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Abstract: We are interested in detecting a departure from the baseline in a longitudinal analysis
in the context of multiple organ dysfunction syndrome (MODS). In particular, we are given gene
expression reads at two time points for a fixed number of genes and individuals. The individuals
can be subdivided into two groups, denoted as groups A and B. Using the two time points, we
compute a contrast of gene expression reads per individual and gene. The age of each individual is
known and it is used to compute, for each gene separately, a linear regression of the gene expression
contrasts on the individual’s age. Looking at the intercept of the linear regression to detect a departure
from the baseline, we aim to reliably single out those genes for which there is a difference in the
intercept among those individuals in group A and not in group B. In this work, we develop testing
methodology for this setting based on two hypothesis tests—one under the null and one under an
appropriately formulated alternative. We demonstrate the validity of our approach using a dataset
created by bootstrapping from a real data application in the context of multiple organ dysfunction
syndrome (MODS).

Keywords: contrasts; longitudinal data; gene expression; multiple organ dysfunction syndrome (MODS)

1. Introduction

In this article, we present novel methodology whose development was motivated by
an application in the context of multiple organ dysfunction syndrome (MODS). The data
that motivated this research are structured as follows. We are given gene expression reads at
two time points for m ∈ N genes and n ∈ N individuals. The gene expression reads at the
two time points are translated into contrasts of gene expression per individual and gene, thus
effectively reducing the input to a scalar value per individual and gene. Moreover, we possess
the age of each individual. The individuals can be subdivided into two groups, denoted
as groups A and B. For instance, the two groups can be defined as those individuals who
recovered from MODS (group A) and those who suffer from a condition called “prolonged
MODS” (group B).

For each gene separately, we want to perform a linear regression of the gene expression
contrasts on the individual’s age. As we are interested in a departure from the baseline, we
look at the intercept of the linear regression. The aim of this work is to reliably single out
those genes for which there is a difference in the intercept among those in group A and not
in group B.

To approach this, we develop testing methodology based on two hypothesis tests. The
two hypothesis tests are once under the null, and once under an appropriately formulated
alternative. In an abstract setting, we are faced with two linear regressions—Li : yi =
αiai + βi, where yi ∈ Rni , ai ∈ Rni , and αi, βi ∈ R for i ∈ {1, 2}, where n1 and n2 are the
sizes of the groups A and B, respectively. For group A, we wanted to test the hypothesis
H : β1 = 0 versus its complement H′ : β1 6= 0. For group B, given some level λ, we test
under the alternative, meaning H̃ : β2 > λ versus its complement H̃′ : β2 ≤ λ.
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The aforementioned tests are carried out on both groups for each gene contrast under
consideration. Since there are m ∈ N genes, we have to use a multiple testing correction
across the 2m p-values obtained by testing H1 and H2 for all m genes.

We demonstrate the validity of our approach using a simulated dataset in the context of
multiple organ dysfunction syndrome (MODS) [1]. The simulated dataset has the purpose
of showcasing the new methodology, and it is generated by bootstrapping from real MODS
data of the Pediatric Intensive Care Influenza (PICFLU) investigators group [2,3]. As
the purpose of the present article is to introduce the specific testing scenario and one
possible solution approach, the usage of simulated data is valid. An application to real
MODS data and the subsequent biological interpretation of the results are deferred to a
separate publication.

The article is structured as follows. We start with a brief literature review in Section 1.1.
Section 2 gives details on the dataset under the investigation and introduces the methodol-
ogy we employ to solve our testing problem. This methodology can be subdivided into
a series of (mathematical) components; for instance, the calibration of the alternative, the
precise calculation of p-values, and the hypothesis tests being carried out. A demonstration
of the methodology on simulated data can be found in Section 3. The article concludes with
a discussion in Section 4.

Throughout the entire article, we denote with Y·,j the j’th column of a matrix Y.

1.1. Literature Review

While, initially, studies often compared gene expression data between distinct groups
at fixed time points, there is a growing literature which considers time dependent expression
data, meaning studies which extract insights from mRNA (or similar) samples collected at
successive time points.

The identification of differentially expressed genes in a time course study is an active
area of research. Starting with [4], the authors consider a two-way analysis of variance
(ANOVA) approach combined with a permutation test to obtain p-values, where both group
and time are the main factors. Their aim is to quantify the group effects (via permutations
over all levels of the group labels for a fixed time point) and the time effects separately. The
proposed approach to handling this problem is a two-stage model which first removes the
time effect and then looks at the group effect. The given model is linear and the effects are
determined via hypothesis testing with multiplicity correction.

In another work [5], the authors propose to identify differentially expressed genes in a
time course study using a parametric model for the expression values in connection with a
false discovery rate approach. In particular, the authors aim to detect changes in either a
single biological group or differences in expression over time between two or more groups.
The proposed method, called EDGE, is designed for inputs with or without replicates, and
for both single group and multiple group tests. The trajectories of expressed genes are
modelled with cubic splines and their goodness-of-fit to the model under both the null and
alternative is evaluated, where the distributions are approximated via bootstrapping.

Another contribution in the literature [6] considers the questions of how to combine
simultaneous inferences across multiple time points, as well as how to best control for
multiplicity while accounting for the strong dependence between measurements. The
authors formulate a decision-theoretic framework in which a gene is significant if a certain
combination of null hypotheses is rejected at a given level. The focus of the authors
is specifically on the optimal combination of testing at multiple time points, suitable
multiplicity correction, and dependence among hypotheses. The hidden Markov model
of [7] is generalized to capture the temporal correlation in the gene expression data.

In a similar fashion, in [8], the authors study the question of how to identify genes
associated with a biological process in data having multiple time points, though not
necessarily coming from the same individuals. They propose an approach based on
functional principal component analysis (FPCA) in connection with hypothesis testing that
allows one to incorporate high dimensionality, a low number of replicates, missing values,
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and measurement errors or time correlations. In their model, the parametric form of the
null hypothesis is unknown, and thus has to be approximated via permutations.

In contrast to the methodology presented in our article, which aims to identify gene
contrasts showing a departure from the baseline in one group and not another, the afore-
mentioned publications differ from ours in that they either aim to identify different group
and time effects, consider two null hypotheses, or are based on functional principal
component analysis.

A second line of research available in the literature aims to process expression profiles
with graphical methods as opposed to hypothesis testing. For instance, an algorithm to
increase the temporal resolution of expression measurements and an application to skele-
tal muscle differentiation can be found in [9]. The algorithm is essentially a pipeline to
process cell expression profiles, which includes dimensionality reduction via independent
component analysis, the construction of a minimum spanning tree (MST), and the subse-
quent computation of the longest path through the MST, which corresponds to the longest
sequence of transcriptionally similar cells.

In the exploratory study of [10], the authors combine libraries of single-cell RNA-
Seq for primary mouse bone marrow-derived dendritic cells (DCs) and find substantial
variation between identically-stimulated DCs.

Finally, there is literature on software tutorials for gene expression analysis with
different time points, which, however, does not present new methodology. A workflow for
the statistics computer software R, for the purpose of analyzing data from a micro-array
time-course experiment, is presented in [11]. The tutorial considers quality control and
normalization, the identification of genes that are differentially expressed, the clustering of
genes into distinct temporal patterns, and the biological interpretation of the clusters. Some
of the examples considered in the tutorial cover the exposure of mice to three different
strains of influenza and lung tissue data collected at 14 time-points after infection.

2. Methods

This section introduces the methodology pipeline we developed for the problem of
longitudinal analysis of contrasts, which was briefly outlined in Section 1. We present our
approach as a series of steps. We start with a mathematical abstraction of the problem
in Section 2.1. A high level summary of our approach is given in Section 2.2 before
giving details on the calibration of the alternative hypothesis (Section 2.3), the calculation
of p-values (Section 2.4), and the testing of all generated hypotheses (Section 2.5). We
conclude with a note on how to report findings (Section 2.6).

2.1. Problem under Investigation

Denote the sizes of the groups A and B as n1 ∈ N and n2 ∈ N, respectively, and let
n = n1 + n2. The first step is to reduce the input to a single contrast matrix Y(i) ∈ Rni×m

for each group i ∈ {1, 2}, where m ∈ N is the number of genes. This effectively reduces
the two endpoint problem we consider to a single endpoint. The matrices Y(i) for group
i ∈ {1, 2} contain the contrast for individual k and gene j at position (k, j). This is visualized
in Figure 1.

Formally, we are given two matrices R(i), S(i) ∈ Rni×m for i ∈ {1, 2}, where the
matrices R(i) and S(i) contain expression data per individual (row) and gene (column).
Using this data, we compute a contrast matrix Y(i) = R(i) − S(i) ∈ Rni×m per group, where
i ∈ {1, 2}. The ages of the individuals in the two groups shall be given as a vector ai ∈ Rni

for i ∈ {1, 2}.
For each gene j ∈ {1, . . . , m}, we perform two linear regressions of the contrast on

the age with intercept, that is, we perform Li,j : Y(i)
·,j = αi,jai + βi,j, where αi,j, βi,j ∈ R for

i ∈ {1, 2}. For group A (meaning i = 1), we want to test the hypothesis Hj : β1,j = 0
versus its complement H′j : β1,j 6= 0 for each j ∈ {1, . . . , m}. For group B (meaning i = 2),
we test under the alternative given some level λj for each gene j. To be precise, we test
H̃j : β2,j > λj versus its complement H̃′j : β2,j ≤ λj.
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Figure 1. Preparation of the datasets Y(i) containing the contrast data for group A (i = 1) and group
B (i = 2). The contrast data matrix Y(i) = R(i) − S(i) is obtained by computing the componentwise
difference between the data at the two input timepoints R(i) and S(i).

2.2. Summary of the Approach

We aim to identify those individuals that are in both group A and not in group B, and
whose gene expression reads are explained by a linear model that includes the age without
intercept (see Section 1). Since the selection criterion is different for the two groups, the
formulation of two simple hypothesis tests is chosen as it provides a valid framework to
draw statistical inference.

The complete approach we use to identify such genes is summarized in Figure 2.
Specifically, we start with the two contrast matrices Y(1) and Y(2) for groups A and B,
respectively. For both groups, the linear model of Section 2.1 is fitted separately to each
gene j ∈ {1, . . . , m}. For group A, the one for which we want to test for an intercept
of zero, we test the null hypothesis Hj : β1,j = 0 versus the complement H′j : β1,j 6= 0
(see Section 2.1) for each gene j ∈ {1, . . . , m}. For group B, we test under the alternative
H̃j : β2,j > λj versus its complement H̃′j : β2,j ≤ λj for each gene j ∈ {1, . . . , m}. Details on
the calibration of the alternative are deferred to Section 2.3. In total, we thus observe 2m
p-values (computed as described in Section 2.4), one per group and per gene j ∈ {1, . . . , m}.
As a final step, we evaluate the resulting 2m p-values to single out only those genes
j ∈ {1, . . . , m} for which both Hj (having p-values pj) and H̃j (having p-values p̃j) are
rejected. Details on this multiple testing problem are given in Section 2.5.

Figure 2. Summary of the testing pipeline. For each of the two groups A (i = 1) and B (i = 2), the
same regression is carried out for each gene j ∈ {1, . . . , m}, using the data across the population of
individuals (n1 for group A, and n2 for group B). However, the intercepts β1 and β2 are tested in two
different ways. For group A, the departure from the baseline is tested, meaning Hj : β1,j = 0 for each
gene j. For group B, the hypothesis H̃j : β2,j > λj is tested under the alternative for an appropriately
selected λj and for all j ∈ {1, . . . , m}. The reported genes j must have significant p-values pj and p̃j.

2.3. Calibration of the Alternative

To have a well-defined alternative H̃j, it is necessary to specify a level λj ∈ R for each
gene j ∈ {1, . . . , m}. This means we consider an individual level for each test under the
alternative. The calculation of the level under the alternative is performed as follows.

First, we compute the linear regression fit Li,j : Y(i)
·,j = αi,jai + βi,j for i = 2 and all

j ∈ {1, . . . , m}. We only consider the case i = 2 here, since the calibration of the alternative
applies to the hypotheses H̃j only. Second, for the fitted coefficients α2,j and β2,j, we
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compute the R2 measure of the goodness-of-fit, and then scale the intercept β2,j (in either
direction) until it explains only a proportion 0 < π < 1 of the original R2. Computationally,
since the R2 measure decreases monotonically for misspecified coefficients, a binary search
can be used across an interval of values for β2,j until the value explaining the fraction π

of the initial R2 is found. The value of β2,j explaining the proportion π of the initial R2 is
recorded as the level λj for each j ∈ {1, . . . , m}. In our simulations in Section 3, we use
π = 0.35. This choice is arbitrary but motivated by practical applications [3].

2.4. p-Value Calculation

After having conducted all linear regressions of the null Hj (see Section 2.1), we
compute the p-values of the contrasts as described in [12,13]. Let qd(δ) denote the lower δ
quantile of the t-distribution with d degrees of freedom.

In particular, let ti,j be the t-value statistic calculated for each linear regression Li,j.
For Hj, that is, in the scenario of group A (meaning i = 1), when the level is λj = 0, the
distribution of t1,j is a t-statistic with nj − 2 degrees of freedom. Therefore, the (two-sided)
p-value of the contrast is given as pj = 2qnj−2(t1,j).

For the alternative H̃j, that is, in the scenario of group B (meaning i = 2), we test
H̃j : β2,j > λj. This is equivalent to testing H̃j : β2,j − λj > 0. Therefore, the (one-sided,
upper tail) p-value of the contrast is given as p̃j = 1− qnj−2(t2,j − λj).

2.5. Multiple Hypothesis Testing

The p-value calculations of Section 2.4 result in 2m p-values, a vector (p1, . . . , pm) for
(H1, . . . , Hm), and a vector ( p̃1, . . . , p̃m) for (H̃1, . . . , H̃m). We are interested in evaluating
those p-values in such a way as to find those indices j ∈ {1, . . . , m} for which both Hj and
H̃j are rejected.

As we evaluate several hypotheses at the same time, a multiple testing correction is
necessary. We consider two classical options in the remainder of the article, the Bonferroni
correction [14] to control the Familywise Error Rate (FWER), and the Benjamini–Hochberg
procedure to control the False Discovery Rate (FDR) [15]. Either procedure can be used,
so long as one discloses that the reported significances are with respect to FWER or FDR
control, respectively.

To stay conservative, we fix a testing threshold α ∈ (0, 1) which is prespecified by
the user. We evaluate the hypotheses of both groups A and B separately, using a testing
threshold of α/2 for each to keep the overall type I error under control. We denote with
RB

H and RBH
H the sets of rejected hypotheses among H = (H1, . . . , Hm) based on the

p-values (p1, . . . , pm) for the Bonferroni correction and Benjamini–Hochberg procedure,
respectively. Similarly, we denote withRB

H̃ andRBH
H̃ the sets of rejected hypotheses among

H̃ = (H̃1, . . . , H̃m) based on the p-values ( p̃1, . . . , p̃m) for the Bonferroni correction and the
Benjamini–Hochberg procedure, respectively.

2.6. Reporting the Findings

After evaluating all 2m hypotheses, we determine whether there exist one or more
indices j ∈ {1, . . . , m} such that both Hj and H̃j are rejected. In this case, we report these
indices as findings. If no such index exists, we report an empty set.

To be precise, we report the hypotheses in the set RB
H ∩ RB

H̃ when controlling the
FWER with the Bonferroni correction as a multiple testing correction. When controlling
the FDR with the Benjamini–Hochberg procedure, we report the hypotheses in the set
RBH

H ∩RBH
H̃ .

3. Results

This section presents the dataset under investigation to which we apply the proposed
methodology (Section 3.1). An example of the observed p-value distributions for both Hj
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and H̃j is presented in Section 3.2. We conclude with an example of the actual significances
observed with our methodology (Section 3.3).

3.1. Dataset under Investigation

Severe lower respiratory tract infections (LRTI) are a leading cause of hospitalization
and preventable death in children worldwide [16]. From 2010 to 2022, accounting for the
United States alone, an average of 22.2 out of 100, 000 children less than 18 years old were
hospitalized with severe influenza virus infection, resulting in 1358 deaths [17]. Multiple or-
gan dysfunction syndrome (MODS) is an uncommon but life-threatening complication of se-
vere influenza infection in children that may negatively impact their longer-term health [1].

We consider a dataset originally created by the Pediatric Intensive Care Influenza
(PICFLU) investigators group [2,3], comprising children of less than 18 years of age with
confirmed influenza infection which were admitted to Pediatric Intensive Care Units (PICU)
at 30 sites between March 2010 and March 2017. Influenza was confirmed as previously
described in [18]. Individuals with known immunodeficiencies, chronic lung disease, symp-
tomatic cardiac disease, neuromuscular disease, malignancy, metabolic or mitochondrial
disease, or individuals who received systemic immunosuppressive medications within six
weeks prior to admission for this acute illness were excluded.

A custom gene panel was designed for m = 469 mRNA targets incorporating genes
known for moderating inflammation, cytokines, and associated with influenza and sepsis.
Based on similar studies, the dataset also includes seven housekeeping genes [19–21]. The
gene panel of the PICFLU dataset is given in the Supplementary Material.

The Pediatric Sequential Organ Failure Assessment (pSOFA) score, ranging from 0 to
24, was used to identify MODS. It can also quantify MODS over time [22] and it is positively
correlated with mortality. To be precise, organ dysfunction was defined by a pSOFA score
of 2 or greater. The class “Prolonged MODS” was defined as multiple organ dysfunction
and/or extracorporeal membrane support (ECMO), or death on or after PICU day 7. MODS
was measured at the time of the initial sample collection. PICU survivors with MODS
when the first sample was collected who did not have MODS on or after PICU day 7 were
categorized as “MODS Recovery”.

The dataset under investigation contains n = 45 individuals, divided into two groups
A and B with n1 = 22 and n2 = 23 individuals, respectively.

Since the aim of this contribution is to showcase the new methodology, a simulated
dataset is generated from the above dataset of the Pediatric Intensive Care Influenza
(PICFLU) investigators group. As the analysis of the real dataset requires an extensive
discussion of the biological implications, it is deferred to a separate publication. Instead,
the simulated dataset we use was generated by bootstrapping (sampling with replacement)
from the real data described above. For this, when bootstrapping, we keep the original
group sizes of n1 = 22 and n2 = 23 individuals for groups A and B, respectively. For
each individual, we consider the fixed panel of m = 469 genes, for which we possess gene
expression measurements at two endpoints.

The bootstrapping is conducted as follows. Since we are only interested in the contrasts,
see Figure 1, we first compute the contrasts for both the group “Prolonged MODS” (group
A) and “MODS Recovery” (group B) on the real data. While keeping fixed the original
group sizes of n1 = 22 and n2 = 23 individuals for groups A and B, respectively, we
pool all contrast measurements for the group “Prolonged MODS” (group A) and draw
bootstrapped measurements from this pool to create a new panel of n1 individuals and
m genes. The same is carried out using the contrast data for the group “MODS Recovery”
(group B). A vector of m new age measurements is created by sampling with replacement
from the original m age measurements, which are all contained in the interval (0, 16).

3.2. Example of p-Value Distributions for the Two Hypotheses

Figure 3 shows the two distributions obtained after calculating the p-values for both
Hj and H̃j according to Section 2.4. Note that the p-values in both subfigures are sorted,
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meaning that it is not possible to immediately compare the p-values in the left and right
subfigures. We observe that, for the test under the null, the p-values are quite conservative,
with only very few significances. For the test under the alternative, we observe a step
function behavior, in the sense that the level λj we determine for each test H̃j with j ∈
{1, . . . , m} seems to make the p-values either (almost) zero or one.
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Figure 3. Sorted p-value distributions for Hj (left) and H̃j (right).

3.3. Reported Genes

We evaluate all p-values considered in Section 3.2 by applying the Benjamini-Hochberg
procedure to the ones calculated for the nulls Hj and the alternatives H̃j separately at a
level α/2, where α = 0.05. As described in Section 3.3, we then look for any indices
j ∈ {1, . . . , m} such that both Hj and H̃j are rejected. For the above dataset, this procedure
results in two genes to be reported which can be found in Table 1.

Table 1. p-values for Hj and H̃j observed for the two rejections with respect to the FDR criterion.

Name p-Value for H1 p-Value for H2

ALAS1 6.240291 × 10−5 1.553433 × 10−51

CASP6 1.287339 × 10−4 1.127595 × 10−11

However, since the dataset we analyze here is created by bootstrapping from the
PICFLU dataset (see Section 3.1), the discovered genes in Table 1 are actually random and
thus not biologically meaningful. An application to real MODS data of [2,3], and the
subsequent biological interpretation of the results, is deferred to a separate publication.

4. Discussion

This article considered the problem of testing contrasts for a gene expression appli-
cation in the context of multiple organ dysfunction syndrome (MODS). The statistical
challenge of the problem under consideration consists in the fact that we are interested
in genes showing significances with respect to one group but not another group (denoted
groups A and B). Although formulated as a problem with two endpoints, as a prepro-
cessing step, the input data consisting of gene expression data collected at two different
time points for the same set of genes and individuals in two different groups are converted
to gene contrasts (differences in gene expression) per group. This effectively reduces the
multiple endpoint problem to a single input.

Our proposed solution uses two hypothesis tests per gene under consideration, where
m denotes the number of genes. Precisely, we conduct two linear regressions, where
each linear regression allows us to determine if the contrasts can be explained by a single
covariate alone (in our application this is the age covariate) and focus on the intercept to
detect a departure from the baseline in gene expression. The two sets of m hypotheses
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(leading to a total of 2m hypotheses which are being tested) consist of m hypotheses under
the null (to detect a departure from the baseline in group A) and m hypotheses under the
alternative (to model the condition that we are interested in genes showing significances in
group A but not in group B). Special attention is paid to the formulation and calibration
of an appropriate level under the alternative. The level we choose is essentially arbitrary,
but as motived in the literature (see Section 2.3), one option is to scale the intercept until
it only explains a fraction (e.g., a fraction of 0.35) of the initial R2 of the linear regression
fit. To obtain p-values for both the null hypotheses and the alternative hypotheses, we
give explicit formulas based on a t-distribution. We evaluate all p-values with the help of
the FWER or FDR criterion to correct for multiple comparisons and report those genes as
findings which are significant under both the null as well as the alternative.

There is no restriction on the number of gene contrasts that can be tested with our
proposed methodology as long as the multiple testing correction is carried out correctly.
This is due to the fact that the discovery of genes is essentially deferred to the discovery of
significant hypotheses among the nulls Hj and the alternative hypotheses H̃j, see Section 2.5.
As long as a valid testing procedure is being used, such as the one in [14] to control the
FWER or the one in [15] to control the FDR, any number of gene contrasts can be tested.
In particular, if a type I error of α is desired, it is valid to split this error evenly among
the m nulls and the m hypotheses under the alternative, thus applying the Bonferroni
correction at threshold α/2 to the m hypotheses per group.

The application which prompted the development of this methodology is in the area
of multiple organ dysfunction syndrome (MODS). The dataset originally created for MODS
stems from the Pediatric Intensive Care Influenza (PICFLU) investigators group [2,3] and
serves as the basis of the experiments reported in this publication. However, the developed
methodology is not tied to a certain type of data and, thus, we aimed to separate the
presentation of the methodology and the analysis of the PICFLU dataset. Therefore, we
used a simulated dataset to showcase the methodology, which is based on the real PICFLU
dataset with an equal number of individuals and mRNA targets (as in the original PICFLU
dataset) created via bootstrapping. Therefore, the discovered genes reported in Section 3
are actually not biologically meaningful and an interpretation of the discoveries is not
sensible. This is due to the fact that an application to real MODS data will involve a much
more meticulous biological interpretation of the results, and it is therefore deferred to a
separate publication.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14061134/s1, The gene panel of the PICFLU dataset is given in
the supplementary material.
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