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Abstract: Ranunculus sceleratus (family: Ranunculaceae) is a medicinally and economically important
plant; however, gaps in taxonomic and species identification limit its practical applicability. This
study aimed to sequence the chloroplast genome of R. sceleratus from Republic of Korea. Chloroplast
sequences were compared and analyzed among Ranunculus species. The chloroplast genome was
assembled from Illumina HiSeq 2500 sequencing raw data. The genome was 156,329 bp and had
a typical quadripartite structure comprising a small single-copy region, a large single-copy region,
and two inverted repeats. Fifty-three simple sequence repeats were identified in the four quadrant
structural regions. The region between the ndhC and trnV-UAC genes could be useful as a genetic
marker to distinguish between R. sceleratus populations from Republic of Korea and China. The
Ranunculus species formed a single lineage. To differentiate between Ranunculus species, we identified
16 hotspot regions and confirmed their potential using specific barcodes based on phylogenetic tree
and BLAST-based analyses. The ndhE, ndhF, rpl23, atpF, rps4, and rpoA genes had a high posterior
probability of codon sites in positive selection, while the amino acid site varied between Ranunculus
species and other genera. Comparison of the Ranunculus genomes provides useful information
regarding species identification and evolution that could guide future phylogenetic analyses.

Keywords: next-generation sequencing; positive selection; DNA barcode; specific barcode; chloroplast
genome; Ranunculus sceleratus

1. Introduction

The family Ranunculaceae is distributed worldwide, comprising 59 genera and more
than 2500 species [1]. Among them, Ranunculus (buttercups) is the largest genus, compris-
ing approximately 600 species, and is classified into 20 taxonomic sections [2,3]. Ranunculus
inhabits tropical and temperate regions within temperate forests, arctic tundra, mountain-
ous regions, freshwater systems, and terrestrial ecosystems [3,4]. Genetically, this genus is
diverse with a wide distribution, making its classification highly complex [1]. In particular,
taxonomic difficulties have occurred due to the morphological and ecological diversity of
traits that have arisen during the evolution of Ranunculus in different environments [5,6].

R. sceleratus L. is an annual or perennial herbaceous plant in the family Ranuncu-
laceae [7] that primarily inhabits wetlands or slow rivers and is distributed worldwide,
including throughout Republic of Korea [8]. Dried and fresh R. sceleratus is reportedly
used in the treatment of esophageal and breast cancer, as well as malaria-induced jaun-
dice [8,9]. Additionally, as a medicinal plant, it can suppress the occurrence of degenerative
diseases by acting as an antibacterial agent and antioxidant [10]. Indeed, plants of the
genus Ranunculus have been reported to protect the liver and exhibit anti-inflammatory and
anti-malarial effects [11–16]. They have pharmacological activity and potentially high value
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as new drug candidates [17]. However, the application of R. sceleratus as a drug candidate
species has been limited by the reported variation in the major pharmacologically active
ingredients within the plant based on geographical differences [18,19].

Besides its medicinal value, R. sceleratus has potential value in plant purification and
landscaping. R. sceleratus has attractive characteristics, including pale yellow flowers
and cylindrical fruits during flowering [7]. These features are found around parks, cities,
and rivers and provide potential value for attractive landscaping [7]. In particular, this
plant exhibits significant potential to purify contaminated sewage by adsorbing heavy
metals, such as Fe and Zn, and removing organic matter, such as total nitrogen and
phosphorus [20–22]. As such, it is important to be able to accurately identify the distinct
geographical features as well as the different species within Ranunculus to improve their
application in the fields of pharmaceuticals and heavy metal decontamination.

To address these gaps in taxonomic and species identification, we previously sought
to identify Ranunculus species using molecular biological methods [6]. Results showed that
species of Batrachium, a subgenus of Ranunculus, can be identified based on chloroplast
or nuclear markers, such as trnH-psbA, matK, and ITS; however, close relatives, including
Ranunculus peltatus and Ranunculus penicillatus, could not be similarly distinguished [6].
Thus, a marker with high species resolution is required to effectively identify related species
of the genus Ranunculus, which are difficult to morphologically identify.

As a molecular marker in plants, the mitochondrial genome does not function as a
species identification DNA barcode owing to the low level of nucleotide substitutions [23,24].
Therefore, chloroplast (cp) genomes are commonly assessed to achieve the evolutionary
and species identification of plants [25–27]. In particular, the trnH-psbA, matK, rpoB, rpoC1,
and trnL-F intergenic spacer regions of the chloroplast genome region are commonly
employed; however, a consensus has not been reached regarding universally available
barcodes because of discrepancies in each plant taxon [25,28]. Hence, while DNA barcodes
of these chloroplast sequence regions are useful for phylogenetic and barcode studies at
high taxonomic levels, they are not suitable at lower taxonomic levels owing to insufficient
variation [29]. Accordingly, specific barcodes for lower taxonomic levels are required [29].

Specific barcodes examine repeats, indels, and substitutions in the chloroplast genome
for species identification and hotspot regions to identify loci that represent species-level
differences. As such, these barcodes represent a powerful tool for the identification of
species that cannot be identified by commonly used barcodes [27]. Moreover, optimized
primers for specific barcodes are needed to improve polymerase chain reaction (PCR)
efficiency and avoid the risk of ambiguous alignment by loci [30].

Currently, studies on the genus Ranunculus have reported the complete cp genomes
for Nuphar advena and Ranunculus macranthus in angiosperms [26,31–34]. However, com-
parative cp genome studies for Ranunculus have not been conducted. These studies have
important implications for understanding interspecies phylogeny and for species identifi-
cation and evolutionary studies.

This study aimed to (1) sequence the complete cp genome of R. sceleratus from Republic
of Korea and compare it with R. sceleratus from China to identify population-specific re-
gions, (2) screen potential barcode markers for specific barcodes by exploring phylogenetic
positions for R. sceleratus from Republic of Korea and hotspot regions via comparison of
12 cp Ranunculus genomes, and (3) explore positive selection in Ranunculus to advance the
current genetic and evolutionary understanding of this genus.

2. Materials and Methods
2.1. Plant Sampling and Sequencing

The leaves of R. sceleratus were collected from Yeongi-gun, Chungcheongnam-do,
Republic of Korea (36◦37′32′′ N, 127◦17′16′′ E). The identification and collection of plants
were conducted by the author Sun-Yu Kim. The voucher number was NNIBRVP70282,
which was deposited with the Nakdonggang National Institute of Biological Resources.
Total genomic DNA extraction was performed on R. sceleratus leaves with the DNeasy®
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Plant Mini kit (Qiagen) according to the manufacturer’s instructions. An Illumina HiSeq
2500 sequencing library was prepared according to the manufacturer’s protocol. The DNA
library was sequenced with a 150 bp paired-end.

2.2. Chloroplast Genome Assembly and Annotation

A short raw read was assembled to obtain the R. sceleratus cp genome, which was
then assembled using NOVOPlasty ver. 4.3.1 software [35]. The cp genome was verified
for sequence identity using GetOrganelle ver. 1.7.7 [36]. Both assemblers confirmed the
sequence of the same cp genome. The complete R. sceleratus cp genome was annotated
using CPGAVAS2 [37]. Ranunculus seleratus from Republic of Korea was annotated using
Ranunculus seleratus from China (MK253452). Areas with errors in the annotations were
manually corrected using Geneious ver. 11.0.1 software. Finally, the annotated cp genome
sequence was uploaded to GenBank under the accession number ON755204 using NCBI
BankIt. An image of the cp genome for R. sceleratus from Republic of Korea was drawn
using OrganellarGenome DRAW [38].

2.3. Simple Sequence Repeat Analysis

The simple sequence repeat (SSR) regions in the cp genome were screened using the
MIcroSAtellite (MISA) tool [39]. The SSR motif conditions were 10, 5, 4, 3, 3, and 3 for
mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides, respectively. Additionally, duplicates
and errors were manually screened for SSR regions.

Repeat Finder of Geneious ver. 11.0.1 was used to identify the types of long repeat
sequences, i.e., palindromic, forward, reverse, and complement. Repeat sequence identifi-
cation conditions were set to a minimum repeat size of 20 bp and 100% sequence identity.

2.4. Phylogenetic Analysis

To construct phylogenetic trees, 13 cp genomes of the species belonging to the family
Ranunculaceae were downloaded from NCBI GenBank. The dataset was constructed by
arranging the genome and gene sequences in the same order. The datasets were then
realigned using MAFFT ver. 7.490 [40], and a phylogenetic tree was constructed using
two methods: maximum likelihood (ML) and Bayesian inference (BI). The ML method
used jModelTest ver. 2.1.7 [41] to select the appropriate optimal model (GTR + G + I) from
the dataset and constructed the phylogenetic tree using PhyML ver. 3.0 [42]. Moreover,
1000 bootstrap replicates were included for the ML tree. The BI method reconstructed a
phylogenetic tree using MrBayes ver. 3.2.7 [43] under the GTR + G + I model (lset nst = 6,
Rates = invgamma), which is the optimal base substitution model. The Markov Chain
Monte Carlo (MCMC) algorithm used in the analysis was repeated for 10 million MCMC
and sampled every 100 generations, with the first 25% discarded as burn-in. The posterior
probability values for each node were determined by consensus on multiple trees. Addi-
tionally, the phylogenetic trees drawn by both methods were constructed by consensus.
The support for the ML and BI consensus trees was expressed as bootstrap values and
posterior probabilities, respectively.

2.5. Comparative CP Genome Analysis and Screening of Barcoding Regions

Chloroplast genome sequences for Ranunculus species were downloaded from NCBI
(Table S1) and rearranged using MAFFT ver. 7.490 [40]. For the aligned sequence, the coding
sequence (CDS) present for each species was extracted using Geneious ver. 11.0.1 [44]. Addi-
tionally, the intergenic regions in 12 cp genomes were extracted and sequenced. To analyze
the nucleotide diversity (Pi), the CDS and intergenic regions of the cp genome for Ranuncu-
lus were analyzed using DnaSP ver. 6.12 software [45]. Ranunculus species genomes were
compared using mVISTA software (http://genome.lbl.gov/vista/index.shtml, accessed
on 2 March 2022) and visualized in shuffle-LAGAN mode.

http://genome.lbl.gov/vista/index.shtml
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2.6. Specific Barcode Region Primer Design

Primers for effective molecular markers were designed based on the identifiable
intergenic region of Ranunculus species. First, Ranunculus austro-oreganus L.D. Benson, R.
bungei Steud., R. cantoniensis DC., R. japonicas Thunb., R. macranthus Scheele, R. occidentalis
Nutt., R. pekinensis (L.Liou) Luferov, R. reptans L., R. repens L., R. sceleratus L., and R.
yunnanensis Franch were downloaded from GenBank. Additionally, a dataset including
the cp genome of R. sceleratus from Republic of Korea assembled in this study was used
for subsequent analysis. A total of 12 cp genomes were multi-aligned using MAFFT ver.
7.490 [40]. Among the DNA barcode regions (coding sequence and intergenic), 13 CDS
(Pi ≥ 0.02) and 48 intergenic regions (Pi ≥ 0.040) with high nucleotide diversity were
selected as hotspots. The PCR amplified product size range was 150–1500 bp.

To evaluate the success of species identification for specific barcode markers, two
methods were employed, namely, the phylogenetic tree-based method and the sequence
similarity-based method. The phylogenetic tree method analyzed two phylogenetic trees
(32 specific barcode region sequences), ML and BI, and judged whether they were consistent
with the tree drawn based on the cp genome. The similarity-based method constructed
a local database using BLAST 2.2.29+; and the sequences were run through BLAST to
perform the query. Identification of species barcoding markers was considered successful
when the concordance for homogeneity was 100%.

2.7. Positive Selection Analysis

Extraction of the aligned CDS for Ranunculus was performed using Geneious ver.
11.0.1 [44]. For positive selection analysis, the optimized branch site model method was
applied using the CODEML program of the PAML ver. 4.10.6 package [46,47]. We imple-
mented Bayes Empirical Bayes (BEB) and Naive Empirical Bayes (NEB) methods to identify
specific amino acid sites in potential positive selection genes to calculate posterior proba-
bilities. Codon sites with high posterior probability (P > 0.5) were considered positively
selected sites [48,49]; positive selection: ratioω > 1, neural selection: ω = 1, and negative
selection: ω < 1 [50]. An alternative branching site model (model = 2, NSsites = 2, Fix = 0)
and a neutral branching site model (model = 2, NSsites = 2, Fix = 1, Fixω = 1) were applied
to identify positively selected sites. Genes with a p-value < 0.05 and a positively selected
site were considered a positive selection. Visualization of the amino acid sequence portions
of positively selected genes was performed using Jalview ver. 2.11.2 software [51].

3. Results and Discussion
3.1. CP Genome Characterization for Ranunculus Species

Whole-genome sequencing of R. sceleratus from Republic of Korea produced 958 million
reads using the HiSeq 2500 platform, yielding a total of 144 GB (Table 1). The complete
cp genome of R. sceleratus from Republic of Korea was obtained by assembly based on
the reference genome of R. sceleratus from China (NCBI Accession No.: MK253452). The
cp genome of R. sceleratus from Republic of Korea was 156,329 bp in length and had a
typical quadripartite structure (Figure 1). The cp genome contained large single-copy (LSC,
85,840 bp), small single-copy (SSC, 19,885 bp), and inverted repeat (IR) regions; the IR
comprised two copies of IRs a and b and was 25,302 bp in size (Table 1).

Table 1. Chloroplast genome information of Ranunculus sceleratus from Republic of Korea.

Total Reads 958,608,148
Percentage of subsampling reads (%) 15.0

GC content of total reads (%) 41.22
Chloroplast genome length (bp) 156,329

Large single-copy length (bp) 85,840
Small single-copy length (bp) 19,885

Inverted repeat length (bp) 25,302
Total number of genes 112
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Figure 1. Structure of the complete chloroplast genome of Ranunculus sceleratus from Republic
of Korea.

Although the cp genome of higher plants is highly conserved, the extension and
contraction between the IR, LSC, and SSC regions cause differences in genome length
between species [26,33,34,52,53]. In the case of Ranunculus species, a change in gene position
due to the expansion and contraction of IR and SSC was observed. More specifically, in nine
species (except R. austro-oreganus and R. occidentalis), the atpH gene was located between the
atpF and atpI genes in the 1.3 kb LSC region (Figure 2). In contrast, the atpH gene in R. austro-
oreganus and R. occidentalis was located between the ycf1 and trnN-GUU (11.5 kb) genes in
the SSC region. Structural variations in IR and SSC can result in gene rearrangement [54,55].
In this study, the SSC region lengths of R. austro-oreganus (21,249 bp) and R. occidentalis
(21,269 bp) were extended by more than ~2 kb compared to the SSC region lengths of R.
japonicus and R. macranthus (18,909 bp) and, thus, might represent a major cause of atpH
gene rearrangement [54,55].
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No contraction or expansion was detected in the IR and SSC regions between R.
sceleratus from Republic of Korea and China; however, a small 5 bp sequence difference
was observed in the LSC region (Table S2). Given that the cp genome tends to be highly
conserved across species [56–58], it was estimated that low levels of sequence variation
exist between the Republic of Korean and Chinese species. Hence, these minor sequence
differences in the cp genome serve as useful markers for differentiating geographic popula-
tions [27]. This marker can potentially be used for population identification, but further
population studies are needed to verify this.

The GC content of the cp genome was 37.9%, which corresponded with that of R.
sceleratus from China; 12 other Ranunculus species genomes were reported to have a similar
GC content (37.7–37.9%; Table S3). The GC content of the LSC region of the 13 cp genome
was 35.9–36.2%; that of the SSC region was 31.0–31.7%, and that of the IR region was
42.8–43.6%, with the largest difference in GC content in the IR region. The cp genome
was classified into self-replication, photosynthesis, and other genes, as it is in other plants
(Table S2). The Ranunculus species, excluding R. austro-oreganus, R. occidentalis, and R.
sceleratus from China, carried 112 genes. The genetic and structural makeup of most species
was similar. That is, R. sceleratus from Republic of Korea and China carried infA, while
R. austro-oreganus and R. occidentalis had ycf15 genes (Table S2). Notably, the infA gene
has been lost in many angiosperms, and in certain plants, it has been transferred to the
nucleus [59,60]. Loss of the genome may be a low-cost strategy for rapid replication in
adverse environmental conditions [61].

3.2. SSR Analysis of Ranunculus CP Genomes
3.2.1. Long Repeats

Long repeats are important hotspots for genetic rearrangement and population vari-
ation in the cp genome [62–64]. A total of 402 repeats were identified for 12 Ranunculus
cp genomes (Table S4), including 148 forward repeats, 127 reverse repeats, 96 complemen-
tary repeats, and 31 palindromic repeats. Regarding the number of repeats by species,
R. japonicus contained the most (64), while R. yunnanensis had the fewest (18; Figure 3).
According to the number of iterations, the largest number of species contained 42 repeats
(Figure 4, Table S5). Notably, most species could be identified based on the total number of
repeats, excluding R. austro-oreganus (31), R. occidentalis (31), R. bungei (34), and R. reptans
(34; Table S4). However, species with the same number of repeats could be identified based
on the type of repeats and the ratio of repeats between species (Table S5). Repeat sequences
rearrange the cp genome [63] and reportedly enable interspecies identification owing to
their random distribution [63,65].
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3.2.2. SSR Analysis

In this study, 53, 52, 47, 43, 45, 47, 48, 45, 49, 38, 44, and 37 SSRs were identified
for R. sceleratus from Republic of Korea, R. sceleratus from China, R. austro-oreganus, R.
bungei, R. cantoniensis, R. japonicus, R. macranthus, R. occidentalis, R. pekinensis, R. reptans, R.
repens, and R. yunnanensis, respectively (Table S6). The motif distribution of the Ranunculus
species was 58.21% mono-nucleotide, 17.34% di-nucleotide, 15.69% tetra-nucleotide, 6.02%
tri-nucleotide, 2.37% penta-nucleotide, and 0.36% hexa-nucleotide (Table S6). The number
of SSRs throughout the genome is generally large in the order of di-, mono-, tri-, and
tetra-nucleotides [66–68]. However, herein, the SSR distribution in the cp genome was
large in the order of mono-, di-, tetra-, and tri-nucleotides, with a difference observed in
the distribution of SSR between the genome and cp genome. This appears to be a feature of
SSR distribution in the cp genome of plants [69,70].

In the cp genome of R. sceleratus from Republic of Korea, 64.15% (34 SSRs) of the SSRs
were located in the LSC region, followed by 28.30% (15 SSRs) in the SSC region and 7.55%
(4 SSRs) in the IR (Table S6). The R. sceleratus from Republic of Korea and China exhibited
small intraspecies sequence differences in the LSC region, which was located between the
ndhC and trnV-UAC genes. However, an indel difference in the TAAAG repeat sequence
was detected (Figure S1). Hence, the region between these two genes may be useful as a
genetic marker to distinguish R. sceleratus species from Republic of Korea and China.

The number of mono-, di-, and tetra-nucleotide repeats was highly variable in the
cp genome of Ranunculus species. In fact, if the total number of SSRs among species
was the same, it was possible to distinguish between species based on differences in SSR
distribution (R. austro-oreganus: 47, R. japonicus: 47, R. cantoniensis: 45, and R. occidentalis:
45). SSR variations in the cp genomes of nine Ranunculus taxa were determined to be
useful for comparing phylogenetic relationships through genetic polymorphisms at the
population and species level, suggesting their importance for SSR studies.

3.3. Phylogenetic Analysis

Datasets used for phylogenetic analysis were classified and constructed to include
the cp genome, coding sequences, intergenic regions, and specific barcode regions. ML
and BI tree analysis of the four datasets showed that Ranunculus was generated as a single
clade; the bootstrap value was strongly supported at 100% for all clades (Figure 5). The first
clade comprised six species (R. austro-oreganus, R. occidentalis, R. japonicus, R. cantoniensis, R.
macranthus, and R. repens), while the second comprised R. sceleratus from China (MK253452),
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R. sceleratus from Republic of Korea (ON755204), R. bungei, R. pekinensis, and R. yunnanensis.
Ranunculus sceleratus from Republic of Korea was most closely related to R. sceleratus
from China.
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The complete cp genome has been proposed to be useful for taxonomic reconstruc-
tion [26,32] and utilized in previous studies to resolve interspecies phylogenetic relation-
ships within Ranunculus. The current study also demonstrated the potential of using the
complete cp genome to resolve phylogenetic relationships [4,26,32,71]. Although the cp
genome is phylogenetically informative, the closely related R. austro-oreganus, R. occidentalis,
R. bungee, and R. pekinensis required high-resolution specific barcodes for species identification.

The CDS phylogenetic tree did not clearly differentiate between these four closely
related species; however, the intergenic regions and 16 specific barcode regions facilitated
their identification. In particular, the tree constructed based on specific barcode regions
efficiently differentiated the species using a small number of intergenic regions.

3.4. Barcoding Region Screening of Genome Divergence Regions

Genome comparison plots were created using mVISTA to assess the sequence similar-
ity of the cp genomes between Ranunculus species (Figure S2). The aligned gene positions
among Ranunculus species showed that the positions and sequences of genes, except atpH,
were conserved. When comparing the same species, relatively no difference was detected in
the sequences (R. sceleratus from Republic of Korea and China); however, a clear difference
in sequences was observed between Ranunculus species. Notably, the IR was relatively more
conserved than the LSC and SSC regions, which agrees with results for other plant species.

We multi-aligned the cp genome sequence of the Ranunculus genus and screened the
protein-coding regions, intergenic regions, and intronic regions to identify unique regions
within the genome. DnaSP analysis searched for polymorphic genes in coding sequences
and intergenic regions. The nucleotide diversity (Pi) values ranged from 0.000 (rpl23) to
0.043 (ccsA). The most polymorphic genes were ccsA, matK, rpl32, rps3, ndhE, rps15, ndhG,
ndhA, psbH, accD, clpP, atpF, and ndhH (Pi ≥ 0.02), and the least polymorphic gene was



Genes 2023, 14, 1149 10 of 18

rpl23 (Pi: 0.000; Figure 6). The nucleotide diversity of the intergenic region ranged from
0.002 (rpl23-trnL-CAU) to 0.103 (ndhF-rpl32).
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The highly polymorphic intergenic regions were ndhF-rpl32, ccsA-ndhD, petG-trnW-
CCA, trnH-GUG-psbA, rpl32-trnL-UAG, psbT-psbN, rpl16-rps3, trnL-UAG-ccsA, trnW-CCA-
trnP-UGG, rps8-rpl14, ndhE-ndhG, rps16-trnQ-UUG, psaC-ndhE, ndhD-psaC, petA-psbJ, psaJ-
rpl33, ndhG-ndhI, rps15-ycf1, petN-psbM, petD-rpoA, trnS-GGA-rps4, trnD-GUC-trnY-GUA,
accD-psaI, ndhH-rps15, trnG-GCC-trnfM-CAU, atpF-atpI, trnG-UCC-trnR-UCU, psbI-trnS-
GCU, trnT-UGU-trnL-UAA, psbZ-trnG-GCC, petL-petG, trnK-UUU-rps16, ndhC-trnV-UAC,
rpl36-rps8, psbK-psbI, rps19-rpl2, rpl14-rpl16, rps2-rpoC2, ycf3-trnS-GGA, psbA-trnK-UUU,
rpl22-rps19, trnC-GCA-petN, trnT-GGU-psbD, rps18-rpl20, psbE-petL, psbC-trnS-UGA, rpl33-
rps18, and trnP-UGG-psaJ (Pi ≥ 0.040).

Herein, when the sequence diversity of 11 Ranunculus species was compared, the
noncoding region was more variable than the coding region (Figure 6). Similarly, in
angiosperms, the nucleotide diversity is higher within the intergenic region than within
the coding region [27,72–74]. Certain hotspots within these variable regions were used to
design primers to differentiate Ranunculus species from others, demonstrating that these
regions can be utilized as potential barcoding markers. More specifically, within the protein-
coding region, 13 regions with a Pi ≥ 0.02 and 48 intergenic regions with a Pi ≥ 0.040 were
set as hotspot regions.

3.5. Barcode Validation of Hotspot Regions in the Genome

Among the 48 hotspot regions, those useful as specific barcodes were selected based
on BLAST and phylogenetic tree analyses. The specific barcode regions ndhG-ndhI, petN-
psbM, atpF-atpI, ndhC-trnV-UAC, trnT-GGU-psbD, and psbE-petL had a BLAST-based species
identification rate of 100%. For the remaining 10 markers, the species identification rate
using BLAST was 83.3–91.7% (Table 2).



Genes 2023, 14, 1149 11 of 18

Table 2. Sequence matching of the hotspot region markers and tree-based species identification.

No. Region Name Pi Alignment
Length (bp) ML Tree (%) BLAST (%) Total Identification

Rate (%)

1 petG-trnW-CCA 0.091 175 75 83.3 79.2
2 rpl32-trnL-UAG 0.083 885 83.3 83.3 83.3
3 rpl16-rps3 0.073 217 83.3 83.3 83.3
4 rps8-rpl14 0.069 335 91.7 91.7 91.7
5 rps16-trnQ-UUG 0.067 1237 83.3 83.3 83.3
6 ndhG-ndhI 0.062 409 83.3 100 91.7
7 petN-psbM 0.059 1327 91.7 100 95.9
8 accD-psaI 0.055 819 83.3 83.3 83.3
9 trnG-GCC-trnfM-CAU 0.054 209 83.3 83.3 83.3
10 atpF-atpI 0.053 1956 91.7 100 95.9
11 trnT-UGU-trnL-UAA 0.052 995 83.3 83.3 83.3
12 psbZ-trnG-GCC 0.052 424 83.3 83.3 83.3
13 trnK-UUU-rps16 0.051 565 83.3 83.3 83.3
14 ndhC-trnV-UAC 0.049 1441 100 100 100.0
15 trnT-GGU-psbD 0.041 1589 91.7 100 95.9
16 psbE-petL 0.040 1274 100 100 100.0

Based on ML and BI analysis, the single hotspot region markers ndhC-trnV-UAC and
psbE-petL had 100% species identification, followed by rps8-rpl14, petN-psbM, atpF-atpI, and
trnT-GGU-psbD with 91.7% and rpl32-trnL-UAG, rpl16-rps3, rps16-trnQ-UUG, ndhG-ndhI,
accD-psaI, trnG-GCC-trnfM-CAU, trnT-UGU-trnL-UAA, psbZ-trnG-GCC, and trnK-UUU-
rps16 with 83.3% (Figure S3). The petG-trnW-CCA had the lowest species identification rate
at 75% and did not match the phylogenetic tree for other intergenic markers. Indeed, if the
evolution and gene locus of a species differ, then the gene tree and the species tree may
differ [75].

With the exception of R. austro-oreganus and R. occidentalis, the first group of markers
to distinguish between nine Ranunculus species included trnT-UGU-trnL-UAA and trnK-
UUU-rps16. The second group of markers to distinguish between nine Ranunculus species,
with the exception of R. bungei and R. pekinensis, included petG-trnW-CCA, rpl32-trnL-UAG,
rpl16-rps3, rps16-trnQ-UUG, accD-psaI, trnG-GCC-trnfM-CAU, and psbZ-trnG-GCC. With
the exception of R. macranthus and R. repens, the third group of markers to distinguish
between nine Ranunculus species included rps8-rpl14. Combining two or more markers
provides a higher rate of species identification than a single marker [76,77]. Therefore, to
enhance species identification, ML and BI phylogenetic tree construction and BLAST were
performed to analyze the species identification rate by combining the first, second, and
third group markers.

Each of the 37 datasets showed a high species identification rate of 100% compared
to the existing single markers (Figure S3). The hotspot markers were petG-trnW-CCA
+ trnT-UGU-trnL-UAA + rps8-rpl14, rpl16-rps3 + rps8-rpl14, rpl16-rps3 + trnT-UGU-trnL-
UAA + rps8-rpl14, rpl16-rps3 + trnK-UUU-rps16 + rps8-rpl14, rps16-trnQ-UUG + rps8-rpl14,
accD-psaI + rps8-rpl14, accD-psaI + trnT-UGU-trnL-UAA + rps8-rpl14, accD-psaI + trnK-UUU-
rps16 + rps8-rpl14, trnG-GCC-trnfM-CAU + rps8-rpl14, trnG-GCC-trnfM-CAU + trnT-UGU-
trnL-UAA + rps8-rpl14, trnG-GCC-trnfM-CAU + trnK-UUU-rps16 + rps8-rpl14, trnT-UGU-
trnL-UAA + rps8-rpl14, psbZ-trnG-GCC + rps8-rpl14, psbZ-trnG-GCC + trnT-UGU-trnL-UAA
+ rps8-rpl14, psbZ-trnG-GCC + trnK-UUU-rps16 + rps8-rpl14, and trnK-UUU-rps16 + rps8-
rpl14, which showed 100% species identification (Table S6, Figure S3).

The combination of specific barcode markers identified seven-fold more variant sites
than conventional single specific barcode markers. Given that markers have different rates
of nucleotide variation at different loci, when assessing closely related species, the applica-
tion of combination markers may be more advantageous for species identification [78]. The
conventional barcoding markers, rbcL, psbA-trnH-GUG, and trnL-UAA-trnF-GAA, showed
a low 75% species identification rate using BLAST and phylogenetic tree-based methods
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(Table 3). Therefore, the combination of specific barcode markers and single specific bar-
code markers with high species resolution developed in this study can replace the existing
barcoding markers.

Table 3. Sequence and tree-based species identification rate of existing barcode markers in the
genus Ranunculus.

No. Region Name Length (bp) ML Tree (%) BLAST (%) Total Identification Rate (%)

1 matK 1527 83 100 91.5
2 rbcL 1428 75 75 75
3 psbA-trnH-GUG 366 75 75 75
4 trnL-UAA-trnF-GAA 418 75 75 75

Primers were designed for the flanking regions of these markers to enable the use
of 16 hotspot regions as specific barcodes (Table 4). The 100% species identifiable mark-
ers for Ranunculus showed high resolution for genetically closely related species, such as
R. austro-oreganus, R. occidentalis, R. bungei, and R. pekinensis. Accordingly, these mark-
ers can be effectively applied for the identification of very closely related species of the
genus Ranunculus.

Table 4. Sequence and tree-based species identification rate of existing barcode markers in the
genus Ranunculus.

No. Intergenic Region Forward Primer
(5′–3′)

Reverse Primer
(5′–3′)

Product Size
Range (bp)

Annealing
Temperature

(◦C)

Sequencing
Success (%)

1 petG-trnW-CCA TACAGACGCGG
TGATCAGTTGGAC

CCAAAACCCG
ATGTCGTAGGTTC 200–250 58 100

2 rpl32-trnL-UAG GCAAAATCTATT
TCCACCGGGAAT

GTCTACCGAT
TTCACCATAGCG 800–900 58 100

3 rpl16-rps3 CAACGAGTCACA
CACTAAGCA

ACTATCTATGG
GGCATTAGGAA 200–300 58 100

4 rps8-rpl14 TCCATGTCAGCA
TTTCGTATCG

GTGCAATCGCT
CGAGAGTTGA 370–410 58 100

5 rps16-trnQ-UUG CGCACGTT
GCTTTCTACCACA

CGAATCCTTCCG
TCCCAGAG 1000–1200 58 100

6 ndhG-ndhI GGTCGGTTACC
AATGTCAGTGA

AAGGAGCTGT
GCAGCAGCGA 600–700 58 100

7 petN-psbM GGCTGCTTTAAT
GGTAGTCTTTAC

TCGCATTCAT
TGCTACTGCACTG 1200–1300 58 100

8 accD-psaI GAGTGAGTTAT
TTCAGCTTCACG

GGAGGGTAAG
TTGAAAGTTGTCAT 750–850 58 100

9 trnG-GCC-trnfM-CAU CGATTCCCG
CTATCCGCCTA

GGTAGCTCGC
AAGGCTCATAAC 250–300 58 100

10 atpF-atpI GGCCAGTGAC
CCAAGGAAAC

TAGGGGAATCCA
TGGAGGGTCA 300–1900 58 100

11 trnT-UGU-trnL-UAA CGGCTATCGG
AATCGAACCG

GCGTCTACCAA
TTTCGCCATATC 800–1000 58 100

12 psbZ-trnG-GCC CCCGTTGTATT
TGCTTCTTCTGA

CCGCGTCTTC
TCCTTGGCAA 500–600 58 100

13 trnK-UUU-rps16 AGCCGCACTT
AAAAGCCGAGTA

CGATCCCGA
AGAGAGGGAAG 500–700 58 100

14 ndhC-trnV-UAC GAGTTTCTCTG
GCCCTTCATTA

TACCGAGAAG
GTCTACGGTTC 1300–1400 58 100

15 trnT-GGU-psbD GGCGTAAGTCA
TCGGTTCAAAT

TCTCCGTAAC
CAGTCATCCATA 1500–1600 58 100

16 psbE-petL CGTGCTTCCAG
ACATGCTGA

GCCGTATCTT
GCTCAGACCAAT 1200–1300 58 100
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3.6. Positive Selection Analyses

Positive selection analysis was performed on 66 CDS. In the likelihood ratio analysis,
most p-values for all genes were >0.05, i.e., insignificant. In contrast, in the BEB test, atpF,
ndhE, ndhF, rpl23, rpoA, rps4, and ycf4 showed posterior probabilities≥ 0.7, with ndhE, ndhF,
and rpl23 having values ≥ 0.9. In the NEB method, positively selected sites in atpF, ndhF,
rps4, and rpoA genes were detected as ≥0.8 (Table S8). In a previous study, codon regions
with high posterior probability based on BEB and NEB analyses were considered positive
selection genes [48]. Therefore, we ultimately selected atpF, ndhE, ndhF, rpl23, rpoA, and
rps4 as positive selection genes. The six amino acid characteristics between Ranunculus
species and other genera are shown in Figure 7.
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The atpF gene, which is required for electron transport and photophosphorylation
during photosynthesis, encodes the H+-ATP synthetase subunit [79]. The rpoA gene encodes
a plastid-encoded RNA polymerase (PEP) that regulates gene expression [80–82]. The rpl
and rps genes encode large and small subunits of ribosomal proteins and are differentially
expressed according to abiotic and biotic environmental factors by regulating plant growth
and transcription [83,84].

The chloroplast ndh gene forms a thylakoid NADH dehydrogenase (Ndh) complex
homologous to the encoded polypeptide and mitochondrial complex I [85–87]. As such,
ndh plays an essential role in photosynthesis in higher plants [88]. In particular, the Ndh
complex generated from ndh protects against photooxidation-related stress and maintains
an optimal photophosphorylation rate [88]. However, the ndh gene is presumably not
required in mild, unstressed environments and exhibits rapid changes in function under
light-related stress [88–90]. In this study, ndhE, ndhF, rpl23, atpF, rps4, and rpoA were
confirmed to have high positive selection sites. Considering that various light-related
stressful environments alter the biochemical composition and morphology of plants during
acclimatization [91], it is inferred that these positive selection sites represent mutations
in gene function related to environmental resistance as a light-related stress response in
Ranunculus species. Therefore, genes that are positively selected and adapted to these genes
could represent adaptation to new environmental conditions for Ranunculus species.

4. Conclusions

Ranunculus sceleratus (family: Ranunculaceae) is a medicinally and economically im-
portant plant; however, gaps in taxonomic and species identification limit its practical
applicability. The aim of this study was to elucidate the chloroplast genome of R. sceleratus
from Republic of Korea, identify how it differed from the chloroplast genome of R. scel-
eratus from China, and identify potential specific barcodes through genome comparisons
in the genus Ranunculus. The chloroplast genome was assembled from Illumina HiSeq
2500 sequencing raw data. The genome was 156,329 bp and had a typical quadripartite
structure comprising a small single-copy region, a large single-copy region, and two in-
verted repeats. Fifty-three simple sequence repeats were identified in the four quadrant
structural regions. The region between the ndhC and trnV-UAC genes could be useful as a
genetic marker to distinguish between R. sceleratus populations from Republic of Korea
and China. The Ranunculus species formed a single lineage. To differentiate between
Ranunculus species, we identified 16 hotspot regions and confirmed their potential using
specific barcodes based on phylogenetic tree and BLAST-based analyses. The ndhE, ndhF,
rpl23, atpF, rps4, and rpoA genes were considered positively selected owing to their high
posterior probability. The amino acid site varied between Ranunculus species and other
genera. Comparison of the Ranunculus genomes provides useful information regarding
species identification and evolution that could guide future phylogenetic analyses.
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