activities [42]. Therefore, a more comprehensive
consideration of the relationship between communication and distance should be a focus
of future research.

The results presented in Figure 6 indicate that various algorithms yield highly diver-
gent results, with each method exhibiting a substantial number of distinct significant CCC.
This observation aligns with the prior work by Li et al. [43]. It should be noted that the
inferior performance of Giotto and COMMOT in our study may be partially attributed
to directly assigning the cell type with the highest proportion to each spot. However,
it is important to highlight that these CCC algorithms only allow for one cell type per
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spot. To ensure a fair comparison, we implemented the MAXPROP version of our model
structure, aligning with the basic design of these algorithms. While we are confident that
our methodology is statistically rigorous and reliable, the significant disparities across
the different methods make it difficult to determine the most appropriate method at the
biological level. Adding to this challenge is the lack of ground truth in this research domain.
Moreover, although we conducted simulation studies with two different distributions to
evaluate our model’s performance, these assessments still rely on the underlying structure
of our algorithm. Thus, it is imperative to undertake further experimental investigations
and validations of CCC analysis to determine the most appropriate method for this area
of inquiry.

As the field of CCC analysis continues to grow with the generation of more SRT data,
we believe that our proposed model will serve as a valuable approach for inferring cellular
communication in a flexible and accurate way. Our innovative approach can bridge gaps in
current CCC inference methods and provide a straightforward outcome. Future studies
could explore the applicability of our model to other more complicated structures and
further validate its effectiveness in real-world scenarios.
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Appendix A. The Closed Form of the Gradient of the Log-Posterior Density Function

The log-posterior density function can be viewed as the sum of the log-likelihood
function and the log-prior density function. We first focus on the log-likelihood func-
tion. According to Equations (4) and (5), we define η = log µ = Xβ as the link function
in the proposed regression model, where η = (η1, η2, . . . , ηN)

T , µ = (µ1, µ2, . . . , µN)
T ,

β = (β0, β1, . . . , βq)T , and X is an N × (q + 1) design matrix. Then, the log-likelihood
function of the ith (i = 1, 2, . . . , N) observation is below.

If ti = 0 (i.e., yi = 0),

log p(yi, ti|·) = −λi = −
µ

2−p
i

φ(2− p)
= − 1

2− p
exp[(2− p)ηi − log φ],

https://www.ncbi.nlm.nih.gov/geo/
https://github.com/dongyuanwu/BATCOM
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and if ti > 0 (i.e., yi > 0),

log p(yi, ti|·) = −λi + ti log λi − log ti!− log Γ(tiα)− tiα log γi + (αti − 1) log yi −
yi
γi

= − 1
2− p

exp[(2− p)ηi − log φ] + ti[(2− p)ηi − log φ− log(2− p)]− log ti!

− log Γ(tiα)− tiα[log φ + log(p− 1) + (p− 1)ηi] + αti log yi − log yi

− yi
p− 1

exp[(1− p)ηi − log φ]

= − 1
2− p

exp[(2− p)ηi − log φ]− ti[log φ + log(2− p)]− log ti!

− log Γ(tiα)− tiα[log φ + log(p− 1)] + αti log yi − log yi

− yi
p− 1

exp[(1− p)ηi − log φ]

Because the parameters sampled in HMC are β, log φ, and θ = log
(

p−1
2−p

)
, we need

their gradients. To simplify the calculation, we only discuss the gradient of the ith
(i = 1, 2, . . . , N) contribution to the log-likelihood. The gradient of the overall log-likelihood
can be computed by summing all the N individual log-likelihood contributions.

When ti = 0 (i.e., yi = 0),

∂

∂β j
log p(yi, ti|·) =

∂

∂ηi
log p(yi, ti|·) ·

∂ηi
∂β j

= − 1
2− p

exp[(2− p)ηi − log φ](2− p) · xij

= − exp[(2− p)ηi − log φ] · xij,

where xij is the ith row and (j + 1)th column of the design matrix X, and j = 0, 1, . . . , q.
Moreover, it is easy to know that{

φ = exp(log φ),

p = 2eθ+1
eθ+1 ,

⇒


d

d log φ φ = exp(log φ),
d
dθ p = eθ

(eθ+1)2 = (p− 1)(2− p).

Thus,
∂

∂ log φ
log p(yi, ti) = −

1
2− p

exp[(2− p)ηi − log φ](−1) =
1

2− p
exp[(2− p)ηi − log φ],

∂

∂θ
log p(yi, ti|·) =

∂

∂p
log p(yi, ti|·) ·

dp
dθ

= − 1
(2− p)2 {exp[(2− p)ηi − log φ](−ηi)(2− p) + exp[(2− p)ηi − log φ]}

× (p− 1)(2− p)

=
p− 1
2− p

{exp[(2− p)ηi − log φ]ηi(2− p)− exp[(2− p)ηi − log φ]}.

On the other hand, when ti > 0 (i.e., yi > 0),

∂

∂β j
log p(yi, ti|·) =

∂

∂ηi
log p(yi, ti|·) ·

∂ηi
∂β j

=

{
− exp[(2− p)ηi − log φ]− 1

p− 1
yi exp[(1− p)ηi − log φ](1− p)

}
· xij

= {yi exp[(1− p)ηi − log φ]− exp[(2− p)ηi − log φ]} · xij,
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∂

∂ log φ
log p(yi, ti|·) =

1
2− p

exp[(2− p)ηi − log φ]− ti − tiα +
1

p− 1
yi exp[(1− p)ηi − log φ],

∂

∂θ
log p(yi, ti|·) =

∂

∂p
log p(yi, ti|·) ·

dp
dθ

=
p− 1
2− p

{exp[(2− p)ηi − log φ]ηi(2− p)− exp[(2− p)ηi − log φ]}

+
ti

2− p
· dp

dθ
− d

d(tiα)
log Γ(tiα) · ti ·

dα

dp
· dp

dθ
− ti log φ · dα

dp
· dp

dθ

− ti log(p− 1) · dα

dp
· dp

dθ
− tiα

p− 1
· dp

dθ
+ ti log yi ·

dα

dp
· dp

dθ

− 1
(p− 1)2 {yi exp[(1− p)ηi − log φ](−ηi)(p− 1)

−yi exp[(1− p)ηi − log φ]} · dp
dθ

=
p− 1
2− p

{exp[(2− p)ηi − log φ]ηi(2− p)− exp[(2− p)ηi − log φ]}

+ ti(p− 1) +
d

d(tiα)
log Γ(tiα) · ti · α + tiα log φ + tiα log(p− 1)− tiα(2− p)

− tiα log yi +
2− p
p− 1

{yi exp[(1− p)ηi − log φ]ηi(p− 1)

+yi exp[(1− p)ηi − log φ]},

where α = 2−p
p−1 and dα

dp = − 1
(p−1)2 .

Next, we can solve the gradient of the log-prior functions according to Equation (6):

∂

∂β j
log p(β) = −

β j

σ2
j

, where σ2
j is the prior variance of β j, j = 0, 1, . . . , q,

d
d log φ

log p(log φ) = − log φ

100
,

d
dθ

log p(θ) =
d
dθ

log
[

eθ

(eθ + 1)2

]
=

d
dθ

[
θ − 2 log(eθ + 1)

]
=

1− eθ

1 + eθ
.

Additionally, due to the parameter transformation, the last puzzle of the gradient of the
log-posterior density function is the gradient of the corresponding log-Jacobian terms, i.e.,

d
d log φ

log Jφ = =
d

d log φ
log φ = 1,

d
dθ

log Jp = =
d
dθ

log[(p− 1)(2− p)] =
d
dθ

log
eθ

(eθ + 1)2 =
1− eθ

1 + eθ
.

Finally, the gradient of the log-posterior density function should be

∂

∂β j
log p(·|yi, ti) =

∂

∂β j
log p(yi, ti|·) +

∂

∂β j
log p(β),

∂

∂ log φ
log p(·|yi, ti) =

∂

∂ log φ
log p(yi, ti|·) +

∂

∂ log φ
log p(log φ) +

d
d log φ

log Jφ,

∂

∂θ
log p(·|yi, ti) =

∂

∂θ
log p(yi, ti|·) +

∂

∂θ
log p(θ) +

d
dθ

log Jp.
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Appendix B. The Detailed Numerical Results of Simulation Studies

Table A1. Detailed results of BATCOM with different estimated ρ values based on the simulation
data generated from the proposed compound Poisson–Gamma model.

δ = 0.4 δ = 0.6
TPR FPR FDR AUC TPR FPR FDR AUC

φ = 3, p = 1.5, G = 10, ρ = 0.2
BEST 0.96 (0.03) 0.04 (0.03) 0.03 (0.02) 0.99 (0.01) 0.92 (0.03) 0.02 (0.02) 0.03 (0.03) 0.99 (0.01)

ρ̂ = 0.2 0.96 (0.03) 0.04 (0.03) 0.03 (0.02) 0.99 (0.01) 0.92 (0.03) 0.02 (0.02) 0.03 (0.03) 0.99 (0.01)
ρ̂ = 0.5 0.89 (0.04) 0.17 (0.06) 0.11 (0.04) 0.93 (0.02) 0.85 (0.05) 0.08 (0.04) 0.12 (0.05) 0.94 (0.02)
ρ̂ = 0.8 0.81 (0.05) 0.23 (0.07) 0.16 (0.04) 0.85 (0.03) 0.76 (0.06) 0.13 (0.06) 0.20 (0.07) 0.88 (0.03)

φ = 3, p = 1.5, G = 10, ρ = 0.4
BEST 0.96 (0.02) 0.06 (0.04) 0.04 (0.03) 0.99 (0.01) 0.89 (0.04) 0.03 (0.02) 0.05 (0.04) 0.98 (0.01)

ρ̂ = 0.2 0.93 (0.03) 0.13 (0.05) 0.08 (0.03) 0.96 (0.02) 0.90 (0.04) 0.08 (0.04) 0.11 (0.05) 0.97 (0.02)
ρ̂ = 0.5 0.96 (0.02) 0.06 (0.04) 0.04 (0.03) 0.99 (0.01) 0.89 (0.04) 0.03 (0.02) 0.05 (0.04) 0.98 (0.01)
ρ̂ = 0.8 0.91 (0.03) 0.20 (0.06) 0.12 (0.03) 0.93 (0.02) 0.85 (0.05) 0.10 (0.05) 0.14 (0.06) 0.94 (0.02)

φ = 3, p = 1.5, G = 10, ρ = 0.6
BEST 0.93 (0.04) 0.05 (0.03) 0.03 (0.02) 0.98 (0.01) 0.86 (0.05) 0.02 (0.02) 0.04 (0.03) 0.97 (0.02)

ρ̂ = 0.2 0.80 (0.06) 0.20 (0.06) 0.14 (0.03) 0.87 (0.03) 0.80 (0.06) 0.14 (0.05) 0.20 (0.06) 0.90 (0.03)
ρ̂ = 0.5 0.93 (0.04) 0.05 (0.03) 0.03 (0.02) 0.98 (0.01) 0.86 (0.05) 0.02 (0.02) 0.04 (0.04) 0.97 (0.02)
ρ̂ = 0.8 0.94 (0.03) 0.09 (0.05) 0.05 (0.03) 0.97 (0.02) 0.86 (0.05) 0.03 (0.03) 0.05 (0.04) 0.96 (0.02)

φ = 3, p = 1.5, G = 10, ρ = 0.8
BEST 0.91 (0.04) 0.03 (0.03) 0.02 (0.02) 0.98 (0.01) 0.81 (0.06) 0.02 (0.02) 0.03 (0.03) 0.97 (0.02)

ρ̂ = 0.2 0.65 (0.06) 0.19 (0.06) 0.16 (0.05) 0.79 (0.04) 0.69 (0.07) 0.15 (0.05) 0.24 (0.07) 0.83 (0.04)
ρ̂ = 0.5 0.83 (0.05) 0.09 (0.05) 0.06 (0.03) 0.94 (0.02) 0.78 (0.06) 0.04 (0.03) 0.07 (0.05) 0.94 (0.03)
ρ̂ = 0.8 0.91 (0.04) 0.03 (0.03) 0.02 (0.02) 0.98 (0.01) 0.81 (0.06) 0.02 (0.02) 0.03 (0.03) 0.97 (0.02)

TPR: true positive rate; FPR: false positive rate; FDR: false discovery rate; AUC: area under the ROC curve.

Table A2. Detailed results of different models based on the simulation data generated from the
proposed compound Poisson–Gamma model. All methods here used ρ̂ = 0.5.

ρ = 0.4 ρ = 0.6
TPR FPR FDR AUC TPR FPR FDR AUC

φ = 0.8, p = 1.3, G = 10, δ = 0.6
BATCOM 0.99 (0.01) 0.03 (0.03) 0.04 (0.04) 1.00 (0.00) 0.99 (0.02) 0.02 (0.02) 0.03 (0.02) 1.00 (0.00)
TWGAM 0.99 (0.02) 0.20 (0.06) 0.23 (0.06) 0.97 (0.02) 0.98 (0.02) 0.18 (0.06) 0.21 (0.06) 0.97 (0.02)

MAXPROP 0.69 (0.06) 0.81 (0.06) 0.73 (0.02) 0.43 (0.04) 0.68 (0.05) 0.81 (0.05) 0.73 (0.02) 0.43 (0.04)
LOGISTICS 0.75 (0.06) 0.03 (0.03) 0.05 (0.04) 0.94 (0.03) 0.56 (0.08) 0.01 (0.01) 0.03 (0.04) 0.90 (0.03)

φ = 0.8, p = 1.7, G = 10, δ = 0.6
BATCOM 0.99 (0.01) 0.04 (0.02) 0.05 (0.03) 1.00 (0.00) 0.99 (0.01) 0.03 (0.03) 0.05 (0.03) 1.00 (0.00)
TWGAM 0.99 (0.01) 0.06 (0.04) 0.08 (0.05) 1.00 (0.01) 0.98 (0.02) 0.06 (0.03) 0.08 (0.04) 0.99 (0.01)

MAXPROP 0.75 (0.06) 0.85 (0.05) 0.72 (0.02) 0.44 (0.04) 0.76 (0.06) 0.84 (0.05) 0.72 (0.02) 0.45 (0.03)
LOGISTICS 0.22 (0.10) 0.03 (0.02) 0.17 (0.09) 0.75 (0.04) 0.10 (0.07) 0.02 (0.01) 0.34 (0.25) 0.72 (0.05)

φ = 3, p = 1.3, G = 10, δ = 0.6
BATCOM 0.90 (0.05) 0.01 (0.02) 0.02 (0.03) 0.98 (0.01) 0.86 (0.06) 0.01 (0.02) 0.02 (0.03) 0.98 (0.01)
TWGAM 0.92 (0.04) 0.09 (0.05) 0.13 (0.06) 0.97 (0.02) 0.89 (0.05) 0.07 (0.04) 0.10 (0.05) 0.96 (0.02)

MAXPROP 0.61 (0.06) 0.72 (0.07) 0.71 (0.02) 0.44 (0.03) 0.60 (0.06) 0.73 (0.07) 0.72 (0.02) 0.43 (0.04)
LOGISTICS 0.59 (0.08) 0.02 (0.02) 0.04 (0.04) 0.91 (0.03) 0.40 (0.09) 0.01 (0.01) 0.02 (0.04) 0.87 (0.03)
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Table A2. Cont.

ρ = 0.4 ρ = 0.6
TPR FPR FDR AUC TPR FPR FDR AUC

φ = 3, p = 1.7, G = 10, δ = 0.6
BATCOM 0.87 (0.04) 0.02 (0.02) 0.04 (0.03) 0.98 (0.01) 0.85 (0.05) 0.02 (0.02) 0.04 (0.03) 0.97 (0.02)
TWGAM 0.88 (0.04) 0.04 (0.03) 0.06 (0.04) 0.97 (0.01) 0.85 (0.05) 0.04 (0.03) 0.06 (0.04) 0.96 (0.02)

MAXPROP 0.63 (0.06) 0.73 (0.06) 0.70 (0.03) 0.45 (0.04) 0.64 (0.06) 0.75 (0.06) 0.71 (0.03) 0.44 (0.03)
LOGISTICS 0.23 (0.09) 0.01 (0.01) 0.05 (0.08) 0.78 (0.06) 0.12 (0.08) 0.00 (0.01) 0.04 (0.08) 0.76 (0.05)

TPR: true positive rate; FPR: false positive rate; FDR: false discovery rate; AUC: area under the ROC curve.

Table A3. Detailed results of BATCOM using different thresholds of distances of spots on the simulation
data generated from the proposed compound Poisson–Gamma model. All methods here used ρ̂ = 0.5.

ρ = 0.4 ρ = 0.6
TPR FPR FDR AUC TPR FPR FDR AUC

φ = 0.8, p = 1.3, G = 10, δ = 0.6
D ≤ 10 0.99 (0.01) 0.03 (0.03) 0.04 (0.04) 1.00 (0.00) 0.99 (0.02) 0.02 (0.02) 0.03 (0.02) 1.00 (0.00)
D ≤ 7 0.99 (0.01) 0.03 (0.03) 0.04 (0.03) 1.00 (0.00) 0.99 (0.01) 0.02 (0.02) 0.03 (0.03) 1.00 (0.00)
D ≤ 5 0.99 (0.02) 0.03 (0.03) 0.04 (0.03) 1.00 (0.00) 0.99 (0.02) 0.02 (0.02) 0.03 (0.03) 1.00 (0.00)
D ≤ 3 0.98 (0.02) 0.03 (0.03) 0.04 (0.03) 1.00 (0.00) 0.98 (0.02) 0.02 (0.02) 0.03 (0.03) 1.00 (0.00)

φ = 0.8, p = 1.7, G = 10, δ = 0.6
D ≤ 10 0.99 (0.01) 0.04 (0.02) 0.05 (0.03) 1.00 (0.00) 0.99 (0.01) 0.03 (0.03) 0.05 (0.03) 1.00 (0.00)
D ≤ 7 0.99 (0.01) 0.04 (0.02) 0.05 (0.03) 1.00 (0.00) 0.99 (0.01) 0.03 (0.03) 0.05 (0.03) 1.00 (0.00)
D ≤ 5 0.99 (0.01) 0.04 (0.02) 0.05 (0.03) 1.00 (0.00) 0.99 (0.01) 0.03 (0.03) 0.05 (0.03) 1.00 (0.00)
D ≤ 3 0.99 (0.02) 0.04 (0.03) 0.05 (0.04) 1.00 (0.01) 0.99 (0.02) 0.03 (0.03) 0.04 (0.03) 1.00 (0.00)

φ = 3, p = 1.3, G = 10, δ = 0.6
D ≤ 10 0.90 (0.05) 0.01 (0.02) 0.02 (0.03) 0.98 (0.01) 0.86 (0.06) 0.01 (0.02) 0.02 (0.03) 0.98 (0.01)
D ≤ 7 0.90 (0.05) 0.02 (0.02) 0.02 (0.03) 0.98 (0.01) 0.86 (0.06) 0.01 (0.02) 0.02 (0.03) 0.98 (0.01)
D ≤ 5 0.90 (0.05) 0.02 (0.02) 0.03 (0.03) 0.98 (0.01) 0.86 (0.06) 0.01 (0.02) 0.02 (0.03) 0.98 (0.01)
D ≤ 3 0.88 (0.05) 0.02 (0.02) 0.03 (0.03) 0.98 (0.01) 0.84 (0.06) 0.01 (0.02) 0.02 (0.03) 0.97 (0.02)

φ = 3, p = 1.7, G = 10, δ = 0.6
D ≤ 10 0.87 (0.04) 0.02 (0.02) 0.04 (0.03) 0.98 (0.01) 0.85 (0.05) 0.02 (0.02) 0.04 (0.03) 0.97 (0.02)
D ≤ 7 0.87 (0.04) 0.02 (0.02) 0.04 (0.03) 0.98 (0.01) 0.85 (0.05) 0.02 (0.02) 0.04 (0.03) 0.97 (0.02)
D ≤ 5 0.86 (0.04) 0.02 (0.02) 0.04 (0.04) 0.97 (0.02) 0.84 (0.05) 0.02 (0.02) 0.03 (0.03) 0.97 (0.02)
D ≤ 3 0.83 (0.05) 0.02 (0.02) 0.03 (0.03) 0.97 (0.02) 0.81 (0.06) 0.02 (0.02) 0.03 (0.03) 0.96 (0.02)

TPR: true positive rate; FPR: false positive rate; FDR: false discovery rate; AUC: area under the ROC curve.

Table A4. Detailed results of different models based on the simulation data generated from the
pseudo-hurdle Gamma model. All methods here used ρ̂ = 0.5.

ρ = 0.4 ρ = 0.6
TPR FPR FDR AUC TPR FPR FDR AUC

G = 10, δ = 0.2
BATCOM 0.96 (0.02) 0.16 (0.09) 0.04 (0.02) 0.97 (0.02) 0.94 (0.03) 0.13 (0.08) 0.03 (0.02) 0.96 (0.03)
TWGAM 0.96 (0.02) 0.27 (0.11) 0.07 (0.02) 0.93 (0.04) 0.94 (0.03) 0.32 (0.11) 0.08 (0.03) 0.91 (0.04)

MAXPROP 0.89 (0.05) 0.98 (0.02) 0.53 (0.01) 0.43 (0.03) 0.92 (0.05) 0.99 (0.02) 0.54 (0.01) 0.44 (0.03)
LOGISTICS 0.65 (0.06) 0.04 (0.05) 0.01 (0.02) 0.89 (0.03) 0.48 (0.07) 0.02 (0.03) 0.01 (0.01) 0.86 (0.04)

G = 10, δ = 0.6
BATCOM 0.90 (0.04) 0.04 (0.03) 0.06 (0.04) 0.97 (0.02) 0.87 (0.05) 0.03 (0.03) 0.05 (0.04) 0.97 (0.02)
TWGAM 0.92 (0.04) 0.15 (0.06) 0.19 (0.06) 0.95 (0.02) 0.90 (0.04) 0.16 (0.06) 0.21 (0.06) 0.94 (0.03)

MAXPROP 0.63 (0.06) 0.76 (0.06) 0.72 (0.02) 0.44 (0.03) 0.64 (0.06) 0.77 (0.06) 0.72 (0.02) 0.43 (0.04)
LOGISTICS 0.69 (0.07) 0.02 (0.02) 0.04 (0.04) 0.92 (0.03) 0.53 (0.08) 0.01 (0.01) 0.03 (0.04) 0.90 (0.03)
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Table A4. Cont.

ρ = 0.4 ρ = 0.6
TPR FPR FDR AUC TPR FPR FDR AUC

G = 15, δ = 0.2
BATCOM 0.84 (0.03) 0.10 (0.05) 0.03 (0.01) 0.93 (0.02) 0.72 (0.05) 0.06 (0.05) 0.02 (0.02) 0.90 (0.04)
TWGAM 0.87 (0.03) 0.27 (0.08) 0.07 (0.02) 0.88 (0.03) 0.84 (0.03) 0.30 (0.08) 0.08 (0.02) 0.85 (0.03)

MAXPROP 0.61 (0.05) 0.89 (0.03) 0.55 (0.02) 0.33 (0.02) 0.63 (0.06) 0.90 (0.03) 0.56 (0.02) 0.33 (0.02)
LOGISTICS 0.45 (0.05) 0.03 (0.03) 0.02 (0.02) 0.80 (0.03) 0.21 (0.06) 0.01 (0.01) 0.01 (0.02) 0.75 (0.04)

G = 15, δ = 0.6
BATCOM 0.92 (0.03) 0.12 (0.04) 0.16 (0.05) 0.96 (0.02) 0.87 (0.05) 0.18 (0.06) 0.24 (0.06) 0.91 (0.03)
TWGAM 0.93 (0.03) 0.24 (0.05) 0.28 (0.04) 0.93 (0.02) 0.91 (0.03) 0.30 (0.05) 0.32 (0.04) 0.89 (0.02)

MAXPROP 0.91 (0.06) 0.96 (0.03) 0.76 (0.01) 0.46 (0.03) 0.94 (0.05) 0.97 (0.02) 0.77 (0.01) 0.47 (0.02)
LOGISTICS 0.44 (0.06) 0.02 (0.01) 0.05 (0.04) 0.84 (0.03) 0.20 (0.06) 0.00 (0.01) 0.03 (0.04) 0.79 (0.03)

TPR: true positive rate; FPR: false positive rate; FDR: false discovery rate; AUC: area under the ROC curve.
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