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Abstract: HSPA8 is involved in many stroke-associated cellular processes, playing a pivotal role in
the protein quality control system. Here we report the results of the pilot study aimed at determining
whether HSPA8 SNPs are linked to the risk of ischemic stroke (IS). DNA samples from 2139 Russians
(888 IS patients and 1251 healthy controls) were genotyped for tagSNPs (rs1461496, rs10892958, and
rs1136141) in the HSPA8 gene using probe-based PCR. SNP rs10892958 of HSPA8 was associated
with an increased risk (risk allele G) of IS in smokers (OR = 1.37; 95% CI = 1.07–1.77; p = 0.01) and
patients with low fruit and vegetable consumption (OR = 1.36; 95% CI = 1.14–1.63; p = 0.002). SNP
rs1136141 of HSPA8 was also associated with an increased risk of IS (risk allele A) exclusively in
smokers (OR = 1.68; 95% CI = 1.23–2.28; p = 0.0007) and in patients with a low fruit and vegetable
intake (OR = 1.29; 95% CI = 1.05–1.60; p = 0.04). Sex-stratified analysis revealed an association of
rs10892958 HSPA8 with an increased risk of IS in males (risk allele G; OR = 1.30; 95% CI = 1.05–1.61;
p = 0.01). Thus, SNPs rs10892958 and rs1136141 in the HSPA8 gene represent novel genetic markers
of IS.

Keywords: ischemic stroke; chaperones; heat shock proteins; HSPA8; HSC70; rs10892958; rs1136141;
gene-environmental interaction; smoking; fruit and vegetable intake

1. Introduction

Ischemic stroke is the most frequent type of brain attack, the leading cause of death
worldwide [1]. IS is considered a multifactorial disease due to the involvement of ge-
netic and environmental factors [2]. A lot of studies have been done to evaluate the
genetic nature of IS [3–7] and IS-related modifiable risk factors, like hypertension [8,9],
atherosclerosis [10,11], thrombosis [12]. However, disclosure of genetic correlates of IS
remains an important task on the way to predicting and fighting the disease.

In ischemic conditions, a cell relies on multiple interplaying ensembles preserving
macromolecules from degradation caused by oxygen deprivation, acidosis and oxidation.
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Heat-shock proteins (HSPs) are a type of chaperones that are considered to be the most
conservative molecular machines providing homeostasis in ischemic conditions. HSPs
encourage the refolding of misfolded or immature proteins and prevent aggregation of
misfolded proteins, which are involved in apoptosis, necrosis, and inflammation, which
determines their significant role under pathological conditions, in particular ischemia-
reperfusion [13]. Accordingly, a large body of evidence has shown HSPs to be among the
most impactful players in response to ischemia as well as in recovering after ischemia-
reperfusion injury [14].

The HSPA8 gene encodes a member of the heat shock protein 70 (HSP70) family known
as the heat shock cognate 71 kDa protein (HSC70). HSP70 is known for its neuroprotective
functions [15–18], and as well as other members, HSP70 maintains cellular homeostasis [19].
Precise roles of HSC70 include folding and transport of newly synthesised polypeptides
and assembly of protein complexes [20–22], regulation of mitochondrial import [23], and
the ER-associated degradation quality control system [24]. According to our knowledge, no
research has looked into the relationship between HSPA8 genetic variants and IS. Therefore,
the objective of our study was to challenge whether polymorphisms of HSPA8 gene are
related to IS risk.

2. Materials and Methods

Figure 1 depicts the research design’s general layout.
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Figure 1. Study design.

For the study, a total of 2139 unrelated Russians (888 IS patients and 1251 healthy
individuals) from Central Russia were enrolled. The study protocol was approved by the
Kursk State Medical University’s Ethical Review Committee. All participants provided
written informed consent prior to being accepted into the study, with the following inclusion
requirements: self-declared Russian ancestry and a birthplace in Central Russia. Table 1
provides the baseline and clinical characteristics of the study cohort.

The participants were enrolled in the study in two time periods: between 2010 and
2012 at the Kursk Emergency Medicine Hospital’s neurology clinics [25] and between
2015 and 2017 at the Regional Vascular Centre of Kursk Regional Clinical Hospital [26]. A
team of qualificated neurologists assessed each case. The diagnosis of IS during the acute
phase of stroke was confirmed using the findings of brain computed tomography and/or
magnetic resonance imaging. The patients were recruited consecutively. Intracerebral
hemorrhage, hemodynamic or dissection-related stroke, traumatic brain injury, hepatic
or renal failure, autoimmune, oncological, or other disorders that can produce an acute
cerebrovascular event were considered exclusion criteria. All of the IS patients had a history
of hypertension and were receiving antihypertensive medications.
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Table 1. Baseline and clinical characteristics of the studied groups.

Baseline and Clinical Characteristics IS Patients
(N = 888)

Controls
(N = 1251) p-Value

Age, Me [Q1; Q3] 62 [55; 69] 58 [53; 66] <0.001

Gender
Males, N (%) 481 (54.2%) 577 (46.1%)

<0.001
Females, N (%) 407 (45.8%) 674 (53.9%)

Smoking
Yes, N (%) 425 (47.9%) 331 (26.5%)

<0.001
No, N (%) 463 (52.1%) 920 (73.5%)

Hypodynamia
Yes, N (%) 332 (39.34%)

ND
No, N (%) 512 (60.66%)

Low fruit/vegetable consumption
Yes, N (%) 449 (53.20%)

ND
No, N (%) 395 (46.80%)

Type 2 diabetes mellitus
Yes, N (%) 103 (11,6%) -

No, N (%) 740 (83,3%) -

ND, N (%) 45 (5,1%) -

Body mass index, Me [Q1; Q3] 23 [22; 26]
(N = 567) -

Family history of cerebrovascular diseases
Yes, N (%) 296 (35.20%) ND

No, N (%) 545 (64.80%) ND

Age at onset of stroke, Me [Q1; Q3] 61 [54; 69]
(N = 862) -

Number of strokes including event in question

1, N (%) 766 (88.86%) -

2, N (%) 85 (9.86%) -

3, N (%) 11 (1.28%) -

Stroke localization

Right/left middle cerebral
artery basin,

N (%)
720 (83.82%) -

Vertebrobasilar basin,
N (%) 139 (16.18%) -

Area of lesion in stroke, mm2, Me [Q1; Q3]
105.00 [28;

468]
(N = 841)

-

Total cholesterol, mmol/L, Me [Q1; Q3] 5.2 [4.4; 5.8]
(N = 583) ND

Triglycerides, mmol/L, Me [Q1; Q3] 1.3 [1.1; 1.8]
(N = 577) ND

Glucose level, mmol/L, Me [Q1; Q3] 4.7 [4.3; 5.5]
(N = 849) ND

Prothrombin time, seconds, Me [Q1; Q3]
10.79 [10.14;

11.70]
(N = 839)

ND

International normalized ratio, Me [Q1; Q3] 1 [0.94; 1.09]
(N = 573) ND

Activated partial thromboplastin time, seconds, Me [Q1; Q3] 32.7 [29; 37]
(N = 576) ND

Statistically significant differences between groups are indicated in bold; “-”— the characteristic is absent in
healthy individuals; ND—no data.
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According to the WHO recommendations, low fruit and vegetable consumption was
defined as an intake of less than 400 g per day. Normal consumption of fresh vegetables and
fruits was defined as an intake of 400 g or more in 3–4 servings per day (excluding potatoes
and other starchy tubers). [27]. The control group was made up of healthy volunteers with
normal blood pressure who did not take antihypertensive therapy and did not exhibit any
clinical symptoms of cardiovascular, cerebrovascular, or other major diseases. Healthy
persons were included in the control group if their systolic blood pressure was less than
130 mm Hg and their diastolic blood pressure was less than 85 mm Hg on at least three
different measurements. In the Kursk region, controls were chosen from the hospitals in
Kursk during routine medical exams at public institutions and industrial businesses [28,29].
This group was recruited from the same population and during the same period.

The following criteria were used to choose the SNPs: they had to be tagging, have a
minor allele frequency of at least 0.05 in the European population, and be distinguished
by a high regulatory potential. The bioinformatic tools LD TAG SNP Selection (TagSNP)
and SNPinfo Web Server (https://snpinfo.niehs.nih.gov/(accessed on 15 March 2022)),
which were utilised to choose SNPs based on the reference haplotypic structure of the
Caucasian population (CEU) of the project HapMap, showed that the HSPA8 (heat shock
protein family A (Hsp70) member 8, ID: 3312) gene contains three tag SNPs (rs1461496,
rs10892958, and rs1136141). SNPs rs1461496 and rs1136141 are located in the 3 prime UTRs;
rs10892958 is located in the intron.

Several bioinformatic approaches were used to examine the HSPA8 tag SNPs’ reg-
ulatory potential. SNP FuncPred reports that the rs10892958 has a Regulatory Poten-
tial Score of 0.154 and the rs1136141 has a Regulatory Potential Score of 0.132 (https:
//snpinfo.niehs.nih.gov/snpinfo/snpfunc.html (accessed on 15 February 2023)) [30].

The RegulomeDB instrument revealed that rs1461496 is characterized by a regula-
tory coefficient of 3a (TF binding + any motif + DNase peak); rs10892958 and rs1136141
are characterized by a regulatory coefficient of 4 (TF binding + DNase peak) (https:
//regulomedb.org/regulome-search/ (accessed on 15 February 2023)) [31].

According to the HaploReg (v4.1) database, these SNPs have properties such as enhancer
histone tags in various tissues (rs1461496), regions of hypersensitivity for DNAse 1 (rs1461496,
rs10892958, rs1136141), binding sites for regulatory proteins (rs10892958, rs1136141), and
DNA regulatory motifs (rs10892958, rs1136141) (http://archive.broadinstitute.org/mammals/
haploreg/haploreg.php (accessed on 15 February 2023)) [32].

According to information from the NCBI source (https://www.ncbi.nlm.nih.gov/
snp/ (accessed on 15 February 2023)), these genetic variants are identified by an average
frequency of the minor alleles in European populations of >0.05. As a result, all three SNPs
were chosen for our investigation, which satisfied the requirements for study inclusion.

2.1. Genetic Analysis

The Laboratory of Genomic Research at the Research Institute for Genetic and Molecu-
lar Epidemiology of Kursk State Medical University (Kursk, Russia) performed genotyping.
Up to 5 mL of venous blood from each participant was collected from a cubital vein, put into
EDTA-coated tubes, and kept at −20 ◦C until it was processed. Defrosted blood samples
were used to extract genomic DNA using the standard methods of phenol/chloroform
extraction and ethanol precipitation. The purity, quality, and concentration of the ex-
tracted DNA solution were assessed using a NanoDrop spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA).

Genotyping of the SNPs was done using allele-specific probe-based polymerase chain
reaction (PCR) according to the protocols designed in the Laboratory of Genomic Research.
The Primer3 software was used for primer design [33]. Table S1 lists the primers and
probes used for genotyping. A real-time PCR procedure was performed in a 25 mL reaction
solution containing 1.5 units of Hot Start Taq DNA polymerase (Biolabmix, Novosibirsk,
Russia), approximately 1 µg of DNA, 0.25 µM each of the primers 0.25 µM each primer, 250
µM dNTPs, 3.0 mM MgCl2 (for rs1136141 and rs1461496), 4.5 mM MgCl2 (for rs10892958);

https://snpinfo.niehs.nih.gov/(accessed
https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html
https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html
https://regulomedb.org/regulome-search/
https://regulomedb.org/regulome-search/
http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
https://www.ncbi.nlm.nih.gov/snp/
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1×PCR buffer (67 mM Tris-HCl, pH 8.8, 16.6 mM (NH4)2SO4, 0.01% Tween-20). The PCR
procedure comprised an initial denaturation for 10 minutes at 95◦C, followed by 39 cycles
of 92 ◦C for 30 s and 65 ◦C, 61.5 ◦C, 51 ◦C for 1 min (for rs10892958, rs1136141 and rs1461496
respectively). Figures S1–S3 show allelic discrimination plots for HSPA8 assays designed
for this study. 10% of the DNA samples were genotyped twice, blinded to the case-control
status, in order to assure quality control. Over 99% of the data were concordant.

2.2. Statistical and Bioinformatic Analysis

The statistical power for the study was determined using the genetic association
study power calculator, a tool available online at http://csg.sph.umich.edu/abecasis/gas_
power_calculator/ (accessed on 16 February 2023). Given a sample size of 888 cases and
1251 controls, an association study between the HSPA8 gene polymorphisms and IS risk
might identify a genotype relative risk of 1.20–1.32 assuming 0.80 power and a 5% type I
error (α = 0.05).

The STATISTICA software (v13.3, Santa Clara, California, USA) was used to conduct
all statistical analyses. The Shapiro-Wilk test was used to determine the normality of
the distribution of quantitative data. The median (Me) and first and third quartiles [Q1
and Q3] were used to express the biochemical parameters and body mass index because
they deviated from the normal distribution. The Pearson’s chi-squared test with Yates’s
continuity correction was used to determine the statistical significance of differences for
categorical variables.

Using Fisher’s exact test, the genotype distributions were evaluated for Hardy-
Weinberg equilibrium compliance. Using the SNPStats software (https://www.snpstats.
net/start.htm (accessed on 18 January 2023)), the genotype frequencies in the study groups
and their relationships to disease risk were analyzed [34]. For the analysis of associations of
genotypes, additive models were used. The associations of genotypes in the whole group
of IS patients and controls were adjusted for age, gender, and smoking status. When the
environmental risk factor in the control group was unknown, relationships were examined
based on whether the risk factor was present or absent in the IS group relative to the entire
control group. The Bonferroni correction was also used in this instance.

The functional effects of HSPA8 SNPs were examined using the bioinformatics re-
sources listed below:

• The expression quantitative trait loci (eQTLs) in the brain, whole blood, and blood
vessels have been evaluated using the bioinformatic tool QTLbase (http://www.
mulinlab.org/qtlbase/index.html (accessed on 21 February 2023)) [35].

• The STRING database’s bioinformatic tools were utilised to analyse the main functional
partners of HSPA8 (https://string-db.org/ (accessed on 21 February 2023)) [36]. Addi-
tionally, the STRING database was used to assess biological processes and molecular
functions data describing interactions between HSPA8 and its functionally significant
partner proteins. For the interpretation of interactions only experimentally confirmed
data was used.

• The effect of HSPA8 SNPs on the binding of transcription factors (TFs) to DNA was
assessed using the atSNP Function Prediction online tool (http://atsnp.biostat.wisc.
edu/search (accessed on 21 February 2023)) [37]. Based on a positional weight matrix-
based calculation of the impact of SNPs on how well TFs interact with DNA, certain
TFs were added.

• The online Gene Ontology tool was used to conduct the subsequent study of the
potential joint involvement of TFs linked with the reference and SNP alleles in
overrepresented biological processes that are related to the mechanisms of IS (http:
//geneontology.org/ (accessed on 21 February 2023)) [38]. As functional groups,
we employed biological processes governed by transcription factors connected to
HSPA8 SNPs.

• HaploReg (v4.1), a bioinformatics tool (http://archive.broadinstitute.org/mammals/
haploreg/haploreg.php (accessed on 20 February 2023)) was used to evaluate the

http://csg.sph.umich.edu/abecasis/gas_power_calculator/
http://csg.sph.umich.edu/abecasis/gas_power_calculator/
https://www.snpstats.net/start.htm
https://www.snpstats.net/start.htm
http://www.mulinlab.org/qtlbase/index.html
http://www.mulinlab.org/qtlbase/index.html
https://string-db.org/
http://atsnp.biostat.wisc.edu/search
http://atsnp.biostat.wisc.edu/search
http://geneontology.org/
http://geneontology.org/
http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
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relationships between HSPA8 SNPs and the following histone modifications that mark
promoters and enhancers: acetylation of the lysine residues at positions 27 and 9
of the histone H3 protein, as well as mono-methylation at position 4 of the histone
H3 protein (H3K4me1) and tri-methylation at position 4 of the histone H3 protein
(H3K4me3). Additionally, this tool has been employed to examine the localization of
SNPs in DNase hypersensitive areas, regulatory motif regions, and locations that bind
to regulatory proteins [32].

• The interpretation of environment-associated correlates of HSPA8 polymorphism
was done using the Comparative Toxicogenomics Database (CTD) resource at http:
//ctdbase.org (accessed on 24 February 2023) [39]. Based on data gathered from
internationally published scientific studies, CTD offers the capability to investigate
particular interactions between genes and chemicals in vertebrates and invertebrates.
Using this method, bidirectional interactions comprising a single chemical and a single
gene or protein were examined.

• The Cerebrovascular Disease Knowledge Portal (CDKP) is available at https://cd.
hugeamp.org/ (accessed on 24 February 2023) was employed for a bioinformatic
investigation of the relationships between HSPA8 SNPs and stroke-related traits,
intermediate phenotypes, and risk factors for IS (such as blood pressure, heart rate,
etc.) [40].

3. Results
3.1. Bioinformatic Analysis of the HSPA8 Gene

Brain tissues, blood vessels, and whole blood have high levels of HSPA8 gene expres-
sion. HSPA8 gene expression levels (MeTPM) range from 197.4 to 662.8 in brain tissues,
from 327.8 to 509.0 in blood vessels, and are 177.0 in whole blood (Figure 2).
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HSPA8 and its key functional partners participate in 40 GO, predominantly reflecting
proteostasis (for example, “protein folding” (GO = 0006457, FDR = 8.40 × 10−8), “response to
unfolded protein” (GO = 0006986, FDR = 8.04 × 10−7), “regulation of protein ubiquitination”
(GO = 0031396, FDR = 1.68 × 10−6), “regulation of protein stability” (GO = 0031647, FDR =
8.40 × 10−6), and “regulation of protein ubiquitination” (GO = 0031396, FDR = 0.004)), heat
shock (for example, “regulation of cellular response to heat” (GO = 1900034, FDR = 1.50 ×
10−6) and “response to heat” (GO = 0009408, FDR = 1.70 × 10−4)) and autophagy (“chaperone-
mediated autophagy” (GO = 0061684, FDR = 1.71 × 10−7) and “autophagy” (GO: 0006914,
FDR = 1.70 × 10−4)) (the full list of biological processes of HSPA8 and its main functional
partners is presented in Table S3).

The presented data provide additional confirmation of the significant role of HSPA8
in protein homeostasis, heat shock, and autophagy. Additionally, the data confirm the po-
tentially high pathogenetic significance of this gene in relation to the risk of developing IS.

3.2. HSPA8 SNPs and the Ischemic Stroke Risk: An Analysis of Associations

Table S4 displays the genotype frequencies of the HSPA8 variants (rs1461496, rs10892958,
and rs1136141) in the study groups. In the control group, the distribution of genotype
frequencies for each of the investigated SNPs matched the Hardy-Weinberg equilibrium
(p > 0.05). The observed heterozygosity for rs1136141 (0.2280) in IS patients, nonetheless, was
lower than expected (0.2495); p < 0.05 (Table S4).

There were no links between IS risk and HSPA8 SNPs in the analysis of the entire
cohort (Table 2). Following sub-group analysis, it was revealed that rs10892958 was linked
to a higher risk of IS only in males (risk allele G; OR = 1.30; 95% CI = 1.05–1.61; p = 0.01).
The genetic variants rs10892958 (risk allele G; OR = 1.37; 95% CI = 1.07–1.77; p = 0.01) and
rs1136141 (risk allele A; OR = 1.68; 95% CI = 1.23–2.28; p = 7.0 × 10−4) were associated
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with the development of IS only in smokers. It is noteworthy that the associations between
rs10892958 (risk allele G; OR = 1.36; 95% CI = 1.14–1.63; p = 9.0 × 10−4; Pbonf = 0.002)
and rs1136141 (risk allele A; OR = 1.29; 95% CI = 1.05–1.60; p = 0.02; Pbonf = 0.04) with
IS risk were observed only under the condition of low fruit and vegetable intake (Table 2;
Table S5).

Table 2. Analysis of relationships between HSPA8 SNPs IS risk.

Genetic Variant Effect Allele Other Allele N OR [95% CI] 1 p2 (Pbonf)

Entire group

rs1461496 A G 2132 1.00 [0.88–1.15] 0.95

rs10892958 G G 2138 1.16 [0.99–1.35] 0.06

rs1136141 A G 2024 1.09 [0.90–1.30] 0.38

Males

rs1461496 A G 1065 1.01 [0.85; 1.21] 0.9

rs10892958 G G 1057 1.30 [1.05; 1.61] 0.01

rs1136141 A G 999 1.08 [0.84; 1.40] 0.55

Females

rs1461496 A G 1076 1.05 [0.87; 1.26] 0.63

rs10892958 G G 1081 1.08 [0.87; 1.33] 0.49

rs1136141 A G 1025 1.16 [0.91; 1.47] 0.24

Nonsmokers (f−)

rs1461496 A G 1379 1.10 [0.93; 1.31] 0.24

rs10892958 G G 1383 1.07 [0.88; 1.30] 0.51

rs1136141 A G 1306 0.87 [0.68; 1.10] 0.23

Smokers (f+)

rs1461496 A G 753 0.86 [0.70; 1.07] 0.18

rs10892958 G G 755 1.37 [1.07; 1.77] 0.01

rs1136141 A G 718 1.68 [1.23; 2.28] 7.0 × 10−4

Normal fruit and vegetable intake (f−)

rs1461496 A G 1639 1.02 [0.86; 1.20] 0.86 (bonf1.0)

rs10892958 G G 1645 1.03 [0.84; 1.25] 0.78 (bonf1.0)

rs1136141 A G 1559 0.91 [0.72; 1.16] 0.45 (bonf 0.9)

Low fruit and vegetable intake (f+)

rs1461496 A G 1694 1.07 [0.91; 1.25] 0.42 (bonf0.84)

rs10892958 G G 1699 1.36 [1.14; 1.63] 9.0 × 10−4

(bonf0.002)

rs1136141 A G 1608 1.29 [1.05; 1.60] 0.02 (bonf0.04)
1—odds ratio and 95% confidence interval; 2—p-level (bonf—p-level with Bonferroni correction). All the calcula-
tions were done considering the minor alleles (effect alleles). Bold was used to indicate statistically significant
differences.

3.3. Functional Annotation of HSPA8 SNPs
3.3.1. QTL-Effects

Table 3 displays the results of the eQTL analysis for the HSPA8 SNPs. The QTLbase
browser data show that the risk allele G rs10892958 is associated with decreased expression
of HSPA8 in Brain-Hippocampus; risk allele A rs1136141 is related to reduced expression of
HSPA8 and increased expression of CLMP in Brain-Hippocampus (Table 3).
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Table 3. Cis-eQTL-mediated effects of HSPA8 SNPs (http://www.mulinlab.org/qtlbase (accessed on
21 February 2023)).

SNP Trait Effect Allele Tissue Effect Size (Beta) PVAL FDR

rs10892958 HSPA8 G Brain-Hippocampus −0.44 1.9 × 10−7 5.8 × 10−5

rs1136141
HSPA8 A Brain-Hippocampus −0.12 3.8 × 10−5 0.006

CLMP A Brain-Hippocampus 0.13 4.8 × 10−5 0.008

3.3.2. Histone Modifications

A further examination revealed the substantial effect of IS-related HSPA8 SNPs on
histone tags. SNPs rs10892958 and rs1136141 are located in the region of DNA binding to
H3K4me1 in brain tissues (rs10892958), blood (rs10892958, rs1136141), as well as H3K4me3
in the brain tissues and blood (rs10892958, rs1136141). The effect of these histone tags is in-
creased by the H3K27ac, marking enhancers in blood cells and all brain tissues (rs10892958,
rs1136141), as well as the H3K9ac, marking promoters in blood cells and all brain tissues,
except the Brain Hippocampus Middle (rs10892958, rs1136141). It is noteworthy that
the SNPs rs10892958 and rs1136141 are also localized in DNA regions hypersensitive to
DNase-1 in the blood (Table 4).

Table 4. The impact of HSPA8 SNPs on histone tags in various tissues.

SNP (Ref/Alt Allele) Tissues
Marks

Brain Blood

(1) (2) (3) (4) (5) (6) (7) (8)

rs10892958
(C/G)

H3K4me1 No No No E No No E E

H3K4me3 P P P P P P P P

H3K27ac E E E E E E E E

H3K9ac No P P P P P P P

DNase No No No No No No No DNase

rs1136141
(G/A)

H3K4me1 No No No No No No No E

H3K4me3 P P P P P P P P

H3K27ac E E E E E E E E

H3K9ac No P P P P P P P

DNase No No No No No No No DNase

H3K4me1—histone H3 lysine 4 mono-methylation; H3K4me3—histone H3 lysine 4 tri-methylation; H3K9ac—the
acetylation at the 9th lysine residues of the histone H3 protein; H3K27ac—acetylation of lysine 27 on histone H3
protein subunit; effect alleles are marked in bold. E—histone modification in the enhancer region; P—histone
modification at the promoter region. 1—brain hippocampus middle; 2—brain substantia nigra; 3—brain anterior
caudate; 4—brain cingulate gyrus; 5—brain inferior temporal lobe; 6—brain angular gyrus; 7—brain dorsolateral
prefrontal cortex; 8—Cells from peripheral blood (any); No—No histone modifications; Effect alleles are marked
in bold.

Moreover, using the resource HaploReg (v4.1), it was found that these SNPs are highly
regulated by regulatory proteins: rs1136141 is located in the binding site DNA with 23
regulatory proteins: CMYC, ELF1, ELK4, GTF2B, GTF2F1, HEY1, MXI1, NELFE, NFKB,
OCT2, P300, POL2, POL24H8, POL2B, POL2S2, POU2F2, SIN3AK20, TAF1, TAF7, TBP,
TCF12, TCF4, YY1. SNP rs10892958 is localized at the DNA binding site with 6 regulatory
proteins: CMYC, OCT2, POL2, POL24H8, POU2F2, TAF7.

3.3.3. Analysis of Transcription Factors

The risk allele G rs10892958 of HSPA8 generates DNA binding sites for 31 TFs that
are simultaneously implicated in 6 overrepresented GO regulating oxidative stress and
neurogenesis: “regulation of transcription from RNA polymerase II promoter in response

http://www.mulinlab.org/qtlbase
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to oxidative stress” (GO = 0043619; FDR = 0.02), “glial cell fate commitment” (GO = 0021781;
FDR = 0.04), “regulation of oligodendrocyte differentiation” (GO = 0048713; FDR = 0.01),
“neuron fate commitment” (GO = 0048663; FDR = 0.0009), “negative regulation of neu-
ron differentiation” (GO = 0045665; FDR = 0.04), and “oligodendrocyte differentiation”
(GO = 0048709; FDR = 0.04) (Table S6). Meanwhile, protective allele C rs10892958 HSPA8
provides DNA binding regions for 53 TFs jointly involved in the regulation of proatheroscle-
rotic mechanisms, inflammation, cell signaling, neurogenesis, and apoptosis: “macrophage
derived foam cell differentiation” (GO = 0010742; FDR = 0.0149), “cellular response to
transforming growth factor beta stimulus” (GO = 0071560; FDR = 0.02), “cellular response
to cytokine stimulus” (GO = 0071345; FDR = 0.008), “negative regulation of interferon-beta
production” (GO = 0032688; FDR = 0.035), “glial cell fate commitment” (GO = 0021781;
FDR = 0.03), and “regulation of apoptotic process” (GO = 0042981; FDR = 0.01) (Table S6).

Risk allele A, rs1136141, of HSPA8 creates DNA binding sites for 43 TFs, which
together participate in 5 overrepresented GOs co-controlling “positive regulation of CD8-
positive, alpha-beta T cell differentiation” (GO = 0043378; FDR = 0.007), “regulation of
blood vessel endothelial cell migration” (GO = 0043535; FDR = 0.04), “positive regulation
of angiogenesis” (GO = 0045766; FDR = 0.02), “response to growth factor” (GO = 0070848;
FDR = 0.015), and “negative regulation of apoptotic process” (GO = 0043066; FDR = 0.04).
Meanwhile, no common GO was defined for 19 TFs, binding with the protective allele G
(Table S7).

3.3.4. Bioinformatic Analysis of the Associations of HSPA8 SNPs with
IS-Related Phenotypes

According to the bioinformatic resource CDKP, which combines and analyzes the
results of genetic associations from the largest consortiums for the study of cerebrovascular
diseases, risk allele A rs1136141 of HSPA8 is associated with increases in systolic blood
pressure, heart rate, peripheral artery disease in ever-smokers and stroke (TOAST, other-
determined) (Table 5).

Table 5. Results of aggregated analyses of associations between HSPA8 SNPs and cerebrovascular
diseases/ their intermediate phenotypes (CDKP: Cerebrovascular Disease Knowledge Portal data).

No. SNP Phenotype p-Value Beta (OR) Sample Size

1.

rs1136141
(G/A)

Systolic blood pressure 0.008 BetaN0.0056 1,325,890

2. Heart rate 0.01 BetaN0.007 484,178

3. Peripheral artery disease in ever-smokers 0.04 ORN1.0639 28,235

4. TOAST, other-determined 0.03 ORN2.4103 9277

Effect allele is marked in bold.

4. Discussion

Our study is the first to show that HSPA8 SNPs are associated with the risk and clinical
features of IS, and this relationship is significantly modified by gender and environmental
risk factors. SNP rs10892958 (risk allele G) was found to be associated with an increased
risk of IS exclusively in males, smokers, and individuals with low fruit and vegetable
consumption. SNP rs1136141 was associated with an increased risk of IS only in smokers
and on the condition of insufficient fruit and vegetable consumption.

HSPA8 is a molecular chaperone highly expressed in vessels, brain tissues, and
blood [19,41–43]. Bioinformatic analysis revealed that HSPA8 also interacts with other pro-
teins that control the regulation of protein constancy, protein folding, refolding, response to
unfolded proteins, regulation of protein ubiquitination, and cellular response to unfolded
proteins. The possible significance of HSPA8 (HSC70) in the molecular mechanisms of
ischemic stroke has already been noted in previous studies. For example, according to
Bustamente et al., elevated serum HSC70 levels are typical of ischemic stroke compared to
hemorrhagic stroke [44]. Stankowski et al. noted that the heat shock C-terminus related
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to 70 interacting proteins increases after stroke and impairs survival in acute oxidative
stress [45]. Previous studies also demonstrated that vascular expression of HSPA8 had
been up-regulated in individuals with atherosclerotic diseases, perhaps as a compensatory
response [46,47]. HSPA8 was shown to interact with NLRC5 and suppress the NF-kB
pathway [48] in macrophages, suggesting its role in vascular wall inflammation [49]. Note-
worthy is that apparently HSPA8 may also display prothrombotic activities [50].

The functional impacts of genetic variants were interpreted using a bioinformatic
approach because there has not been any research investigating the association of HSPA8
SNPs with IS risk up to this point. This approach made it possible to study the molecular
mechanisms behind the involvement of HSPA8 polymorphic loci in IS pathogenesis.

Firstly, IS-linked SNPs are characterized by high regulatory potential: they significantly
affect histone modifications in brain and blood tissues, mainly trimethylation in the 4th
lysine residue of histone H3 and acetylation of lysine residues in the N-terminal position 27
of histone; they are largely regulated by regulatory proteins.

Secondly, according to bioinformatic resources, the risk alleles G rs10892958 and A
rs1136141 have a relationship to cis-eQTL-mediated down-regulation of HSPA8 in brain tis-
sues. Allele A rs1136141 also affects an increase in CLMP expression in the brain. Probably,
CLMP plays a substantial role in the formation of cerebral atherosclerosis since it encodes a
type I transmembrane protein that is found in junctional complexes between endothelial
and epithelial cells. This protein may also play a function in cell-cell adhesion [51].

Thirdly, risk allele G rs10892958 and risk allele A rs1136141 HSPA8 produce DNA
binding sites for TFs involved in oxidative stress, neurogenesis, angiogenesis, apoptosis,
and migration of blood vessel endothelial cells; this adds more support to the notion that
HSPA8 plays a significant role in the molecular mechanisms underlying IS.

Fourth, information obtained with the bioinformatic tool CDKP revealed that the risk
allele A rs1136141 is linked to a higher risk of cerebral stroke (TOAST other determined),
increased level of systolic blood pressure, and an increased heart rate. As a result, this
genetic variation may have a significant impact on the development of hypertension, the
main risk factor for IS. Atrial fibrillation, another key risk factor for the cardioembolic type
of IS, is also made more likely by a higher heart rate. Notably, CDKP data also indicates
that the A allele rs1136141 has a role in risking peripheral artery disease in ever-smokers
—a pathogenetically related cardiovascular pathology. This finding correlates with the data
obtained in our study, which provide proof of the involvement of this genetic variant in the
formation of IS risk in smokers.

On the other hand, HSPA8 may play a protective role in IS the process of ischemic
stroke by protecting nerve cells and inhibiting neuronal apoptosis [52–54]. As a chap-
erone, HSPA8 orchestrates the folding and compartmentalization of the client proteins,
contributing to the cellular stress response [55,56]. HSPA8 also down-regulates apoptotic
cell death, both via direct suppression of several members of the apoptotic pathway and
via activation of the anti-death protein bcl-2 [56]. Additionally, HSP70s have been shown to
be critical for the biogenesis of extracellular vesicles, participating in neurological recovery
after stroke [57]. Moreover, HSPA8 is considered a negative regulator of oxidative stress.
Some authors revealed that constitutively expressed HSPA8 plays a role in protecting
cardiomyocytes from oxidative damage, increasing cell survival [58,59]. Finally, Hspa1a/
Hspa1b knock-out mice subjected to different thrombotic challenges developed thrombosis
significantly earlier than their wild-type counterparts, suggesting the important role of
members of HSP70 family in regulation of haemostasis [60]. More recent studies have re-
ported that HSPA8 is released from cardiomyocytes under oxidative stress [61]. Altogether,
these data indicate that HSPA8 may take an important place during the cellular response to
ischemia, and future research should address its role in the course of IS.

In our study, we also revealed sex-specific correlates of HSPA8 genetic variants. Numer-
ous proofs are presented in the literature that candidate genes for cardiovascular diseases
are characterized by pronounced gender-specific effects in the manifestation of associa-
tions [62–66]. The association of rs10892958 with the development of IS in men found in



Genes 2023, 14, 1171 12 of 17

our study is explained by the regulation of HSPA8 expression by sex hormones. There is
a lot of evidence that estradiol increases the expression of HSPA8 [67–71]. Considering
that the carriage of the G rs10892958 allele is associated with HSPA8 down-regulation, the
absence of a compensating effect of estrogens on the HSPA8 mRNA level increases the risk
effects of this genetic variant. In addition, it has been found that in women, HSPA8 levels
are inversely correlated with the level of Toll-like receptor 4, which triggers oxidative stress
and inflammation, which are key elements of vascular diseases [72]. At the same time, no
such correlation has been found in men.

In the present research, we also report environmentally-dependent effects of HSPA8
polymorphisms. It is known that environmental risk factors can modify the contribution
of genetic variants on the risk of diseases [28,73,74]. Our study provided significant
evidence of the role of smoking and low consumption of fresh vegetables and fruits in
the manifestation of associations rs10892958 and rs1136141 HSPA8 and the development
of IS. It is noteworthy that both of these risk factors are associated with high levels of
reactive oxygen species [75,76] and, accordingly, oxidative stress, a major link contributing
to the development of cardiovascular disorders [25,77–79]. Smoking-specific correlates of
candidate genes with risk of IS and stroke-related phenotypes have been demonstrated in
many of our prior investigations [65,80], suggesting a significant role for smoking-induced
endothelial dysfunction, vascular tone disorders, and atherosclerosis in the development
of IS. The Comparative Toxigenomics Database offered proof of smoking’s effects on the
reduction of HSPA8 expression [81] as well as accelerating the metabolism of HSPA8
protein [82]. Thus, most likely, smoking exacerbates the effect of IS-related alleles on the
risk of disease by down-regulating HSPA8 expression.

In addition to smoking, low fruit and vegetable intake is linked to high levels of
reactive oxygen species, in particular hydroperoxides [83,84], and increased consumption
of antioxidant-rich foods may have prompted a decrease in the total amount of lipid
peroxide [85]. In vitro research demonstrates that polyphenols, which are rich in fresh
vegetables and fruits, shield arteries and neural cells from the toxicity of oxidative glutamate
and H2O2 [86,87]. Many polyphenols have strong anti-inflammatory activities in addition
to their anti-oxidant characteristics [88]. The conducted studies have shown that hydrogen
peroxide may affect the level of HSPA8 mRNA [89], resulting in decreased expression
of the HSPA8 protein [90]. Thus, low fresh fruit and vegetable consumption related to
oxidative stress and high levels of reactive oxygen species may affect the decrease in HSPA8
expression, thereby showing more pronounced effects of the risk alleles rs10892958 and
rs1136141 HSPA8.

In conclusion, the results of our case-control study indicate that susceptibility to IS
may be determined by genetic variants in HSPA8. However, we examined only tagSNPs
and excluded from the analysis SNPs that are in linkage disequilibrium with tagSNPs,
which can lead to false-positive results since the relationships we identified may reflect the
effects of genetic variants linked to analysed SNPs. This is a limitation of our study. Further
research is needed to confirm our findings and explore potential molecular mechanisms
underlying the associations between IS risk and polymorphisms in the HSPA8 gene.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes14061171/s1. Figure S1: Plot showing a clear separation
between the signals derived from allele 1 (rs1136141-G, FAM fluorescent dye) or allele 2 (rs1136141-A,
ROX fluorescent dye). Genotypes GG, GA, and AA are shown as circles, triangles, and squares,
respectively; Figure S2: Plot showing a clear separation between the signals derived from allele 1
(rs1461496-A, FAM fluorescent dye) or allele 2 (rs1461496-G, ROX fluorescent dye). Genotypes GG,
GA, and AA are shown as squares, triangles, and circles, respectively; Figure S3: Plot showing a clear
separation between the signals derived from allele 1 (rs1136141-C, FAM fluorescent dye) or allele 2
(rs1136141-G, ROX fluorescent dye). Genotypes CC, CG, and GG are shown as circles, triangles, and
squares, respectively; Table S1: Primers and probes designed for this study; Table S2: Main functional
characteristics of predicted functional partners of HSPA8; Table S3: Functional enrichments of HSPA8
network; Table S4: Distribution of HSPA8 genotypes in ischemic stroke patients/healthy controls and
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their correspondence to the Hardy–Weinberg equilibrium; Table S5: Distribution of HSPA8 genotypes
in sub-group analysis of patients/healthy controls; Table S6: Analysis of the effect of rs10892958 of
HSPA8 on binding of DNA to transcription factors; Table S7: Analysis of the effect of rs1136141 of
HSPA8 on binding of DNA to transcription factors.
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