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Abstract: Alzheimer’s disease (AD) is an incurable neurodegenerative disorder. Early screening,
particularly in blood plasma, has been demonstrated as a promising approach to the diagnosis and
prevention of AD. In addition, metabolic dysfunction has been demonstrated to be closely related
to AD, which might be reflected in the whole blood transcriptome. Hence, we hypothesized that
the establishment of a diagnostic model based on the metabolic signatures of blood is a workable
strategy. To that end, we initially constructed metabolic pathway pairwise (MPP) signatures to
characterize the interplay among metabolic pathways. Then, a series of bioinformatic methodologies,
e.g., differential expression analysis, functional enrichment analysis, network analysis, etc., were
used to investigate the molecular mechanism behind AD. Moreover, an unsupervised clustering
analysis based on the MPP signature profile via the Non-Negative Matrix Factorization (NMF)
algorithm was utilized to stratify AD patients. Finally, aimed at distinguishing AD patients from
non-AD groups, a metabolic pathway-pairwise scoring system (MPPSS) was established using multi-
machine learning methods. As a result, many metabolic pathways correlated to AD were disclosed,
including oxidative phosphorylation, fatty acid biosynthesis, etc. NMF clustering analysis divided
AD patients into two subgroups (S1 and S2), which exhibit distinct activities of metabolism and
immunity. Typically, oxidative phosphorylation in S2 exhibits a lower activity than that in S1 and
non-AD group, suggesting the patients in S2 might possess a more compromised brain metabolism.
Additionally, immune infiltration analysis showed that the patients in S2 might have phenomena
of immune suppression compared with S1 and the non-AD group. These findings indicated that
S2 probably has a more severe progression of AD. Finally, MPPSS could achieve an AUC of 0.73
(95%CI: 0.70, 0.77) in the training dataset, 0.71 (95%CI: 0.65, 0.77) in the testing dataset, and an
AUC of 0.99 (95%CI: 0.96, 1.00) in one external validation dataset. Overall, our study successfully
established a novel metabolism-based scoring system for AD diagnosis using the blood transcriptome
and provided new insight into the molecular mechanism of metabolic dysfunction implicated in AD.

Keywords: Alzheimer’s disease; noninvasive diagnosis; metabolic abnormalities; biomarker; peripheral
blood; multi-machine learning

1. Introduction

Alzheimer’s disease (AD) is an extremely common neurodegenerative disease that
is the leading cause of dementia. It typically begins with a deterioration in memory and
is characterized by a progressive decline in cognitive function [1]. With the aging of the
population and longer lifespans, the incidence of the disease continues to rise. There are
approximately 50 million people worldwide with AD [2], and this number is expected to
increase rapidly in the coming decades. Currently, there is no curative treatment for AD,
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and the best therapy is early diagnosis and the delay of disease progression [3]. Therefore,
AD risk prediction is in urgent need of effective biomarkers.

The diagnosis of AD involves a variety of methods, including clinical presentation,
cognitive tests, brain imaging, cerebrospinal fluid analysis, and blood testing. Clinical
presentation involves observing the patient’s symptoms, including cognitive and memory
impairment as well as behavioral and emotional changes. Cognitive tests, such as the
Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA), are
used to evaluate a patient’s cognitive ability. Brain imaging techniques, such as Positron
Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) scans, can reveal
structural and functional changes in the brain, i.e., brain atrophy and the accumulation
of β-amyloid plaques. However, these diagnostic methods are time-consuming, costly,
and subjective based on the clinic doctors’ experience [4]. Particularly, the US National
Institute on Aging and the Alzheimer’s Association proposed using biomarkers as a purely
biological definition of AD [5]. For example, cerebrospinal fluid examination (CSF) can
detect the accumulation of β-amyloid protein plaques and other biomarkers associated
with AD, i.e., Aβ42, T-tau, and P-tau [6]. Although the CSF test is effective for AD, its
highly invasive character remains challenging for AD patients, especially elderly patients.
More importantly, the establishment of reliable biomarkers based on CSF core biomarkers,
i.e., Aβ and tau, has culminated in a debate derived from conflicting results and theories [7].
It is urgent, thereby, to identify novel biomarkers for early diagnosis of AD as well as
potential targets for therapeutic methods in AD. Recently, accumulating evidence indicated
that the detection of fluid biomarkers from blood as diagnostic tools for AD is definitely a
practical solution [8,9]. Blood testing detects specific proteins or other biomarkers in the
blood and thus can be used to predict a patient’s risk of developing AD. This approach has
the advantage of being convenient, fast, and non-invasive compared with other methods
for AD diagnosis.

Although the exact cause of AD is still not fully understood, many studies have sug-
gested that metabolic abnormalities are associated with the development of AD [10]. There
has been growing interest in the role of metabolic dysfunction, particularly lipid, glucose,
and energy metabolism, in the development and progression of AD [11–13]. Abnormalities
in lipid metabolism in AD refer to a series of aspects, including high cholesterol, high
triglycerides, and low-density lipoprotein [14]. These abnormalities can lead to atheroscle-
rosis and cardiovascular disease [15], greatly increasing the risk of patients developing AD.
Some studies have further demonstrated that high cholesterol may lead to the formation of
β-amyloid protein plaques, which are one of the typical features of AD. β-amyloid protein
plaques can damage neurons in the brain, leading to cognitive impairment, memory loss,
and neuronal death [16]. Apolipoprotein E (ApoE) is an important lipid metabolism gene.
When it performs its normal function, it can repair synapses and maintain neuronal struc-
ture [17]. However, when its structure is disrupted, it can affect these functions. Therefore,
the ApoE gene has been identified as a major risk factor for AD [18]. Currently, many studies
also indicate that glucose and energy metabolism are significantly associated with AD,
such as the tricarboxylic acid (TCA) cycle, oxidative phosphorylation deficits, and pentose
phosphate pathway impairment [19]. Glucose is an important energy substrate for brain
and neurons in brain need a great quantity of energy to sustain the normal activity [19].
However, a decrease in glucose and energy metabolism is also observed in AD patients by
research [20]. In addition, oxygen and glucose metabolic rates are significantly changed in
AD because of the alterations in the glycolytic pathway and TCA cycle [21]. Reasonably,
abnormalities of metabolism exhibit a close association with the onset and progression of
AD, and the identification of novel metabolism-related biomarkers is a workable strategy
for the diagnosis of AD.

In the present study, we hypothesized that molecular metabolism abnormalities in
AD might reflect in the metabolic gene expression of peripheral blood, and characterizing
those unconventionally metabolic genes in blood may give rise to a promising non-invasive
biomarker for the diagnosis of AD, particularly in the early stages. Initially, we unveiled the
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difference in peripheral blood gene expression between AD and non-AD patients based on
the high-throughput RNA sequencing data, along with the relevant biological processes and
pathways involved. Subsequently, inspired by Lixin Cheng et al.’s study [22], we proposed
a novel approach to quantifying the difference between a pair of metabolic pathways
within each individual sample (including AD and non-AD patients). The main merit of
this approach is that it can well avoid the batch effect derived from different datasets. This
analysis successfully figured out several metabolic pathway pairwise (MPP) signatures
associated with AD. Furthermore, all the AD patients could be classified into two subgroups
via the unsupervised clustering analysis based on the MPP signature matrix, which exhibits
distinct patterns of immunity and metabolism. Eventually, we utilized multiple machine
learning methods to screen out key MPP signatures correlated to AD and establish a
metabolic pathway pairwise scoring system (MPPSS) for AD diagnosis (Figure 1). The
MPPSS achieved a high AUC in not only the test data but also the independent validation
datasets. In conclusion, using the whole blood transcriptome, we have developed a
reliable and sensitive scoring system for non-invasive diagnosis and intervention of AD.
This system holds significant potential value in clinical usage as well as in studying the
interrelationships between metabolic pairwise pathways and the high-risk AD population.
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2. Materials and Methods
2.1. Data Acquisition and Preprocess

Eight gene expression datasets of AD patients and non-AD controls are obtained
from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi, accessed on 26 April 2023) [17]. The basic statistics of relevant information,
including platform, tissue, and sample number, were summarized in Table S1. Of them,
three datasets were merged and used for downstream analysis as well as the establishment
of a model for AD diagnosis. Merged data, referred to here as metaGEO, consisted of
GSE140829 (249 Control and 204 AD patients), GSE63060 (104 Control and 145 AD patients),
and GSE63061 (234 Control and 238 AD patients). The R package “SVA” [18] was applied
to remove batch effects among different datasets by the ComBat() function (Figure S1).
Patient ID, gender, race, age, and APoE stage among the clinical data of AD and non-AD
samples and the association between each clinic variable and AD disease status based on
single variable analysis were summarized in Table 1. The remaining datasets (GSE97760,
GSE148822, GSE163877, and GSE104704) were used as independent data for the validation
of the diagnosis model.

Table 1. The clinical information of 975 samples, including GSE140829, GSE63060, and GSE63061
datasets.

Characteristic Group AD Number (%) Non-AD Number (%) p Value

Samples Disease state 488 (50.05%) 487 (49.95%) -

Age ≤60 6 (1.23%) 5 (1.03%) 0.00336
>60 & ≤70 133 (27.25%) 144 (29.57%) -
>70 & ≤80 222 (45.49%) 257 (52.77%) -
>80 & ≤90 126 (25.82%) 80 (16.43%) -

>90 1 (0.20%) 1 (0.21%) -

Gender Female 288 (59.02%) 282 (57.91%) -
Male 200 (40.98%) 205 (42.09%) 0.725

Race Other Caucasian 31 (6.35%) 11 (2.26%) -
Western European 214 (43.85%) 171 (35.11%) 0.026405

British 29 (5.94%) 48 (9.86%) 0.000267
Irish 3 (0.61%) 2 (0.41%) 0.519052

Any Other White Background 4 (0.82%) 4 (0.82%) 0.189355
Any Other Asian Background 1 (0.20%) 2 (0.41%) 0.174688

Unknown 206 (46.67%) 249 (46.67%) -

APoE status apoe_E2_E3 9 (1.84%) 30 (6.16%) -
apoe_E2_E2 0 (0%) 2 (0.41%) 0.982921
apoe_E2_E4 7 (1.43%) 3 (0.61%) 0.009220
apoe_E3_E3 78 (15.98%) 155 (31.83%) 0.201116
apoe_E3_E4 78 (15.98%) 52 (10.68%) 0.000128
apoe_E4_E4 26 (5.33%) 4 (0.82%) 0.00000294
Unknown 290 (59.43%) 241 (49.49%) -

Subgroups a S1 295 (54.92%) - -
S2 193 (40.98%) - -

a We used NMF clustering analysis to divide AD patients into two subgroups (S1 and S2) based on significant
MPP signatures, which exhibit distinct activities of metabolism and immunity.

2.2. Construction of MPP Signatures

The Kyoto Encyclopedia of Genes and Genomes (KEGG) database (https://www.
genome.jp/kegg/pathway.html, accessed on 26 April 2023) collects different types of
biological pathways including metabolism, genetic information processing, environmental
information processing, etc. [23]. In our study, we selected all 84 pathways in the category of
metabolism, including subcategories such as carbohydrate metabolism, energy metabolism,
lipid metabolism, etc. (Table S2). After removing the batch effect from 975 samples, the
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single sample gene set enrichment analysis (ssGSEA) score was used to sort transcriptome
data and assign different weights based on their positions in the gene set in order to
calculate the enrichment level of specific pathways in the sample. The ssGSEA method
was derived from the R package “GSVA” [24], and herein it was utilized to evaluate the
pathway activity of 84 metabolic pathways (Table S2). After that, we perform subtraction
between two pathways and iterate through all 84 KEGG pathways, resulting in 3486 MPP
signatures at the end. By subtracting the Metabolism Pathway (MP) values in twos, we
can suggest possible interaction relationships between pathways. We constructed the MPP
signatures based on Lixin Cheng et al.’s study [22] and displayed this process below.

2.2.1. Within-Sample Analysis

We performed the comparisons for MPP signatures based on the ssGSEA value of
the single pathway. For each sample, the MP score of the k-th sample was recorded as
the vector.

S(k) =
(

MP(k)
1 , MP(k)

2 , . . . , MP(k)
m

)
where MPm represents the ssGSEA score of the m-th metabolic pathway and the superscript
k indicates the k-th sample. Then, we defined the relative value of a MP pair, which can be
summarized in the MPP signature as

r(k)ij = I(MP(k)
i −MP(k)

j )

where I(x) =
{

1, if x ≥ 0
−1, if x < 0

is an indicating function that denotes whether x is larger than

or less than 0. If MP is larger or equal to MP, the relative value of the MPP signature is
assigned as 1. If not, the relative value is −1. For each MPPS

(
MP(k)

i , MP(k)
j

)
, subtraction

was used to transform the discrete value, which was represented as MP(k)
i − MP(k)

j , ∀ i, j ∈

(1, . . . , m), i 6= j. R(k)
MP was a vector comprised of the pathway activity values of all pairs of

MPs within the k-th sample.

R(k)
MP =

(
r(k)12 , r(k)13 , r(k)14 , . . . , r(k)1m, r(k)23 , r(k)24 , . . . , r(k)2m, . . . r(k)

(m−1)m

)
Since there were Cm

2 = m!
2!(m−2)! MPP signatures, RMP

(k) were in Cm dimensions.

2.2.2. Cross-Sample Analysis

Within-sample calculation was followed by cross-sample analysis between AD and
non-AD groups. To acquire those significantly differential MPP signatures, we con-
ducted the count test and thus compared the number of rij

(k) = 1
(

MPi
(k) ≥ MPj

(k)
)

and rij
(k) = −1

(
MPi

(k) ≥ MPj
(k)

)
in AD and non-AD groups. Finally, the contingency

table (Table 2) of MPP signatures for AD and non-AD samples was shown as follows:

Table 2. The contingency table of chi-square test to detect the correlation between AD and MPP
signature.

Type MPi
(k)≥MPj

(k) MPi
(k)<MPj

(k)

Non-AD a b
AD c d

Subsequently, the chi-square test was calculated based on this contingency table to
quantify the association between AD and each MPP signature. Holm’s adjustment was used
for multiple comparisons. The relevant analysis above was conducted using R version 4.2.1
(https://www.r-project.org/). After gaining these MPP signatures, we used Cytoscape

https://www.r-project.org/
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software V3.9.1 [25] (http://www.cytoscape.org/) to analyze and visualize the metabolic
network and thus detect hub nodes by the Maximal Clique Centrality (MCC) method in
cytoHubba plug-in application (V0.1) of the Cytoscape [26].

2.3. Unsupervised Clustering to Characterize AD Patient Subgroups

A total of 112 significantly AD-related MPP signatures were detected via the above-
mentioned cross-sample analysis between AD and non-AD groups based on the MPP
signature matrix (3486 MPP signature × 487 AD patients) of the metaGEO cohort. Then
those significantly AD-related MPP signatures were subjected to unsupervised clustering
analysis using the non-negative matrix factorization (NMF) algorithm. The NMF [27]
algorithm has been widely applied to dimensional reduction and clustering on non-negative
data. The distinct difference between NMF and other unsupervised clustering methods
such as principal component analysis (PCA) is the non-negative constraints. In addition,
the NMF method exhibits better clustering performance in gene expression data compared
with other unsupervised clustering methods [28]. Therefore, NMF is an efficient method for
identifying distinct molecular subtypes via gene expression data. Based on the integration
of MPP signatures, we used the “NMF” R package [29] to perform NMF clustering. Before
clustering, we take the exponent of constant e to eliminate negative numbers in the matrix.
In the present study for the NMF method, the standard “brunet” method was selected
and the “nrun” parameter set to 10 for NMF clustering. Multiple runs are essential to
yielding a stable and robust clustering outcome in AD patients. After iterations of the
consensus clustering algorithm, the number of optimal clusters was confirmed according
to the rockfall diagram (Figure S2). The cophenetic, dispersion, and silhouette indicators
determined that the optimal clustering number is 2.

2.4. Establishment of AD Diagnostic MPPSS by Using Multiple Machine Learning Approaches

Next, we established machine learning-based MPPSS for the diagnosis of AD and non-
AD samples. We used five artificial intelligence frameworks and conducted AD diagnosis
model establishment and validation. Finally, we constructed AD diagnostic MPPSS by
using the best performing method among the five machine learning methods, including
extreme gradient boosting (XGBoost [30], R Package “xgboost”, V4.2.2, https://xgboost.ai/,
accessed on 24 April 2023), Boruta (R Package “Boruta” [31], V8.0.0, https://gitlab.com/
mbq/Boruta/, accessed on 12 April 2023), random forest (R Package “randomForest”,
V4.7-1.1), decision tree (R Package, “rpart” [32], V4.1.16, https://cran.r-project.org/web/
packages/rpart/index.html, accessed on 24 April 2023), LASSO (R Package “glmnet” [33]
V4.1-4, https://cran.r-project.org/web/packages/glmnet/index.html, accessed on 12 April
2023). Boruta is a feature selection algorithm based on random forests that can identify
significant and insignificant features, helping to determine which features are useful for
the model [31]. XGBoost is an enhanced learning algorithm based on decision trees that
can also be used for feature selection [30]. LASSO is a regression analysis method that
can reduce the number of parameters in the model by adding penalty terms and selecting
key features [34]. The principle of lasso regression is to add an L1 regularization term
that limits the number of features in the model, thereby reducing the risk of overfitting.
Specifically, the L1 regularization term adds the sum of the absolute values of the regression
coefficients to the loss function, which forces some of the feature coefficients to be zero
during optimization and achieves a feature selection effect. Decision tree and random
forest are also common feature selection algorithms that can rank the importance of each
feature through calculation [35]. We comprehensively evaluated the performance of five
machine learning methods based on 10-fold cross-validation via multiple indexes (AUC,
recall, precision, etc.). The LASSO method outperformed other methods. In summary,
the metaGEO dataset was randomly split into a training set (comprising 70% of the total
dataset) and a testing set (comprising 30% of the total dataset) for the purpose of model
establishment and accuracy validation [36]. Subsequently, we established an ordinary
binary (AD and non-AD) logistic regression with LASSO. The “cv.glmnet” function was

http://www.cytoscape.org/
https://xgboost.ai/
https://gitlab.com/mbq/Boruta/
https://gitlab.com/mbq/Boruta/
https://cran.r-project.org/web/packages/rpart/index.html
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used to select the optimal lamda parameter. To construct a reliable AD diagnosis model,
we repeated the selection features and model prediction with one thousand iterations and
decreased the influence caused by the occasional confusing factor. To validate the LASSO
model in training and testing datasets, the AD risk score of each sample was calculated
according to the following formula. The coef represents the risk coefficient of each MPP
signature, and MPPSi is the activity of the i-th MPP signature.

risk score = ∑n
i=1 coef(MPPSi)∗MPPSi

For the four independent validation datasets, the established model based on the
metaGEO dataset was used to calculate the risk score for each sample, and test the LASSO
model’s performance via the AUC index. All the source code for reproducing the examples
presented in this paper can be consulted in the following GitHub repository: https://github.
com/ChenHuangMUST/MPP-signature-for-AD-diagnosis.git (accessed on 7 May 2023).

2.5. Immune Infiltration Analysis by the CIBERSORT Algorithm

As a machine learning method based on the linear support vector regression method of
calculating cell fractions from gene expression data, Cell-type Identification By Estimating
Relative Subsets Of RNA Transcripts (CIBERSORT) [37], could infer the proportions of B
cells, plasma cells, T cells, natural killer cells, monocytes, macrophages, dendritic cells,
mast cells, eosinophils, and neutrophils that had infiltrated among 3 groups (S1, S2, and
non-AD groups). By using the CIBERSORT algorithm, we analyzed the AD patients’ gene
expression data and quantified the relative proportions of 22 infiltrating immune cells.

2.6. Gene Differential Expression Analysis and Functional Annotation Analysis between the AD
and Non-AD Groups, as well as within the Two AD Subgroups

We identified the differentially expressed genes (DEGs) by comparing non-AD and
AD groups, as well as AD subgroups, using the “limma” R package [38]. It developed
a multidimensional gene expression analysis method to evaluate the differences in gene
expression and identify which biological pathways are affected by these differences. First,
we converted the transcriptome data downloaded from GEO from probe-level format
to gene-level format for further analysis. Subsequently, the data underwent batch effect
removal, and differential expression analysis was performed between the AD and non-AD
samples, as well as within the two AD subgroups. The logarithmic fold change (logFC)
values that exceeded the limit of the mean value +/− two folds of standard deviation and
the adjusted p value less than 0.05 were considered DEGs. A volcano plot of the DEGs was
created using the “ggplot2” R package. After obtaining the DEGs, we performed functional
enrichment analysis based on the Gene Ontology (GO) knowledgebase [39], the KEGG
database, and the Hallmarks pathway derived from the Molecular Signatures Database
(MSigDB) [40] via the “GSEA” and “clusterProfiler” R packages. In addition to GO and
KEGG pathways, Hallmark pathways are a classification system used to describe important
biological processes related to disease development.

3. Results
3.1. Comparative Transcriptome Analysis Characterizes Metabolic Hallmarks of Peripheral Blood
in AD

After integration of three GEO datasets, referred to as metaGEO, the differential gene
expression analysis based on blood RNA-seq data between 488 AD and 487 non-AD sam-
ples was performed, which yielded 605 DEGs (324 up-regulated and 281 down-regulated
DEGs) (Figure 2a,g, and Table S3). Upregulated genes such as KLRB1, involved in im-
mune regulation, and HINT7, involved in neurodevelopment, play critical roles in these
processes. Protein-coding genes, such as LSM3, ATPO5, COX7, and RPL17, participate in
mitochondrial respiration and RNA splicing. In contrast, downregulated genes such as
NBEAL2, CEBPD, OSCAR, CD14, PAD14, CRISPLD2, and PGLYRP1 are associated with
immune response and inflammation. HK3, STXBP2, and PGD are related to metabolic

https://github.com/ChenHuangMUST/MPP-signature-for-AD-diagnosis.git
https://github.com/ChenHuangMUST/MPP-signature-for-AD-diagnosis.git
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processes. Genes such as APBB1IP, ITPK1, and TLN1 are involved in signal transduction
and neurodevelopment. Subsequently, we conducted cluster analysis of GO, KEGG, and
hallmark pathways. Using GSEA to sort the logFC of DEGs, we found that in the AD and
non-AD groups, DEGs were mainly enriched in KEGG pathways (Figure 2c and Table S4)
related to nucleotide excision repair, citrate cycle (TCA cycle), pyruvate metabolism, drug
metabolism-cytochrome P450, oxidative phosphorylation, and ECM-receptor interaction.
GO was enriched in chemical stimulus perception, aerobic respiration, oxidative phospho-
rylation, electron transport-coupled ATP synthesis, sensory perception, etc. (Figure 2d
and Table S5). Hallmark pathways were enriched in biological processes such as ox-
idative phosphorylation, MYC V1 targets, and heme metabolism (Figure 2f and Table
S6). We further depicted the differences in metabolic pathways, including lipid, glucose,
and energy metabolism, between AD and non-AD samples (Figure 2e). We performed a
differential MPP signature analysis between AD and non-AD groups via the chi-square
test (adjusted p value < 0.01) and obtained 112 significantly differential MPP signatures
(Figure 2h and Table S7). Then, we processed network analysis for those MPP signatures
to detect key metabolic pathways (Figure S3). Among them, several glucose and lipid
metabolic pathways, including galactose metabolism, biosynthesis of unsaturated fatty
acids, and arachidonic acid metabolism, are identified (Figure 2b and Table S8). Oxidative
phosphorylation was consistent with our previous differential gene expression analysis
between AD and non-AD groups (Figure 2c,f).

3.2. NMF Clustering Analysis of AD Patients Based on Peripheral Blood MPP Signatures Reveals
Distinct Patterns of Lipid, Glucose, and Energy Metabolism

To quantify the degree of metabolic differences in AD patients, we selected 112 MPP
signatures via chi-square test (adjusted p value < 0.01) for NMF clustering (Figure 3a). NMF
clustering of the MPP signature matrix revealed two main AD clusters, referred to here as S1
and S2 (with 295 and 193 cases, respectively; Table 1). Then, we conducted the differential
gene expression analysis of blood-based RNA-seq data between the S1 and S2 groups, which
yielded 675 DEGs (420 up-regulated and 255 down-regulated DEGs; Figure 3b,d, and Table
S9). As a result, upregulated genes such as ANAX1 participate in biological functions
such as autophagy and metabolic regulation. ARGLU1 is mainly involved in metabolic
regulation. S100A8 and KLRB1 are involved in inflammation and immune regulation.
TOMM7 dominates cerebrovascular network homeostasis, and some studies have found
that it is associated with the neurodegenerative disease Parkinson’s [41]. Downregulated
genes such as LSP1 and CDA are involved in immunity. SLC25A37 participates in metabolic
development. NINJ2 and GRINA regulate neurodevelopment, while EPB49 is involved
in cell extension and development. DEGs were enriched in KEGG pathways including
neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, olfactory
transduction, etc. (Figure 3e and Table S10). Between the S1 and S2 groups, GO enrichment
of DEGs was found to be involved in autophagy, sensory perception, macroautophagy,
organelle catabolic processes, chemical stimulus, olfaction, and stimulus detection in
sensory perception, etc. (Figure 3f and Table S11). DEGs were mainly enriched in hallmark
pathways consisting of glycolysis, apoptosis, fatty acid metabolism, estrogen response,
and oxidative phosphorylation (Figure 3c and Table S12). Similarly, the chi-square test
was used to detect differential MPP signatures (adjusted p value < 0.01) between the S1
and S2 groups, which generated 120 differential MPP signatures (Figure 3h and Table
S13). Subsequent network analysis for those differential MPP signatures was conducted to
screen out key metabolic pathways (Figure S4). As a result, many key metabolic pathways
correlated to AD were detected (Figure 3g and Table S14), including α-Linolenic acid
metabolism, fructose and mannose metabolism, fatty acid elongation, etc. Additionally,
several pathways such as oxidative phosphorylation, biosynthesis of unsaturated fatty
acids, and drug metabolism-cytochrome P450 were enriched in our previous functional
analysis of DEGs between the S1 and S2 groups (Figure 3c and Table S10), implying the
reliability of these AD-related metabolic pathways. We compared metabolic pathway
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activity between the S1 and S2 groups via ssGSEA analysis. The activity of oxidative
phosphorylation in the S1 group is higher than that in the S2 group, whereas the activities
of most lipid metabolisms, i.e., α-Linolenic acid metabolism, arachidonic acid metabolism,
and ether lipid metabolism, in the S1 group were found to be lower than those in the S2
group (Figure 3j).

3.3. Comprehensive Evaluation of Immune Cell Infiltration Characteristics in AD Subgroups and
the Non-AD Control Group

Immune cell infiltration is significantly associated with AD progress, and it is one of the
hallmarks of AD [42]. To comprehensively evaluate the immune infiltration characteristics
of two AD subgroups and one control group, we applied the CIBERSORT algorithm to
estimate the proportions of 12 immune cell types (i.e., B cells, plasma cells, CD8+ T cells,
CD4+ T cells, γδ T cells, NK cells, monocytes, macrophages, dendritic cells, mast cells,
eosinophils, and neutrophils) in each sample. The results presented significantly different
immune infiltration features in the subgroups, indicating that the patients in these groups
had different immune cell infiltration landscapes. As shown in Figure 3i, T cell memory
activation and T cell CD4 memory resting were significantly lower in S2 patients, while T
cell CD4 naive infiltration was significantly higher in S1 patients. Dendritic cells activated
and dendric cells resting were both extremely significant in S2. The formal is higher than
the two other groups, and the latter is on the opposite side. While T cells were regulatory,
the index of S2 group immune infiltration was obviously higher than the other groups,
whereas the control group was the second. In T cells γδ immune infiltration, the S2 group
had the lowest proportion compared with the S1 group and the non-AD group. Mast
cell activation was significantly accumulated in S2, while the mast cell resting in S2 is on
the counterpart.

3.4. Establishment of MPPSS for Distinguishing AD Patients from Non-AD Patients

Initially, the metaGEO dataset was used to construct the AD diagnostic model. To
select the optimal machine learning method, five machine learning methods were sep-
arately applied to establish an MPSS classifier on the metaGEO data, including Boruta,
XGBoost, random forest, decision tree, and LASSO (Figure 4a). Additionally, we used
10-fold cross-validation to evaluate the performance of models on AD diagnosis. The MPP
signature matrix was subjected to each machine learning model for 10-fold cross-validation
with 100 iterations, respectively (Table S15). We evaluated the performance of the MPSS
classifier using the ROC metric, etc., with the points on the ROC curve representing its
performance at different classification thresholds. The results indicated that the LASSO
model, referred to as the MPP scoring system (MPPSS), outperformed other models on
the metaGEO dataset (Figure 4b), which consists of 13 important MPP signatures related
to AD (Figure 4c and Table 3). These pathways are closely related to biological processes
such as oxidative phosphorylation, pyruvate metabolism, or heme metabolism and involve
the synthesis, degradation, and transformation of various important metabolites, such as
steroid hormones, GPI anchors, heparan sulfate/dermatan sulfate, terpenoid backbones, etc.
Understanding these pathways can help us better understand the structure and function of
metabolic regulatory networks, providing insights into disease prevention and treatment.
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metabolic network of significantly differential MPP signatures unveils important metabolic pathways.
We selected the top 10 metabolic pathways ranked by the MCC algorithm and their neighbors for
visualization. Hub nodes are also labeled by color, and the nodes with a deeper color have a higher
rank. Green nodes are the neighbor nodes of hub nodes. (c) The functional annotation analysis
of DEGs by the KEGG database. Over-Representation Analysis (ORA) has been used to calculate
the enrichment level of KEGG from DEGs. (d) The functional annotation analysis of DEGs by the
GO database. ORA has been used to calculate the enrichment level of GO from DEGs. (e) The
boxplot of metabolic pathways between AD and non-AD samples reveals significantly differential
metabolic pathways. (f) The functional annotation analysis of DEGs by hallmark pathways. ORA
has been used to calculate the enrichment level of HALLMARKS from DEGs. (g) The heatmap of
DEGs between AD and non-AD groups. We selected significant DEGs from all the available ones for
visualization. (h) The heatmap of differential MPP signatures. We selected significantly differential
MPP signatures from all available ones for visualization. hsa01040, Biosynthesis of unsaturated
fatty acids; hsa00052, Galactose metabolism; hsa00780, Biotin metabolism; hsa00270, Cysteine and
Methionine metabolism; hsa00760, Nicotinate and Nicotinamide metabolism; hsa00592, α-Linolenic
acid metabolism; hsa00533, Glycosaminoglycan biosynthesis—keratan sulfate; hsa00590, Arachidonic
acid metabolism; hsa00980, metabolism of xenobiotics by cytochrome P450; hsa00512, Mucin type
O-glycan biosynthesis. The labeled asterisk indicated the statistical p values (*** p < 0.001).

Table 3. MPP signatures used for LASSO model construction.

MPPS Coef Pathway Pairwise Function

hsa00100-hsa00190 1.0285978 Steroid hormone biosynthesis—oxidative phosphorylation
hsa00563-hsa00190 1.4211556 GPI-anchor biosynthesis—oxidative phosphorylation

hsa00534-hsa00190 1.0289191 Glycosaminoglycan biosynthesis-heparan
sulfate/heparin—oxidative phosphorylation

hsa00900-hsa00190 1.1686399 Terpenoid backbone
biosynthesis—oxidative phosphorylation

hsa00310-hsa00534 −0.6982631 Lysine degradation—glycosaminoglycan
biosynthesis-chondroitin sulfate/dermatan sulfate

hsa00760-hsa00190 1.1373381 Nicotinate and nicotinamide
metabolism—oxidative phosphorylation

hsa00531-hsa00860 0.1188049 Glycosaminoglycan degradation—porphyrin metabolism

hsa00513-hsa00620 1.3416181 Various types of N-glycan
biosynthesis—pyruvate metabolism

hsa01040-hsa00190 1.0216412 Unsaturated fatty acid
biosynthesis—oxidative phosphorylation

hsa00310-hsa00600 −0.8491503 Lysine degradation—sphingolipid metabolism

hsa00534-hsa00620 0.1976417 Glycosaminoglycan biosynthesis-heparan
sulfate/heparin—pyruvate metabolism

hsa00310-hsa00531 −1.1770501 Lysine degradation—glycosaminoglycan degradation
hsa00051-hsa00860 0.4476219 Fructose and mannose metabolism—porphyrin metabolism
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between S1 and S2 groups. (a) The heatmap of NMF clustering based on AD patients. (b) The volcano
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plot of DEGs between S1 and S2 groups. (c) The functional annotation analysis of DEGs by hall-
mark pathways. ORA has been used to calculate the enrichment level of HALLMARKS from DEGs.
(d) MPP signature-based clustering of the metaGEO dataset showed that DEGs significantly corre-
lated with metabolism, nervous system, and immunity among S1, S2, and non-AD groups. (e) The
functional annotation analysis of DEGs by the KEGG database. GSEA (Gene Set Enrichment Analysis)
has been used to evaluate the enrichment of gene sets in KEGG. The red circle represents upregulation
of the gene, while the blue circle represents downregulation of the gene. (f) The functional annotation
analysis of DEGs by the GO database. GSEA has been used to evaluate the enrichment of gene sets in
GO. The red circle represents upregulation of the gene, while the blue circle represents downregu-
lation of the gene. (g) The core metabolic network of significantly differential MPP signatures. We
selected the top 10 metabolic pathways ranked by the MCC algorithm and their neighbors. Hub
nodes are also labeled by red, and the nodes with a deeper color have a higher rank. Green nodes
indicate adjacency nodes between hub nodes. (h) The heatmap of differential MPP signatures, which
we selected from all available ones between the S1 and S2 groups. (i) The immune infiltration analysis
shows the profiles of infiltrating immune cell types between the S1 and S2 groups. (j) The boxplot of
metabolic pathways between S1 and S2 groups. hsa00592, α-Linolenic acid metabolism; hsa00982,
drug metabolism by cytochrome P450; hsa01040, biosynthesis of unsaturated fatty acids; hsa00534,
glycosaminoglycan biosynthesis by heparan; hsa00780, biotin metabolism; hsa00980, metabolism of
xenobiotics by cytochrome; hsa00512, mucin type O-glycan biosynthesis; hsa00051, fructose and man-
nose metabolism; hsa00760, nicotinate and nicotinamide metabolism; hsa00062, fatty acid elongation.
The labeled asterisk indicated the statistical p values (* p < 0.05, ** p < 0.01, and *** p < 0.001).

Next, we found that the AUC value of MPPSS for the training set was 0.73 (95%CI:
0.70, 0.77), and for the testing set, it was 0.71 (95%CI: 0.65, 0.77; Figure 4d). The perfor-
mance of the training and validation sets directly demonstrates the predictive potential
of the MPPSS. Then, to further evaluate the robustness and accuracy of the MPPSS, we
validated it using four independent GEO datasets. Our MPPSS had good performance
for predictions on the independent GEO sets. Concretely, when evaluating the model on
the whole blood validation sets (GSE97760), we obtained an AUC value of 0.99 (95%CI:
0.96, 1.00; Figure 4e). The AUC values are likewise higher than 0.7 in the resting brain
tissue validation sets (GSE148822 and GSE104704; Figure 4e). In addition, to evaluate the
classification performance of the MPPSS, we compared the APoE genotypes and metabolic
pathways in two groups divided by the MPPSS on the metaGEO dataset (Figure 4f). and the
results indicated that lipid (α-Linolenic acid metabolism and biosynthesis of unsaturated
fatty acids), glucose (galactose metabolism and pentose phosphate pathway), and energy
(oxidative phosphorylation) metabolism are significantly different (Figure 4g).
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4. Discussion 

Figure 4. Establishment and validation of MPPSS for the diagnosis of AD patients. (a) The construc-
tion of MPP signature models based on multiple machine learning methods. The different color circles
represent different machine methods. Dark blue represents Boruta, dark red represents xgboost, light
blue represents LASSO, light purple represents decision tree, and dark purple represents random
forest. (b) The performance among five machine learning methods on train and test datasets. The
optimal method among five machine methods is marked by red asterisk. (c) The selection of MPP
signatures by MPPSS; (d) The AUC curves of MPPSS on train and test datasets; (e) The AUC curves
of MPPSS on four independent validation datasets; (f) The comparison of the APoE genotypes in two
groups diagnosed by MPPSS on the metaGEO dataset; (g) The comparison of metabolic pathway
activity in two groups diagnosed by MPPSS on the metaGEO dataset. The labeled asterisk indicated
the statistical p values (** p < 0.01 and *** p < 0.001). ROC curves include the AUC value and the
corresponding 95% confidence interval (CI).
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4. Discussion

AD is an incurable neurodegenerative disorder associated with aging, and its underly-
ing mechanisms are not yet fully understood [43]. Early diagnosis and delay of the disease
process are regarded as the best treatments for AD. In our study we aimed to develop a di-
agnostic scoring system (MPPSS) for AD patients based on blood gene expression data. The
advantages of blood-based biomarker diagnosis for AD include its non-invasiveness, safety,
ease of use, low cost, and high accuracy compared to other traditional diagnostic methods,
which require invasive procedures such as lumbar puncture or intracranial injection to
collect samples.

Recent studies suggest that metabolic pathways including lipid, glucose, and energy
metabolism may play a role in the development of AD [19,44]. Therefore, we established
MPP signatures for the characterization of the interplay between metabolic pathway pairs.
Based on the MPP signatures, we identified two subsets (S1 and S2) of AD patients via NMF
clustering. In the S1, S2, and non-AD groups, the down-regulated genes are mostly related
to immunity, neurogenesis, and signal transduction, while the up-regulated genes are
mostly related to mitochondrial respiration and RNA splicing. Furthermore, we conducted
the immune infiltration analysis for three groups and found that the S2 group had a lower
immune proportion, which might suggest a strong correlation between AD progression
and immunity. Finally, we constructed MPPSS for the AD diagnosis. Compared with a
single marker-based diagnostic model, the MPP signature-based diagnostic model has more
power for characterization of the interaction among metabolic pathways in AD onset and
development. The MPPSS holds considerable potential for assisting doctors in diagnosing
elderly patients. It also suggests that MPP signatures may be used as diagnostic biomarkers
in clinics.

Overall, these findings suggest that metabolic pathways may provide potential di-
agnostic biomarkers for AD, particularly through blood-based analysis. Moreover, the
involvement of cytochromes P450 in lipid homeostasis and detoxification processes fur-
ther supports the role of metabolism in AD development [45]. Many studies have shown
cytochromes P450 of the liver are involved in the maintenance of lipid homeostasis, such
as cholesterol, vitamin D, oxysterol, and bile acid metabolism [46,47]. In detoxification
processes of endogenous compounds such as bile acids [48]. The correlation provides
evidence in support of our research findings. The core metabolic network metabolism
of xenobiotics by cytochrome P450 (hsa00980) and drug metabolism by cytochrome P450
(hsa00982) are involved in the metabolic mechanisms associated with cytochrome P450. The
metabolism of xenobiotics by cytochrome P450 appeared as an important core metabolic
pathway in both the comparison of AD vs. non-AD (Figure 2b) and S1 vs. S2 (Figure 3g),
and drug metabolism-cytochrome P450 appeared in S1 vs. S2 (Figure 3g) individually.

The activity of cytochrome P450 protein is also regulated by the lipid environment [49].
The lipid level may have an important impact on the onset and development of AD [50,51].
In our study, the differential enrichment of lipid metabolism pathways such as steroid
biosynthesis, sphingolipid metabolism, glycerolipid metabolism, etc. (Figure 2e) supported
this point of view.

Alzheimer’s disease is believed to be caused by reactive oxidative stress (ROS), which
occurs prior to the formation of Aβ-plaques and neurofibrillary tangles [52]. The core
metabolism pathway, that is, the biosynthesis of unsaturated fatty acids (hsa01040), identi-
fied in the present study has been demonstrated to be associated with ROS production [53].
Another core metabolism involved in the metabolism of unsaturated fatty acids was re-
ported to be considerably disrupted in the brains of individuals with different levels of
Alzheimer’s pathology [54]. What is more, cysteine and methionine metabolism (hsa00270)
also plays an essential role in ROS; it can be oxidized and has been implicated in caloric
restriction and aging [55]. These results are shown in Figure 2b.

Among these metabolism pathways, oxidative phosphorylation (Figure 2e) plays a
crucial role in brain cell energy metabolism [56] and has been shown to be involved in the
pathogenesis of AD [57]. Other pathways, including pyruvate metabolism [58], porphyrin
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metabolism [59] (Figure 2e), and fatty acid biosynthesis [46] (Figure 3e), have also been
found to be implicated in AD. The dysregulation of these pathways may lead to cellular
energy metabolism disruption, oxidative stress, and cell death, which may negatively affect
the occurrence and development of AD [46,58–60].

Through analyzing the proportions of different immune cells in whole blood, a better
understanding of the pathogenesis of AD can be gained. For example, inflammation
may be an important trigger for AD, and certain immune cells such as macrophages and
T cells are associated with inflammation. The comparison of T cells and macrophages
among the three groups demonstrated that the AD patients in S2 had low accumulation.
T cell memory activation and T cell CD4 memory resting were significantly lower in S2
patients, while T cell CD4 naïve infiltration was significantly higher than that of S1 patients.
Memory T cells are a subset of T cells that can encounter foreign substances and antigens
and become activated more effectively; in the meantime, CD4 T cells help coordinate
immune responses by releasing cytokines and other signaling molecules [61], implying
the patients in S2 exhibit lower immunity. There was a significant difference in the level
of γδ immune infiltration among the S2 group compared to the other groups, with the
S2 group exhibiting the lowest level. T cells with γδ receptors form a small percentage
of lymphocytes in healthy individuals, whereas their number increases in people with
immunological disorders. Additionally, we found the patients in S2 possessed the highest
proportion of regulatory T cells (Treg), which is a hallmark of immunological suppression
These findings suggested that the patients in S2 might have a more severe progression of
AD, as well as the high confidence and clinical significance of AD subgrouping derived
from NMF clustering.

Additionally, there are significant differences in the enrichment of mast cells among
the three groups. Concretely, mast cell activation was significantly higher in the S2 group,
while mast cell resting in the S2 group is on the counterpart. Derived from the myeloid
lineage, mast cells are a category of immune cells that exist in connective tissues across the
body [62]. Fibrillar Aβ peptides are known to play a significant role in the development of
AD [63], and some studies have suggested that accumulation of them can trigger mast cells
and elicit exocytosis and phagocytosis [64,65], which supports our finding that the patients
in S2 exhibit a higher proportion of mast cell activation. It should be noted that our results
were based on the analysis of blood samples. This finding indicates that the impact of AD
on mast cells can be reflected in the whole blood.

In our study, we utilized multiple machine learning approaches to establish and test
the predictive model, respectively, with the aim of screening out the optimal model for
AD diagnosis. Specifically, this strategy utilizes various feature selection algorithms (such
as LASSO, random forest, etc.) to select features and evaluate the predictive capability of
models via the AUC index. This strategy could well eliminate the bias that may exist in a
single feature selection algorithm, which would improve the robustness and sensitiveness
of the predictive model.

It is worth noting that this study has several limitations. Firstly, the absence of crucial
clinical information such as survival time, survival status, cognitive test scores (e.g., MMSE,
MoCA, CDR), and education level of AD patients, all of which are highly relevant to AD
patients, restricts our ability to fully analyze the clinical features between the S1 and S2
groups. We expect to collect more clinical data on AD patients in our future work. Secondly,
although MPPSS exhibits decent predictive performance no matter the testing data or
independent validated data (including blood and brain datasets), there is still a lack of
large-scale verification via prospective studies with large sample sizes. The MPPSS might
be a valuable clinical tool aiding doctors in accurately diagnosing AD, especially in elderly
patients, after rigorous evaluation and validation. Additionally, the lack of blood samples
prevented us from conducting more stable external validation specifically for blood-based
analysis. Nonetheless, we included samples from other brain tissues for validation, which
further demonstrated the generalizability of our model. Finally, the functional role of
the reliable MPP signatures we identified requires further molecular experiments. The
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employment of the SiMoA platform in measuring blood biomarkers associated with neu-
rodegeneration [66], encompassing Aβ 42/Aβ 40, p-tau, NFL, and GFAP, has emerged as
a promising approach for facilitating both the diagnosis and prognosis of AD. Rationally,
there is a pressing need for additional research endeavors to explore the interrelationship
between these neurodegeneration biomarkers and metabolic pathway markers, thereby al-
lowing for enhanced comprehension of their biological implications in AD, which facilitates
a better understanding of their biological significance implicated in AD.

Compared with existing neurodegeneration blood-based biomarkers, one potential
advantage of the suggested metabolic pathway signatures over blood-based biomarkers
for neurodegeneration is that they could be more practical for studying early-stage AD, as
the metabolic biomarkers can be accurately measured in blood even in healthy individuals.
Notably, the metabolic pathways-based approach also holds promise in aiding the diagnosis
of other forms of dementia beyond AD [67,68].

In summary, we conducted a comparative analysis based on blood gene expression
data between AD and non-AD groups. Characterization of the DEGs, and pathways
associated with AD disclosed a potential correlation of metabolism with the onset and
progression of AD. Based on blood transcriptome data, we constructed new metabolic
markers, referred to as MPP signatures. Subsequently, we revealed the molecular subtype of
AD based on NMF clustering and detected the differences within the AD subset distribution.
Network analysis was applied to differential MPP signatures to detect the core metabolic
network of AD. Eventually, we established MPPSS for AD diagnosis, which exhibited good
performance on train, test, and validation datasets. Our study provides insights into the
association between AD and metabolism, and MPPSS shows the important implications for
AD diagnosis and treatment.
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www.mdpi.com/article/10.3390/genes14061285/s1, Figure S1: The PCA figures depict the datasets
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S2: The cophenetic, dispersion and silhouette indicators determining the optimal clustering number
of NMF method; Figure S3: The metabolic network of differential MPP signatures between AD and
non-AD groups revealing key metabolic pathways related to AD; Figure S4: The metabolic network
of differential MPP signatures between S1 and S2 groups revealing important metabolic pathways
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Across Multiple Datasets; Table S2: 84 KEGG metabolism pathway; Table S3: Differentially Expressed
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constructed based on differential analysis of MPP signatures between AD and non-AD group; Table
S9: Differentially Expressed Genes between Subgroup1 (S1) and Subgroup2 (S2) Samples; Table S10:
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Gene Set Pattern Analysis Based on Differential Expression Genes Between Subgroup1 (S1) and
Subgroup2 (S2); Table S13: Summary Table of Pathway Analysis Results in Subgroup1 (S1) and
Subgroup2 (S2) Samples Based on Chi-squared Test; Table S14: Top 10 Metabolic Pathways of core
metabolic network constructed based on differential analysis of MPP signatures between Subgroup1
(S1) and Subgroup2 (S2) group; Table S15: Comparative analysis of MPP signature in machine
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