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Abstract: Krisna species are insects that have piercing–sucking mouthparts and belong to the Kris-
nini tribe in the Iassinae subfamily of leafhoppers in the Cicadellidae family. In this study, we
sequenced and compared the mitochondrial genomes (mitogenomes) of four Krisna species. The
results showed that all four mitogenomes were composed of cyclic double-stranded molecules and
contained 13 protein-coding genes (PCGs) and 22 and 2 genes coding for tRNAs and rRNAs, respec-
tively. Those mitogenomes exhibited similar base composition, gene size, and codon usage patterns
for the protein-coding genes. The analysis of the nonsynonymous substitution rate (Ka)/synonymous
substitution rate (Ks) showed that evolution occurred the fastest in ND4 and the slowest in COI.
13 PCGs that underwent purification selection were suitable for studying phylogenetic relationships
within Krisna. ND2, ND6, and ATP6 had highly variable nucleotide diversity, whereas COI and ND1
exhibited the lowest diversity. Genes or gene regions with high nucleotide diversity can provide
potential marker candidates for population genetics and species delimitation in Krisna. Analyses
of parity and neutral plots showed that both natural selection and mutation pressure affected the
codon usage bias. In the phylogenetic analysis, all subfamilies were restored to a monophyletic group;
the Krisnini tribe is monophyletic, and the Krisna genus is paraphyletic. Our study provides novel
insights into the significance of the background nucleotide composition and codon usage patterns in
the CDSs of the 13 mitochondrial PCGs of the Krisna genome, which could enable the identification
of a different gene organization and may be used for accurate phylogenetic analysis of Krisna species.

Keywords: Krisnini; mitogenome; codon usage bias; natural selection; phylogeny

1. Introduction

Iassinae (Hemiptera: Cicadellidae) is one of the largest groups in the Cicadellidae
family and has a global distribution that includes over 2000 known species that are cur-
rently assigned to 12 tribes and 155 genera [1–4]. In this family, many species are arboreal,
while some live on shrubs. Krisnini, one of the twelve tribes of Iassinae, is known from the
Oriental region of the Old World and the Caribbean region of the New World. Krisna, the
genus of the tribe Krisnini, has only 39 species recorded in the world, of which 13 species
are recorded from China [5]. The Cicadellidae family is phytophagous and is an important
component in ecosystems. Because of their piercing–sucking mouthparts, some species
damage agricultural and forestry commercial crops directly by sucking plant sap or indi-
rectly by acting as vectors of phytopathogens, spreading viruses between plants, leading to
crop stunting and even death. However, the biology and host plants of Krisnini are poorly
known. Linnavuori and Quartau reported Piper nigrum L. as the host of Krisna olivacea [6],
and Krisna strigicollis has been reported to harm Camellia sinensis L. Most previous studies
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on Iassinae relationships have focused on morphological characteristics and molecular
fragments [2,7].

Mitochondrial genomes (mitogenomes) contain information that is crucial to molecu-
lar evolution, such as base compositional bias, codon usage, and substitution rates [8,9].
In addition, mitochondria are extensively used in the study of the origin of biological evo-
lution and genetic diversity because of their rapid evolution, simple structure, low levels
of recombination, and high genome copy numbers [10,11]. The research contents mainly
include explaining the origin of species, exploring the phylogeny of insects, and revealing
the geographical distribution of species polymorphism [12,13]. At present, mitogenomes
have also been widely used in phylogenetic studies of the Cicadellidae family [14–17], and
>200 complete or partial mitogenomes of Cicadellidae species have been stored in GenBank.
Most of these species belong to the Deltocephalinae, Cicadellinae, and Typhlocybinae
subfamilies; however, only three mitogenomes of Krisnini were retrieved from GenBank.
Limited samples and molecular markers may hinder phylogenetic studies of Krisnini at var-
ious taxonomic levels. Consequently, sequencing the mitogenomes of Krisna can enrich the
molecular database of Krisnini and may help enrich population genetics and phylogenetic
studies regarding Cicadellidae. Moreover, characterizing the mitogenomes may provide a
preferable comprehension of phylogenetic relationships among the Krisnini members.

The disparity in the frequency of synonymous codon usage when encoding DNA
is known as codon usage bias (CUB). Codon bias is a common and complex natural
phenomenon present in many organisms [18]. The analysis of different organisms showed
that the CUB is related to genetic expression, and the rate of translation elongation and
the overall functionality of any protein can reveal the genomic structure and evolution
characteristics of organisms [19–22]. The selection process favors the specific codons that
help in the accurate and efficient translation of highly expressed genes. CUB can be caused
by factors such as gene function, restriction of gene composition, translation selection,
protein secondary structure, natural selection, and mutation [23]. However, the main factors
affecting CUB are natural selection and the mutation pressure of background nucleotide
compositions [24]. Thus, because of CUB, codons are used with a higher frequency than
other synonymous codons, thereby leading to adaptive evolution [25].

Our research was based on the complete mitogenomes of three Krisna species, Krisna
expansiva, K. furcata, and K. quadrimaculosus, and a partial mitogenome of K. nigromarginata.
The purpose was to increase the diversity of the mitogenomes of Krisna, strengthen the
understanding of them, and provide data for phylogenetic studies of other subfamilies. We
interpreted the mitochondrial structure of these four species, including the gene sequence,
nucleotide composition, codon usage patterns, protein properties, and factors affecting
CUB, and analyzed their molecular phylogenetic relationship. These results provide a new
perspective for understanding the identification, phylogeny, and evolution of Krisna and its
related species.

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

The samples of adult insects were collected by netting or light trapping from Yingjiang
County, Yunnan Province, China, 5 June 2019 (K. expansiva and K. furcata); Kuankuoshui
National Nature Reserve in Guizhou Province, China, 29 June 2021 (K. quadrimaculosus);
and Ying Ge Ridge National Nature Reserve, Hainan Province, China, 14 May 2021
(K. nigromarginata). The samples were stored in anhydrous ethanol and returned to the
laboratory for anatomical identification. Total DNA was extracted from the insect abdomen
using the DNeasy® Blood & Tissue Kit (Qiagen, Germany). The purity and concentration
of the extracted DNA were assessed using a Nanodrop 2000 spectrophotometer and 1%
agarose gel electrophoresis. Extracted DNA was stored at −20 ◦C.
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2.2. Sequence Processing and Analysis

Mitogenomes of each species were sequenced using the Illumina HiSeq 6000 s-generation
sequencing platform at BerryGenomics (Beijing, China) with 150-bp paired-end reads.
The average insert length was 350 bp, and 6 GB of clean data were obtained. Clean se-
quences of each mitogenome were assembled using Geneious Prime 2019.2.1 software [26]
and were based on the mitochondrial reference sequence of Idioscopus clypealis (GenBank:
NC_039642). The assembled sequences were annotated using the MITOS web server [27],
with the genetic codon “invertebrate” selected. The 13 protein-coding genes (PCGs) were
predicted by the ORF Finder in Geneious Prime using invertebrate genetic codes. The mi-
togenomic map and comparative analyses were performed using the CGView comparison
tool (https://proksee.ca/projects/new) (accessed on 12 October 2022) [28]. Furthermore,
the relative synonymous codon usage (RSCU) values and codon numbers were calculated
by MEGA X [29]. Nucleotide diversity (Pi) values were determined using sliding window
analysis (a sliding window of 200 bp and a step size of 20 bp) in DnaSP 5 [30]. In addition,
the nonsynonymous mutation rates (Ka), synonymous mutation rates (Ks), and Ka/Ks
ratio for the PCGs were calculated in DnaSP 5 [30]. Correlation analysis was performed
using IBM SPSS version 21.0 software. Finally, the percentage of the overall nucleotide
composition (A, T, G, and C) of each mitogenome was calculated. The values of GC skew
and AT skew were calculated as follows [31]:

AT skew = (A − T)/(A + T) and GC skew = (G − C)/(G + C)

2.3. Effective Number of Codons

The effective number of codons (ENC), which typically ranges from 20 to 61 [32], was
used to identify the bias of gene-synonymous codon use. An ENC value of 20 represents
the maximum bias, whereas an ENC value of 61 indicates no bias. Genes with ENC values
<35 are suggested to have a substantial codon bias [33]. ENC values were obtained using
the Condon W software.

2.4. Parity Rule 2 Bias Plot

The GC bias (G3/(G3 + C3)) and AT bias (A3/(A3 + T3)) values were used to create
a graph of parity rule 2 (PR 2) to evaluate the influence of mutation and selection pres-
sures [34]. In this plot, the coordinate of the center is 0.5, 0.5, which demonstrates an absence
of bias between mutation and selection rates. However, the degree of deviation from the
center, which is an unequal distribution of the nucleobase, may refer to the existence of
biases for mutation and selection forces [35].

2.5. Neutrality Plot

A neutrality plot of GC12 (the average of GC1 and GC2) versus GC3 analysis was
performed to determine the extent of mutation and selection forces in the CUB among the
genes [36]. Selection forces do not contribute when a change occurs in the third codon
position of a synonymous codon as the corresponding amino acid remains the same [37].
In the neutrality plot analysis, a regression coefficient of <0.5 shows that the influence of
natural selection on codon preference is greater than the mutation pressure. Conversely,
a regression coefficient close to 1 indicates that mutation pressure was the dominant
effect [36].

2.6. Correspondence Analysis

Correspondence analysis (COA) is a multivariate statistical tool based on the RSCU
values of the 13 PCGs. Past 4.09 software was used to determine the trend of codon usage
distribution on axis 1 and axis 2 [38,39].

https://proksee.ca/projects/new
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2.7. Grand Average of Hydropathy

The grand average of hydropathy (GRAVY) score is the sum of the products of the
frequency of each amino acid and the corresponding hydropathy index of each amino
acid, which determines the overall hydrophobic and hydrophilic nature of a protein.
A positive value indicates that the protein is hydrophobic, whereas a negative value
indicates that the protein is hydrophilic [40]. GRAVY was calculated using Galaxy (http:
//www.gravy-calculator.de/index.php, accessed on 8 March 2023) [41].

2.8. Phylogenetic Analysis

The phylogenetic tree was constructed based on the nucleotide sequence of mi-
togenomes of 90 leafhopper species belonging to 12 genera (Table S1), with Callitettix bra-
conoides (NC_025497), Magicicada tredecim (NC_041652), and Tettigades auropilosa (MG737767)
as the outgroups. Data were downloaded from the National Center for Biotechnology
Information website, and Geneious Prime 2019.2.1 software was used to extract 13 PCGs,
12s rRNA, and 16s rRNA from the datasets [26]. Then, the nucleotide sequences of the 93
species were aligned in batches using the MAFFT v7.313 algorithm [42] integrated into
PhyloSuite v1.2.1 [43]; gaps and ambiguous sites in the alignments were then removed
using Gblocks 0.91b [44] in PhyloSuite v1.2.1 [43]. MEGA X [29] was used to concatenate
individual gene alignments. The following data were obtained: (1) PCG12, first and second
codons of 13 PCGs with 7192 nucleotides; (2) PCG12RNA, including the PCG12 plus two
rRNAs with 8654 nucleotides. The optimal partitioning scheme and nucleotide substitution
model for Bayesian inference (BI) and maximum likelihood (ML) phylogenetic analyses
based on the two different datasets were selected using PartitionFinder 2.1.1 [45], with the
branch lengths linked, the Bayesian information criterion model, and the greedy search
algorithm. The ML [46] and BI methods [47] were used to construct the ML and BI trees.

3. Results
3.1. Basic Features of the Mitochondria of the Krisna

In our study, all Krisna species contained a typical 37 genes (22 tRNA and 2 rRNA genes,
and 13 PCGs) and a large noncoding region (control region), where 23 genes were located
on the heavy strand (J-strand) and 14 on the light strand (N-strand) (Figure 1). The four
mitogenome sequences of K. expansiva (OQ674152), K. furcate (OQ674153), K. nigromarginata
(OQ674154), and K. quadrimaculosus (OQ674155) were closed-circular molecules, ranging
from 14,442 bp (K. quadrimaculosus) to 15,334 bp (K. expansiva). The newly sequenced
mitogenomes of the four species were consistent in length and gene order with those of the
other previously sequenced Iassinae species [48]. The gene rearrangement phenomenon is
not present in this genus. The nucleotide compositions of these mitogenomes are shown in
Table 1. These Krisna species exhibited a heavy AT nucleotide bias (81.4%, 80%, 80.3%, and
80.2%), which is consistent with that of other leafhopper mitogenomes [49–53]. Moreover,
these mitogenomes had a positive AT skew (0.13–0.22) and a negative GC skew (−0.15
to −0.21).

Table 1. Nucleotide compositions of the complete mitogenomes of Krisna species.

Species Feature Length (bp) A% G% C% T% AT Skew CG Skew

K. expansiva

Whole mitogenome 15,334 46.9 7.9 10.6 34.5 0.15 −0.15
Control region 1108 44.8 4.2 4.6 46.5 −0.02 −0.05

13 PCGs 10,942 34.3 10.1 9.8 45.7 −0.14 0.02
22 tRNAs 1423 40.6 11.0 7.0 41.3 −0.01 0.22
2 rRNAs 1896 34.7 9.9 6.6 52.4 −0.26 0.20

http://www.gravy-calculator.de/index.php
http://www.gravy-calculator.de/index.php
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Table 1. Cont.

Species Feature Length (bp) A% G% C% T% AT Skew CG Skew

K. furcata

Whole mitogenome 15,169 46.2 8.2 11.9 33.8 0.15 −0.18
Control region 876 48.2 5.0 8.3 38.5 0.11 −0.25

13 PCGs 10,943 34.3 10.6 10.8 44.3 −0.13 −0.01
22 tRNAs 1430 41.3 10.8 7.6 40.3 0.01 0.22
2 rRNAs 1918 30.9 10.7 6.5 51.9 −0.25 0.25

K. nigromarginata

Whole mitogenome 14,808 45.4 8.0 11.7 34.9 0.13 −0.19
Control region 470 51.7 6.8 8.7 32.8 0.22 −0.12

13 PCGs 10,952 34.4 10.2 10.2 45.1 −0.13 0
22 tRNAs 1428 41.9 10.6 8.3 39.2 0.03 0.12
2 rRNAs 1910 34.0 10.2 5.8 50.0 −0.19 0.27

K. quadrimaculosus

Whole mitogenome 14,442 49.1 7.8 12.0 31.1 0.22 −0.21
Control region 224 55.4 4.9 4.9 34.8 0.23 0

13 PCGs 10,936 34.7 10.2 10.6 44.8 −0.13 −0.03
22 tRNAs 1424 41.6 11.0 7.4 40.0 0.02 0.20
2 rRNAs 1903 28.3 10.6 6.8 54.3 −0.31 0.22
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3.2. PCGs and Codon Usage

Among the 13 PCGs, the longest was COI and the shortest was ATP8. ND4, ND4L,
ND5, and ND1 were coded on the N-strand, and COI, COII, COIII, Cytb, ATP6, ATP8, ND2,
ND3, and ND6 were coded on the J-strand (Figure 1). All PCGs started with ATN (ATA,
ATT, ATC, and ATG) and ended with TAA, TAG, or the incomplete codon T-, except for
ATP8, which started with TTG. This atypical initial codon phenomenon is often observed
in genes in other leafhopper mitogenomes, especially in ATP8 [54–58].

The AT content of PCGs (78.6–80%) was slightly lower than that of the whole genome
(80–81.4%), and the AT skew (−0.14 to −0.13) and GC skew (−0.03 to 0.02) of 13 PCGs
were similar among the four Krisna species (Table 1). Figure 2 summarizes the RSCU in
the PCGs. The result revealed that the codon usage of Krisna was remarkably alike among
leafhopper mitogenomes [59,60]. The most frequently used codon was UUA (L), followed
by UCA (S1), and the least frequently used codon was CUG (L) in the four Krisna species.
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The codon usage of PCGs can also reflect the preference of the mitogenomes for AT base
usage. The RSCU values for Krisna indicated a pattern toward more A and T than G and C.
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3.3. Control Region

The control region, also known as the A + T-rich region, is the longest non-coding
region, and many genes are involved in mitogenic replication and transcription. In the
leafhopper family, the biggest difference in the length and composition of the control region
is the main reason for the differences in the mitogenomes of different species [52]. In the
four Krisna species, the control region was located between 12S rRNA and trnaI. Herein,
the length of the control region of Krisna was 1108, 876, 470, and 224 bp for K. expansiva,
K. furcata, K. nigromarginata, and K. quadrimaculosus, respectively. The AT-rich region had the
highest AT content, with 91.3% in K. expansiva, 86.7% in K. furcata, 84.5% in K. nigromarginata,
and 90.2% in K. quadrimaculosus (Table 1).

3.4. Mitochondrial Gene Variation in Krisna

Nucleotide diversity is usually used to identify regions with high nucleotide dif-
ferences and can guide the selection of species- or group-specific markers for molecular
evolution research, especially for taxonomic groups with high morphological similari-
ties [61,62]. Thirteen PCGs in Krisna were examined for variation, and the nucleotide
diversity of each PCG was determined using the sliding window approach. We found



Genes 2023, 14, 1175 7 of 17

variable nucleotide diversity both within and among PCGs (Figure 3A). The average val-
ues of nucleotide diversity calculated for individual genes ranged from 0.1592 (COI) to
0.2523 (ND2); the most variable region (5815–6014) was in ND2 (Pi = 0.34), whereas the
most conserved fragment (681–880) was in COI (Pi = 0.10), as found in other leafhopper
species [15].
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We calculated Ka, Ks, and Ka/Ks values to compare the evolutionary patterns of the
13 PCGs (Figure 3B) and found that all PCGs in Krisna had Ka/Ks values < 1, indicating
that they were under purifying selection. In the mitochondrial genome, the evolution rate
of different PCGs differed, and ND4 had the fastest evolution rate, whereas COI had the
slowest rate and was relatively conserved, which is consistent with other findings [63–65].
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The specific arrangement is: ND4 > ND4L > ND5 > ATP8 > ND2 > ND1 > ND6 > ATP6 >
ND3 > COIII > COII > CYTB > COI.

3.5. Analysis of CUB
3.5.1. Relationship between ENC and Compositional Attributes

The ENC values (Table 2) in the reported Krisna mitogenomes ranged from 37.79
to 38.35 and essentially showed no variation among the four species examined in this
study, although they exhibited some bias in codon usage. In addition, we performed a
correlation analysis between the ENC, the overall composition (A%, T%, G%, C%, and
GC%), and the third position (A3%, T3%, G3%, C3%, and GC3%) of the codon (Table S2).
A significant correlation with a positive value among homogeneous nucleotides and a
significant correlation with a negative value among most of the heterogeneous nucleotides
were observed in several of the mitochondrial genes, suggesting that mutational pressure
can affect the base composition bias of mitochondrial genes of the Krisna species [66].

Table 2. Codon features of PCGs of Krisna.

Species ENC GCall/% CG1/% CG2/% CG3/%

K. expansiva 37.79 19.9 21.3 23.83 14.56
K. furcata 37.98 21.37 22.97 24.73 16.4

K. nigromarginata 37.94 20.45 22.45 24.27 14.64
K. quadrimaculosus 38.35 20.49 22.48 23.77 15.22

We calculated the GCall and the CG content of the first, second, and third bases of the
mitochondrial genes of the four Krisna species. We found that their contents were all <50%
and that the CG contents in different positions were different. The content of the second
base was the highest, and the content of the third was the lowest, showing: GC2 > GC1 >
GC3. The low CG content indicated that codons ending in A/T bases were favored during
the evolution of the Krisna mitogenomes, which was consistent with the overall trend of
the complete mitogenomes.

3.5.2. PR2 Plot Analysis

To investigate whether the codon bias was caused by mutation pressure or natural
selection, the relationship between the G and C contents and between the A and T contents
in the 13 PCGs was analyzed using the PR2 bias plot (Figure 4). The PCGs of the four Krisna
species are irregularly distributed, and most of the genes are distributed in the upper left
corner of Figure 4. This explained that the CUB of the gene codons that encode protein in
the four Krisna species was influenced by natural selection and mutation pressure.

3.5.3. Neutrality Plot

Previous studies showed that the presence of a significant positive correlation in
mitochondrial genes indicates the role of mutation forces (GC mutation bias) throughout
the codon positions [67,68] in these genes. However, we did not observe any significant
positive correlation in the mitochondrial genes (Table 3), indicating a weak influence of
mutation pressure in these genes. Furthermore, the regression coefficient was between
−0.9996 and 0.7818; only the regression coefficient of ND2 and ND4 was >0.5, and the rest
of the PCGs were <0.5 (Figure 5). Therefore, the use of these four Krisna species’ codons
was more influenced by natural selection and less affected by mutations.
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Table 3. Correlation coefficient between CG12 and CG3.

ATP6: 0.348 CYTB: −0.481 ND4L: −0.351
ATP8: −0.951 * ND1: 0.067 ND5: 0.173
COI: 0.543 ND2: 0.445 ND6: −0.328
COII: −0.846 ND3: 0.701
COIII: 0.438 ND4: 0.568

* p < 0.05.

3.5.4. Correspondence Analysis

Analysis of RSCU values in the mitogenomes is used to explore differences in codon
usage between genes. In our analysis, the matrix containing all zero-row codons and the
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stop codon was removed, which we observed in the first major axis (F1) to account for
49.26% (ATP6), 50.11% (ATP8), 43.08% (COI), 50.40% (COII), 45.17% (COIII), 53.3% (CYTB),
50.52% (ND1), 60.98% (ND2), 57.39% (ND3), 56.27% (ND4), 42.25% (ND4L), 52.58% (ND5),
and 49.28% (ND6), of all variants in the gene set; whereas, the second spindle (F2) accounted
for only 30.12% (ATP6), 35.33% (ATP8), 33.83% (COI), 28.3% (COII), 30.44% (COIII), 32.78%
(CYTB), 36.18% (ND1), 25.09% (ND2), 26.20% (ND3), 27.63% (ND4), 34.78% (ND4L), 26.69%
(ND5), and 36.93% (ND6) (Figure 6). This leads to the first axis being the main contributor
to codon bias.
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indicate codons encoding amino acids in the genes.

We observed that most of the codons were plotted close to the axis and the distribution
was concentrated, suggesting that the base composition of mutation bias is related to codon
bias in these genes, supporting previous findings [69]. However, a discrete distribution of
some gene codons was also observed, suggesting that other factors can influence the use of
gene codons.

3.5.5. Properties of Proteins

The amino acid compositions in the coding DNA strands (CDSs) of the mitochondrial
13 PCGs of the Krisna genome were calculated. The overall frequency of each amino
acid used in the mitogenomes (Figure 7) revealed that leucine (Leu), phenylalanine (Phe),
serine (Ser), isoleucine (Ile), and methionine (Met) were more abundant compared with
other amino acids, with alanine (Ala), cysteine (Cys), aspartate (Asp), glutamate (Glu),
and arginine (Arg) being the least abundant. Furthermore, Leu, Phe, Ile, and Met are
all hydrophobic amino acids, while Cys, Asp, Glu, and Arg are hydrophilic amino acids.
Hydrophobic amino acids are therefore preferred in the mitochondrial genome of the genus
Krisna, and we concluded that the properties of amino acids influence the selection and thus
the formation of codon bias. The GRAVY of all the PCGs was positive (Table 4), indicating
that the mitochondrial proteins of the Krisna genome are hydrophobic while also indicating
that more hydrophobic amino acids are present in the Krisna mitogenomes and that there is
a preference for their use. This confirms the above judgment that protein properties will
affect the formation of CUB.
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Table 4. GRAVY of the 13 mitochondrial PCGs among four Krisna species’ genomes.

Species ATP6 ATP8 COI COII COIII CYTB ND1 ND2 ND3 ND4 ND4L ND5 ND6

K. expansiva 0.698 0.819 0.637 0.763 0.686 0.791 0.135 0.632 0.636 0.147 0.103 0.234 0.832
K. furcata 0.769 0.839 0.654 0.791 0.759 0.796 0.145 0.611 0.693 0.226 0.114 0.253 0.925

K. nigromarginata 0.706 0.894 0.617 0.763 0.714 0.784 0.160 0.584 0.681 0.218 0.073 0.305 0.821
K. quadrimaculosus 0.851 0.987 0.692 0.797 0.786 0.900 0.070 0.711 0.775 0.083 0.013 0.179 0.983

3.6. Phylogenetic Analysis

Substitution saturation tests revealed that the two candidate nucleotide sequence
datasets (PCG12RNG and PCG12) were not saturated, with the value of the substitution
saturation index (Iss) obviously lower than the critical values (Iss.cSym or Iss.cAsym)
(Table 5). This indicated that the concatenated data were suitable for further phylogenetic
analysis (ML and BI). The phylogenetic tree topologies based on analyses of the two
datasets showed that some branching relationships were recovered uniformly in the four
trees, although the resulting topology was not exactly the same (Figures 8 and S1–S3).

Table 5. Substitution saturation tests for each dataset.

Dataset NumOTU Observed
Iss Iss.cSym a Psym b Iss.cAsym c Pasym d

PCG12RNA
16 0.332 0.845 0.0000 0.679 0.0000
32 0.344 0.816 0.0000 0.571 0.0000

PCG12
16 0.324 0.841 0.0000 0.681 0.0000
32 0.330 0.814 0.0000 0.570 0.0000

a Critical values assuming a symmetrical tree. b Significant difference between Iss and Iss.cSym (two-tailed test).
c Critical values assuming an extreme asymmetrical tree. d Significant difference between Iss and Iss.cAsym
(two-tailed test).
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In this study, each subfamily reverted to monophyly, which is consistent with several
previous molecular phylogenetic studies [48,55,57,70–72]. Several subfamilies are very
stable, such as Iassinae, which emerged as a sister group to Coelidiinae, and Ledrinae,
forming sister groups with Evacanthinae; Membracoidae and Megophthalminae formed a
sisterhood in one clade, supporting the proposition that Membracoidae is derived from
the paraphyletic Cicadellidae, as has been shown in previous studies [73–76]. In our
study, Deltocephalinae formed a single clade and tended to be placed at the bottom of the
phylogenetic tree as a sister group to other leafhoppers. Our study also confirmed that
the genus Olidiana is not monophyletic in the Coelidiinae and can be divided into three
branches. The two species Olidiana ritcheriina and O. ritcheri were clustered closely with
the genus Taharana. The remaining species were split into two clades: one included O.
longsticka and O. obliqua, and the other included O. tongmaiensis, which supports Wang‘s
conclusion [77]. Krisnini is the sister group of Batracomorphini and Hyalojassini. The genus
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Krisna is the sister of Gessius and was restored as a paraphyletic group. In phylogeny, the
more samples that are used, the more reliable the results are, and the more reasonable the
classification system that can be proposed. However, the sample size involved in this study
is small, and the paraphyletic grouping of the Krisna species should be further verified in
the future by increasing the sample size.

4. Discussion

Our study showed that the mitogenomes of the Krisna species are highly conserved in
gene content, gene size, base composition, and codon usage. The COI gene is often used as
a universal DNA barcode for species classification, species identification, and phylogenetic
relationship assessments [78]. However, in this study, the COI gene was the least variable
and slowest evolving gene among all the genes; in contrast, the ND4 and ND2 genes were
the most variable and fastest evolving genes. Therefore, we believe that the ND4 and ND2
genes may be more suitable candidate markers for population genetic research and Krisna
taxonomic identification. Previous studies have also found that ATP8, ND6, and ND2 genes
are more suitable as candidate markers for population genetic research and the classification
and identification of Lamiinae taxa [79]. Ma et al. also suggested that ND6 and ND4 be used
as potential DNA markers for species and population identification and proposed that the
practicality of using low-variation COI genes as Lepidopteran barcodes needs to be carefully
tested and revised [62]. Additionally, all PCGs’ Ka/Ks values were <1, illustrating that
they are evolving under purifying selection and are suitable for investigating phylogenetic
relationships within Krisna.

The codon usage analysis showed that Krisna species exhibited CUB to some extent.
Furthermore, the PR2 plot analyzed the relationship between the G and C and A and
T content in 13 PCGs and showed that the CUB of Krisna was affected by both natural
selection and mutational pressure. The regression coefficient of the neutrality plot was <0.5,
thereby indicating the critical role of natural selection over mutation pressure in the CUB
of Krisna. This result is consistent with the regression coefficient value in silkworm mtDNA
(r = 0.244, <0.5) [23] and further supports the main action of natural selection in CUB and
the secondary action of mutation pressure in CUB. To determine the usage trend of PCGs
in Krisna, we performed COA and showed that the codon usage of each gene was different.
Previously, the COA of the silkworm mitogenomes showed that the contribution rate of the
main axis (F1) to the total variation was 24.51%, and the contribution rate of the second axis
(F2) to the total variation was 7.46% [80]. Another study reported that the codon position
at the end of AT is closer to the main axis than that at the end of GC, indicating that the
codon bias is relevant to the mutation bias of the composition constraint [23]. In addition,
several genes are reported to be discretely distributed, indicating that natural selection
may affect the CUB. Similarly, another report on PCGs in the silkworm mitogenome
gives similar results to ours [35]. Protein composition and amino acid properties have
little effect on the formation of codon preference in different groups of insects, and their
hydrophilicity is positive, which may be to maintain their biological function [35]. In
general, the influencing factors of CUB are mutation pressure and selection, of which
selection is the dominant factor.

The phylogenetic tree shows that all the subfamilies are monophyletic. Xue et al. and
Dietrich et al. classified Macropsini and Idiocerini into the Eurymelinae subfamily [75,81].
However, the phylogenetic relationships identified in our study do not support this in-
clusion. All datasets revealed the monophyly of the Iassinae and the sister groups with
the Coelidiinae, and the relationships among the Iassinae tribes were similar to those
reported in previous molecular phylogenetic analyses based on 28S, 12S, and H3 gene
regions [2]. The Krisna species reported in this article belong to the Krisnini tribe, the sister
group of Batracomorphini and Hyalojassini. The Krisna genus has not been classified as
monophyletic and can be divided into two branches. K. nigromarginata and K. furcata were
clustered and closely grouped with the genus Gessius. The remaining species were split



Genes 2023, 14, 1175 14 of 17

into one clade. Hence, we propose that Krisna is not monophyletic. In future studies, we
hope to increase the mitogenomic data of the genus to confirm whether it is paraphyletic.

In summary, many factors can affect the synonymous CUB of organisms. For the
Krisna mitogenome, natural selection was found to dominate the CUB, and we believe
that mutation bias plays only a relatively minor role. Moreover, our study provides novel
insights into the significance of the background nucleotide compositions and codon usage
patterns in the CDSs of the 13 mitochondrial PCGs of the Krisna genome, which could enable
the identification of a different gene organization and may be used for accurate phylogenetic
analysis of the Krisna, although a study focused on this still needs to be conducted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14061175/s1, Table S1: The species used in phylogenetic
analyses; Table S2: Correlation analysis between ENC, overall nucleotide and the corresponding
nucleotide at the third codon position; Figure S1: Phylogenetic tree of leafhoppers inferred by Bayesian
inference based on nucleotides of PCG12RNA; Figure S2: Phylogenetic tree of leafhoppers inferred
by Bayesian inference based on nucleotides of PCG12; Figure S3 Phylogenetic tree of leafhoppers
inferred by the maximum likelihood based on nucleotides of PCG12.
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