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Abstract: Rice (Oryza sativa L.) is a staple food for more than 50% of the world’s population. Rice
cultivar improvement is critical in order to feed the world’s growing population. Improving yield
is one of the main aims of rice breeders. However, yield is a complex quantitative trait controlled
by many genes. The presence of genetic diversity is the key factor to improve the yield hence, the
presence of diversity in any germplasm is important for yield improvement. In the current study,
the rice germplasm was collected from Pakistan and the United States of America and a panel of
100 diverse genotypes was utilized to identify important yield and yield-related traits. For this, a
genome-wide association study (GWAS) was performed to identify the genetic loci related to yield.
The GWAS on the diverse germplasm will lead to the identification of new genes which can be
utilized in the breeding program for improvement of yield. For this reason, firstly, the germplasm was
phenotypically evaluated in two growing seasons for yield and yield-related traits. The analysis of
variance results showed significant differences among traits which showed the presence of diversity
in the current germplasm. Secondly, the germplasm was also genotypically evaluated using 10K
SNP. Genetic structure analysis showed the presence of four groups which showed that enough
genetic diversity was present in the rice germplasm to be used for association mapping analysis. The
results of GWAS identified 201 significant marker trait associations (MTAs. 16 MTAs were identified
for plant height, 49 for days to flowering, three for days to maturity, four for tillers per plant, four
for panicle length, eight for grains per panicle, 20 unfilled grains per panicle, 81 for seed setting %,
four for thousand-grain weight, five for yield per plot and seven for yield per hectare. Apart from
this, some pleiotropic loci were also identified. The results showed that panicle length (PL) and
thousand-grain weight (TGW) were controlled by a pleiotropic locus OsGRb23906 on chromosome
1 at 10,116,371 cM. The loci OsGRb25803 and OsGRb15974 on chromosomes 4 and 8 at the position
of 14,321,111 cM and 6,205,816 cM respectively, showed pleiotropic effects for seed setting % (SS)
and unfilled grain per panicle (UG/P). A locus OsGRb09180 on chromosome 4 at 19,850,601 cM
was significantly linked with SS and yield/ha. Furthermore, gene annotation was performed, and
results indicated that the 190 candidate genes or QTLs that closely linked with studied traits. These
candidate genes and novel significant markers could be useful in marker-assisted gene selection and
QTL pyramiding to improve rice yield and the selection of potential parents, recombinants and MTAs
which could be used in rice breeding programs to develop high-yielding rice varieties for sustainable
food security.
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1. Introduction

Rice (Oryza sativa L.) is a staple cereal crop that feeds more than 3 billion people of the
world [1,2]. The major losses of rice yield production are due to a lack of diverse germplasm
and various biotic and abiotic factors. Lack of genetic diversity limits crop production
and poses a major problem in any breeding program for the development of new varieties.
Thus, exploring natural diversity or creating genetic diversity (if not present) via different
kinds of mutation is a critical step for the enhancement of yield. Rice breeders have used
various kinds of germplasm like landraces, wild-type material, commercially approved
varieties etc. to explore the genetic diversity within the existing germplasm to improve
the yield. Yield is one of the most important and polygenic traits in rice. It is a complex
and quantitative trait controlled by many genes and heavily influenced by environmental
factors [3–5]. In rice, direct yield-determining traits are filled grains per panicle (G/P),
panicle number per unit area and/or per plant (PNP), and TGW and indirect traits are
plant height (PH), tillering ability (TA), growth period (GP), panicle length (PL), grains
per panicle (GP), seed length (SL), and seed setting (SS) [6,7]. Therefore, the study of these
traits is important for future rice breeding programs to improve grain yield. Fortunately,
advancements in sequencing technologies provided ample opportunities than ever before
to rapidly and efficiently dissect the genetic architecture of rice yield and yield components.
The use of this genetic information provides plant breeders with a variety of modern tools
and approaches to deeply dissect the genetic bases of yield and yield traits [8]. Therefore,
developing new rice varieties with higher yields is crucial for future food security and is
most challenging for rice breeders [9].

To efficiently use genetic diversity, it is useful to detect genomic regions governing
the target trait so that marker-aided breeding can be employed. Biparental QTL mapping
poses a limitation to explore the natural variation of the existing population. Alternatively,
linkage disequilibrium (LD) based mapping, also known as genome-wide association study
(GWAS), is an efficient and powerful strategy to utilize the natural variation of germplasm
and helps in the identification of genomic loci. GWAS is a method of searching the entire
genome for phenotypes showing continuous variation and mutations representing associa-
tions in natural individuals, or for lines using whole genome sequences [10]. Nowadays,
the GWAS has become a prevalent study for the identification of QTLs. There are several
advantages of GWAS over QTL mapping as it has the ability to identify the genes for a
targeted trait in the natural population without deliberately creating it. A natural pop-
ulation has numerous recombination and GWAS has the potential to identify the causal
mutations with higher resolution as compared to the QTL mapping. GWAS has recently
become an ideally suited method for high-resolution mapping of agronomic traits in di-
verse rice populations [11]. Many useful traits including yield and yield-related traits and
resistant loci-related biotic and abiotic stress tolerance has been mapped successfully using
GWAS [12]. Therefore, LD-based mapping is a very powerful tool for the identification of
important MTAs. The MTA study established the relationship among specific phenotypic
and genetic variability within a genome, which ultimately detected the loci underpinning
corresponding traits [13]. In the current study, the LD-based linkage mapping was applied
to identify the yield-related traits in a diverse set of rice germplasm.

Single nucleotide polymorphism (SNP) is referred to as a difference of a single base
in the sequence of DNA and the most general type of genetic marker to differentiate the
individual organisms as well as traits. SNPs have become the fundamental genetic marker
of selection for the analysis of completely or partially sequenced genomes because of
their ubiquity within the genome. The large number of SNPs within the single genome
can be utilized in the development of high-resolution genetic maps which can often lead
to the linkage of SNPs with remarkable agronomic traits [14]. In the rice, the primary
data of sequencing which led to the discovery of the first whole-genome, SNPs were
derivatives from the draft cultivar sequences of the japonica and indica. The pools of SNPs
were primarily restricted to measure the variability. However, with the advent of next-
generation sequencing, the SNP markers are being utilized to map the important loci for
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many agronomically important traits [15–18]. However, re-sequencing costs and higher
copies sequencing coverage are required for SNPs selection and map reconstructions of
GWAS. Therefore, other methodologies should be explored such as; using fewer SNPs
markers to construct fine maps for agronomic traits. This will reduce the budget and
labor cost of data analysis procedures. Fewer SNPs could definitely map QTL loci better
than traditional methods in the genetic population and the cost is far less than GWAS.
Therefore, the main objective of this research is to map QTL for agronomic, morphological,
and yield-related variables.

The results of association mapping presented in this study will be utilized for marker-
assisted selection (MAS) on the same population.

2. Materials and Methods
2.1. Plant Material

In this study, a diverse set of rice germplasm containing 100 rice accessions was used
(Supplementary Table S1). Seeds of the rice were obtained from the Rice Research Institute,
Kala Shah Kaku and the United States Department of Agriculture (USDA), Washington,
DC, USA.

2.2. Field Cultivation and Management

The selected rice germplasm were grown in the field area of the University of the Pun-
jab Lahore, Pakistan (subtropical steppe/low-latitude semi-arid hot climate) for
two growing seasons from 2016 to 2017 and 2017 to 2018. Seeds of each accession were
soaked and sown in puddled field conditions from 15 to 20 April through the broadcasting
method. After 25–30 days the nursery of each rice line was prepared for transplantation
into the next field with three replications under a Randomized Complete Block Design
(RCBD). Each block size was measured at about 16 m × 6 m (96 m2). Twenty plants of each
accession were planted in each row and row to row distance was 30 cm and plant to plant
distance was 15 cm. The soil type was silty clay. Based on the generally recommended
dose, the fertilizer was applied after 30–40 days of transplanting the seedlings. NPK were
applied with a ratio of 100:50:50 kg/ha. However, P and K were smeared basally after
the transplant; N was smeared in three splits. Crop protection measures were practiced
preventing pests and unwanted wild plants occasionally when necessary.

2.3. Phenotyping

At the time of maturity different agronomic traits were recorded i.e., Plant height (PH,
in cm, the average of 5 plants of each line and replication), Days to 50% flowering (DTF,
in days), Days to maturity (DM, in days), Tillers per plant (TP, the average of 5 plants of
each line and replication), Panicle length (PL, in cm, the average of 5 plants), Number of
grains per panicle (G/P, the average of 5 plants of each line and replication), Unfilled grains
per panicle (UG/P, the average of 5 plants), Seed setting (%) (SS), the average of 5 plants
of each line and replication), Thousand-grain weight (TGW, in g, the average of 5 plants
of each line and replication), Yield kg/plot and Yield kg/ha. Details of the measurement
procedures of each trait are given in (Supplementary Table S2).

2.4. DNA Isolation and Genotyping

Rice leaf samples were collected from 100 rice genotypes from the field and kept at
−4 ◦C in the refrigerator for DNA extraction of each rice line. The DNA was extracted
by the CTAB method using the protocol described earlier [19]. The quality of DNA was
checked by running on gel electrophoresis and the quantity of DNA was checked on
a NanoDrop 1000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA). A 1.2 K
multiplex-PCR panel, which was based on the GBTS platform from MolBreeding Biotechnol
(http://www.molbreeding.com, accessed on 20 August 2017), was employed for genetic
background analysis. The genome-wide positions of SNPs in terms of physical distance

http://www.molbreeding.com
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located on chromosomes were used in this study based on the Nipponbare reference
sequence (RefSeq) (http://rapdb.dna.affrc.go.jp/, accessed on 20 August 2017).

2.5. Genotypic Data Analysis

Monomorphic markers, missing values < 20%, and shows unclear SNPs or (minor
alleles) demonstrating allelic frequencies of less than 5%, were excluded from the analysis.
Overall, 7098 out of the 10K functional iSelect beads chip analyses visually displayed
polymorphic and were used for analysis. The mysterious relationships among individuals
were calculated using a kinship matrix in the incorporated MLM [20].

2.6. Population Structure and GWAS Analysis

Bayesian clustering technique was applied with unlinked SNPs to classify groups of
genotypically same individuals by applying the statistical software STRUCTURE v.2.3 [21].
Burn-in iterations of 104 cycles, followed by a simulation run of 106 cycles and the admix-
ture model selection were used. The reliability and precision of the results were confirmed
by running the K value at 10 runs for each K. The K value over the 10 runs was used to
determine the most appropriate number of clusters [22]. We selected the K values ranging
from 1 to 10 and 6 independent runs to attain reliable effects. The population structure was
estimated by plotting the proposed number of subpopulations against the delta k [23].

GAPIT (genome association and prediction integrated tool) was also applied with
the model selection preference to test the reliability of the results [24]. It was advanced in
the R package which offers maximum likelihood precision and runs in a computationally
effective method. (GAPIT) implements unconventional statistical approaches containing
the compressed mixed linear model (CMLM) and CMLM-based genomic prediction and
selection. Monomorphic markers, missing values < 20%, and shows unclear SNPs or (minor
alleles) demonstrating allelic frequencies of less than 5%, were excluded from the analysis.
The threshold for describing a marker to be significant was taken at 10−4 or above [25]
after crossing the false discovery rate (FDR) at 0.05 value [24]. Overall, 7098 out of the 10K
functional iSelect beads chip analyses visually displayed polymorphic and were used for
analysis. To define the spurious associations derived from population structure, covariates
from either STRUCTURE [22] or principal components (PCs) were considered as fixed
effects. The mysterious relationships among individuals were calculated using a kinship
matrix in the incorporated MLM [26]. The linkage disequilibrium (LD) in the studied
diversity panel was evaluated using squared Pearson’s correlation coefficients (r2) using
the r2 command in the software PLINK [27].

2.7. Gene Annotation

To determine the number of QTLs from all significant markers, the LD heat map R
package was used to generate a graphical display of pair-wise linkage disequilibrium
measures between SNPs in the genomic regions where significant SNPs (p < 1 × 10−4) were
located. The QTL intervals were limited to regions where the R2 values (squared allele
frequency correlation) between markers were above 0.4. In case the observed LD block
around the significant marker(s) was less than 50 kb, we extended the QTLs up to 50 kb
upstream and downstream of the detected regions. The SNP sequence was aligned to the
rice genome through the blastn program with stringent E-values of 0.0001. For every SNP,
only the best scoring hit was retained, and genomic position was annotated into 5′-UTR,
3′-UTR, CDS, intron, and intergenic regions conferring the genomic regions offered in the
GFF3 files. The intergenic regions were distinct as genomic regions with no annotated
genes. The annotated genes within±250 Kb of the mapped SNP were considered candidate
genes as described in a previous study [28,29].

2.8. Principal Component Analysis

Principal Component analysis was also used to determine phenotypic variability for
these traits. phenotypic means were used for the PCA with respect to each trait. The result

http://rapdb.dna.affrc.go.jp/
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of PCA was used to make the clustering on phenotypic characters. The PCA was performed
using IBM-SPSS statistics-20 [30].

3. Results
3.1. Phenotypic Diversity

The grain yield is one of the most important traits in rice crop improvement which is
interlinked with other agronomic traits. The variation in the phenotypes is a key factor for
crop improvement and an essential component of GWAS analysis. The trait-wise pheno-
typic variation was depicted by a boxplot (Figure 1). Significant differences in yield and
yield-related traits were observed in the analysis of variance (ANOVA). Significant differ-
ences were observed in DF in season II and DM in both seasons and the remaining traits
were highly significant in both seasons among studied rice germplasm (Supplementary
Table S3). Across the rice genotypes, the mean value for the DF was 82.47 days in season I
and 80.41 days in season II. The genotypes G58, G82, G83, and G84 flowered early in season
I, the genotypes G56, G57, and G58 flowered early in season II, while G25 was found to be
late flowering in both seasons. The DM were 110.65 and 108.95 days in season I and season
II, respectively and ranged from 107 to 113 days in both seasons. The genotypes G36, G59,
and G79 showed delayed maturity in season 1, while the genotypes G41 and G52 depicted
delayed maturity in season II. Contrarily, an early maturity was observed in genotypes
G68 and G72 in both seasons. The mean values for PH were 123.75 cm in season I and
121.33 cm in season II and ranged from 81.67cm to 145.33cm in both seasons. Geno-
types G79 (145.33 cm) and G54 (143.3) were found to be taller genotypes G87 (81.67 cm)
and G91 (79.63 cm) were dwarf. The TP was 13.43 in season I and 14.49 in season II. It
ranged from 6.33 to 20.33 in season I and 7.39 to 22 in both seasons—the average PL was
24.86 cm in season I and 26 cm in season II. It ranged from 20.67 cm to 31.17 cm in both
seasons. The G/P averaged 147.46 grains and 144.67 grains and it ranged from 85 grains to
204 grains in season I and from 82.94 grains to 202 grains in season II. The mean values
for UG/P were 21 in season-I and 22.7 in season II. In season I, it ranged from 8.13 to
39.33 and in season II, from 9.82 to 42. The mean values for SS were 86.57 in season I and
88.4 in season II. It ranged from 63.78 to 99.29 in season I and 65.73 to 101.25 in season
II. The mean value for TGW in the 100 rice genotypes were 26.95 g and 24.99 g in season
I and season II, respectively. It ranged from 18.16 g to 32.1 g in season 1 and 16.21 g to
30 g in season II. The mean values for YP were 3.26 kg in season I and 3.33 kg in season
II for this trait. In season I, it varied from 1.4 kg to 5.23 kg and from 1.49 kg to 5.32 kg in
season II. The average Y/H across the studied rice genotypes was 2412.96 kg in season I
and 2494.06 kg in season II. It ranged from 558.67 kg to 3893.33kg in season I and from
650.12 kg to 3984.79 kg in season II.

The principal components showed more variability with respect to eigenvalues (com-
ponents having high eigenvalue corresponds high variability) that covered maximum
variation among the traits. The PC1 showed 64% variation; the PC2 and PC3 showed 19%
and 15% variation respectively and then finally decreased and stopped at 1% variation
(Figure 2a). The PC1 is more related to TP, PH, DF, PL GP, UG/P, SS, TGW, MD and yield
kg/plot. The PC2 showed positive effects with TP, PH, DF, SS, TGW and MD. The PC3
showed more relatedness with DF, PH, PL, UG/P and yield kg/plot. Similarly, the PC4
showed positive effects with TP, UG/P, TGW and yield kg/plot (Supplementary Table S4).

Overall, the Scree plot and scatter plot showed that the first four components are
important (Figure 2b). This showed that for the studied attributes, a high level of phenotypic
variability was observed among all accessions in the field condition. Phenotypic data
showed a large variance in the studied rice diversity panel, making it useful for recording
genotypic variability in the population. Based on the phenotypic analysis, genotype
G13 showed the best performance in most of the yield and yield-related parameters and
genotype G68 had the lowest performance as compared to other studied accessions.
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values of the target trait.

3.2. Genotypic Diversity

The results of the web-based analysis showed the peak value at 4 (K = 4) indicating
the presence of four subgroups among the studied rice accessions (Figure 3a). The results
of the structure analysis also divided the germplasm into four groups which are depicted
by four different colors (Figure 3b). Further assessment of each cluster or group revealed
that genotypes G1–G10 and G27, G28 were found to fall in the first group; whereas the
G11–G26 and G29, G33 genotypes completely appeared in the second group, G34–G72 fall
in the third group and G73–G100 genotypes were grouped in fourth group (Table 1).

Table 1. Distribution of genotypes/varieties in different groups based on STRUCTURE analysis.

S. No Group Number of
Genotypes Name of Genotypes

1 Group I 12 Lemont?, Bond, IR-36, Delvex, Teqing, Nira, Cica,
Koshihikari, IR-64, Bellmont, Taducan, Dee Geo Woo

2 Group II 21

Yangzi-95, Gui-99, L-203, CE-65, Zao-40, LA-110,
Rando, Jakson, WC-4644, Tsai Yuan Chung, Cica-6,

IR-456-3-2-1, Newbonnet, Newrex, Taichung
Native-1, Sinum Paga Selection, Stg-663228,

Lebonnet, Starbonnet, Della, Toro-2
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Table 1. Cont.

S. No Group Number of
Genotypes Name of Genotypes

3 Group III 39

Delitus, Dellrose, CDR-448, CDR-201, B5-Xiequizao,
Roxero regue, H-256-76-1-1-1, Palman, Jasmine-85,
A-301, L-202, VE GOLD, L-203, IR-6, Sathi basmati,

shaheen basmati, basmati-198, basmati-370,
basmati-Pak, Basmati-385, Basmati-515, R- 456, CB-5,

CB-10, CB-11, CB-12, CB-13, L-203, VeGold, TP-49,
Hill Long Grain, L-202, A-301, L-202, V-203,

PALMAN, 87-1-550, 79, 923

4 Group IV 28

CB-14, CB-15, CB-16, CB-17, CB-19, CB-20, CB-209,
CB-21, CB-22, CB-26, CB-27, CB-28, CB-29, CB-30,
CB-31, CB-32, CB-33, CB-34, CB-36, CB-38, CB-39,
CB-40, CB-41, CB-43, CB-44, KSK-282, KSK-133,

Roxero regue
Genes 2023, 14, 1089 7 of 20 
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Figure 3. The population STRUCTURE of 100 rice accessions. (a) Prediction of the number of
groups present in the germplasm based on Q-matrix at k = 10. (b) The genetic relatedness of diverse
rice germplasm based on STRUCTURE analysis representing the presence of four groups in rice
germplasm. Four different colors represent the presence of four groups in rice germplasm.

3.3. Genome-Wide Association Studies Using 10k SNP Array

Analysis of marker-trait association (MTA) was performed using the 10k SNP markers.
The linkage disequilibrium (LD) patterns of different SNPs markers on all chromosomes
are exhibited in (Figure 4a). Comparison between the marker density and the LD decay
over distance indicates that markers are dense enough to have good coverage of LD. In
the current study, LD decay over distance showed that the marker is dense enough for
good coverage. Linkage disequilibrium is measured as R square for pair-wise markers and
plotted against their distance. The moving averages of adjacent markers were calculated by
using a sliding window with ten markers (Figure 4b).

A total of 201 significant MTAs were associated with studied traits, at or above
−log 10 (p < 0.0001) threshold using a mixed linear model (MLM) for eleven yields and
other agronomic traits (Supplementary Table S4). Marker trait associations were identified
along with the desired phenotypic traits i.e., 16 MTAs were identified for plant height, 49 for
days to flowering, three for days to maturity, four for tillers per plant, four for panicle length,
eight for grains per panicle, 20 unfilled grains per panicle, 81 for seed setting %, four for
thousand-grain weight, five for yield per plot and seven for yield per hectare. These MTAs
are located on chromosomes 1, 2, 4, 5, 6, 7, 9, and 11 and explained the trait phenotypic
variances ranging from 12.97% to 25.55%. Manhattan plots and quantile-quantile (Q-Q)
plots generated through the model indicate that the model was well-fitted to data. The
Manhattan plots show the location of significant SNPs and −log10 (p) associated with
yield-related traits (Figure 5). Q-Q plots were used to assess the number and magnitude of
observed associations between genotyped SNPs and traits under study. It was observed
that p-values showed less deviation from the expected p-values. The blue horizontal line
designates the threshold (p < 0.0001) of significance. The Y-axis in the (QQ) plot is the
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observed negative base 10 logarithm of the P-values, and the X-axis is the expected observed
negative base 10 logarithms of the p-values under the assumption that the p-values follow
a uniform [0, 1] distribution. The dotted lines shown in this plot are the 95% confidence
interval for the QQ-plot under the null hypothesis of no association between the SNP and
the studied traits as mentioned in. The p-values determine the association of QTLs with
markers and R2 predicts the magnitude of QTL effects (Figure 6).
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Most of the association signals were detected with close association to already identi-
fied regions. Details of trait and their associated SNP are described as follow:

3.3.1. Tillers Per Plant (TP)

The TP was highly associated with four SNPs i.e., SNPs n OsGRb13190, OsGRg04446,
OsGRg03402, and OsGRb29047 and they are located on chromosomes number 6, 3, 2,
and 11, respectively (Figure 5). The phenotypic variation explained (PVE) for the trait
ranged from 12.19% to 17.57% for the total phenotypic variation. The marker (OsGRb13190)
explained maximum phenotypic trait variability (17.57%) on chromosome 1 at position
20,245,648 cM while the marker OsGRb29047 on chromosome 11 at position 858,733 cM
explained minimum value (12.19%) in this study (Supplementary Table S5).

3.3.2. Plant Height (PH)

The MTAs for PH were distributed across six chromosomes, including, eight MTAs at
chromosome 7, four MTAs at chromosome 4, two MTAs at chromosome 4, and
one MTA at each chromosome 1, 3 and 8 in this study. These MTAs explained from
11.47% to 25.55% of the total phenotypic variation (Supplementary Table S5). The SNP
marker (OsGRb14446) explained maximum phenotypic trait variability (25.55%) on chro-
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mosome 7 at 14,594,194 cM while the marker OsGRb13785 on the same chromosome at
20,400 cM explained minimum value (11.47%). (Figure 5).
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3.3.3. Days to 50 Percent Flowering (DF)

A total of 49 SNPs were found to be located on chromosomes 2, 3, 7, 8, and 11 and
significantly correlated with this trait (Supplementary Table S5). The PVE by the DF-
associated markers exhibited from 15.05 % to 19.84% of the total phenotypic variation.
The SNP (OsGRb30080) explained the maximum value of trait variability (19.84%) on
chromosome 2 at position 18,212,087 cM while the SNP (OsGRb25578) from chromosome 3
at position 33,753,141 cM explained the minimum value (15.05%). (Figure 5). Marker trait
association (MTAs) for DF were distributed across five chromosomes, including, 32 SNPs
at chromosome 2, five SNPs at chromosome 3, nine MTAs at chromosome 11 and two SNPs
at each chromosome 7 and 8 in the current study.

3.3.4. Unfilled Grains per Panicle (UG/P)

A total of 20 significant MTAs were strongly linked with the UG/P. Overall, these
significant SNPs were distributed across five chromosomes, Out of them, nine SNPs were
on chromosome 8, four on chromosome 7, and three each on chromosomes 9 and 4, while,
one SNP was on chromosome 5 (Supplementary Table S5). The phenotypic variation ranged
from 13.17% to 15.74%. The SNP (OsGRg07442) on chromosome 5 at position 258,353 cM
explained a maximum variation of 15.74% while; the SNP (OsGRg11693) on 8 at position
21,450,206 cM explained a minimum variation (13.17%) (Supplementary Table S4, Figure 5).
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3.3.5. Number of Grains per Panicle (G/P)

A total of eight significant MTAs were included, seven were located on chromosome
9 while one SNP was on chromosome 7. The phenotypic variation ranged from 23% to
20.79% (Supplementary Table S5). The marker (OsGRb28603) on chromosome 9 at position
12,952,275 cM explained a maximum variation of 20.79% while; the marker (OsGRb27733)
on 4 at position 20,438,541 cM (Figure 5) explained a minimum variation (18.23%) for
this trait.
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3.3.6. Days to Maturity (DM)

A total of three SNPs were strongly correlated with DM. Out of these, one SNP
was from chromosome 3 (OsGRg04275), one from chromosome 4 (OsGRb09564), and
one from chromosome 9 (OsGRb17703). The total PVE by these markers ranged from
11.57% to 12.97%. The SNP (OsGRb09564) had maximum PVE (12.97%) on chromosome
4 at 27,939,281 cM while the SNP (OsGRb17703) on chromosome 9 explained the least pro-
portion of 6.53% of the trait variability at 11,125,119 cM position (Figure 5,
Supplementary Table S5).

3.3.7. Panicle Length (PL)

A total of four significant MTAs were found to be associated with PL. These MTAs for
PL were distributed across the three chromosomes, including, two SNPs on chromosome 1
and one each on chromosomes 5, and 6. All of these SNPs explained phenotypic variation
from 13.27% to 18.77% of the total phenotypic variability. The SNP marker (OsGRb23906)
on chromosome 1 at position 101,16,371 cM explained maximum phenotypic variation
(18.77%) while the marker (OsGRb10830) on 5 at position 10,350,550 cM explained minimum
variation (13.27%) (Figure 5, Supplementary Table S4).

3.3.8. Seed Setting Percentage (SS)

In total, 81 MTAs were found to be significantly associated with SS they were dis-
tributed across 5 chromosomes. Out of them, 71 were on chromosome 4, six on chromosome
8, two on chromosome 9, and one each on chromosomes 1, and 7. The PVE by the SS was
from 16.33% to 22.69% of the total phenotypic variation. Chromosome-wise significant
SNPs were OsGRb30591, OsGRb17738, OsGRg11329, OsGRg03752, and OsGRb14503 from
chromosomes 4, 9, 8, 2, and 7 respectively exhibiting the maximum phenotypic variability
(Figure 5, Supplementary Table S5).

3.3.9. 1000 Grain Weight (TGW)

A total of four MTAs were strongly associated with TGW. Out of them, two were
from chromosome 1 (OsGRb23906 and OsGRg01164) and one from each chromosome 2
(OsGRb05492) and 11 (OsGRb21690). Total phenotypic variation by these SNPs ranged
from 13.77% to 15.63%. The marker (OsGRb23906) had maximum PVE, i.e., 15.63% on
chromosome 1 at position 10,116,371 cM while the marker (OsGRb21690) on chromo-
some 11 at position 21,789,361 cM explained the least proportion i.e., 13.77% (Figure 5,
Supplementary Table S5).

3.3.10. Yield per Plot (Y/P)

A total of seven significant MTAs were found to be associated with Y/P. All the MTAs
were distributed across five chromosomes, including, two SNPs each on chromosomes 4,
and 7, and one SNP each on chromosomes 1, 8, and 9. The PVE ranged from 14.97% to
16.03%. The marker (OsGRb01011) on chromosome 1 at position 13,770,374 cM explained
maximum phenotypic variation (16.03%) while the marker (OsGRg07137) on 4 at position
31,075,040 cM explained minimum variation (14.97 %) (Figure 5, Supplementary Table S5).

3.3.11. Yield per Hectare (Y/H)

Yield per hectare was highly associated with five MTAs, out of which two were located
on chromosome 4, while the others were on chromosomes 11, 3, and 12. All of these SNPs
explained 17.37% to 18.71% of the phenotypic variation. The marker (OsGRb20658) ex-
plained maximum variation (18.71%) on chromosome 11 at position 7,220,561 cM while the
marker (OsGRb23685) on chromosome 12 at 27,209,750 cM explained minimum variation
(17.37%) (Figure 5, Supplementary Table S4).

Trait-wise highest numbers of MTAs were identified for SS (81) followed by DF (49),
UG/P (20), PH (16), G/P (8), Y/P (7), Y/H (5) TG (4), PL (4), TP (4), DM (3). Chromosome-
wise multi-trait-loci were perceived on chromosome 1 (PH, Y/P, TGW, and Y/H), 2 (DF,



Genes 2023, 14, 1089 13 of 18

SS, TGW, and TP), 3 (DF, DM, PH, TP, and Y/H), 4 (DM, PH, SS, UG/P, Y/H, and Y/P),
5 (PL and UG/P), 6 (PH and TP), 7 (DF, G/P, PH, SS, UG/P, and Y/P), 8 (DF, PH, SS,
UG/P, and Y/P), 9 (DM, G/P, SS, UG/P, and Y/P), 11 (DF, TGW, and TP) and 12 (Y/H) in
this study. The MTAs detected herein provide an opportunity to clone genes and apply
marker-assisted selection (MAS) under field conditions.

A pleiotropic locus is associated with and affects the expression of more than one
phenotypic trait. In this study, several pleiotropic loci identified as pleiotropic locus Os-
GRb30591 on chromosome 4 at 12,914,840 cM were significantly linked with SS, UG/P and
Y/H. Another pleiotropic locus OsGRb14503 on chromosome 7 at the position 15,365,358 cM
was also associated with PH, SS, and UG/P. The studied traits like PL and TGW were con-
trolled by a pleiotropic locus OsGRb23906 on chromosome 1 at 10,116,371 cM. The markers
OsGRb25803 and OsGRb15974 on chromosomes 4 and 8 respectively, showed pleiotropic effects
for SS and UG/P. A pleiotropic locus OsGRb09180 on chromosome 4 at position 19,850,601 cM
was significantly linked with SS and Y/H in this study (Supplementary Table S4).

3.4. Gene Annotation of the Identified SNP Markers

On the Nipponbare reference genome (https://rapdb.dna.affrc.go.jp, accessed on
20 August 2017) of rice, 201 SNPs were successfully mapped which were found to be
correlated with various attributes. In total 190 candidate genes were predicted around
these MTAs. For DF, 49 candidate genes were predicted, three candidate genes for DM
were predicted, and eight candidate genes for GP were predicted. A total of 16 and
four candidate genes were found near SNPs associated with PH and TGW, respectively.
For SS, 81 candidate genes were identified. For TP and UG/P 4 and 20 candidate genes
were predicted, respectively. For GY/plot and yield per hectare, five candidate genes were
predicted (Table 2, Supplementary Table S6). These genes need to be further analyzed for
the regulation of certain pathways, and functional validation.

Table 2. Details of important SNP markers identified for yield and yield-related traits along with
total MTAs.

Sr.
No Traits SNP Chro Position Gene ID Region p Value R2 Strand MTAs

1 PH OsGRb14446 7 14594194 Os07g0436100|13882; Os07g0436350|3483;
Os07g0437000|24064 Intergenic 2.02 × 10−6 25.55 − 16

2 DF OsGRb30080 2 18212087 Os02g0508500|45221; Os02g0510100|19402;
Os02g0510300|27182 Intergenic 1.03 × 10−4 19.84 + 49

3 DM OsGRb09564 4 27939281 Os04g0557500 CDS 8.27 × 10−4 12.97 − 3

4 T/P OsGRb13190 6 20245648
Os06g0538900|20956; Os06g0539100|13974;
Os06g0539500|11602; Os06g0540050|35029;
Os06g0540200|36824

Intergenic 2.11 × 10−4 17.57 − 4

5 PL OsGRb23906 1 10116371 Os01g0283000; Os01g0283000 Intron 1.91 × 10−4 18.77 − 4
6 G/P OsGRb28603 9 12952275 Os09g0381600|37451 Intergenic 2.52 × 10−4 20.79 + 8
7 UG/P OsGRg07442 5 258353 Os05g0104700 3UTR 2.92 × 10−4 15.74 + 20

8 SS OsGRb30591 4 12914840 Os04g0294401|3101; Os04g0294812|20440;
Os04g0295100|40925 Intergenic 3.70 × 10−5 22.69 − 81

9 TGW OsGRb23906 1 10116371 Os01g0283000; Os01g0283000 Intron 9.02 × 10−4 15.63 − 4

10 Y/Plot OsGRb01011 1 13770374 Os01g0346700|8390; Os01g0347100|29581;
Os01g0347200|37151 Intergenic 5.94 × 10−4 16.03 − 7

11 Y/H OsGRb20658 11 7220561 Os11g0235250|23265; Os11g0235700|1114 Intergenic 4.95 × 10−4 18.71 + 5

Days to 50 percent flowering (DF), Days to maturity (DM), Plant height (PH), Number of tillers per plant (TP),
Panicle length (PL), Number of grains per panicle (G/P), Number of unfilled grains per panicle (UG/P), Seed
setting percentage (SS), 1000 grain weight (TGW), Yield per plot (Y/P) and Yield per hectare (Y/H). “+” represent
the forward strand and “−” represent the reverse/complementary strand of DNA.

4. Discussion

For the efficient breeding program, information regarding the estimation of variability
for the traits of genetic material is of utmost necessity. Therefore, phenotypic and genotypic
components of variation would provide valuable information for the breeding of desir-
able traits [31,32]. The GWAS used both phenotypic and genotypic variations to dissect
the complex traits and identify the functional genes related to diversity [33]. The same
approach was applied in the current study. First, the phenotypic diversity of all yield and

https://rapdb.dna.affrc.go.jp


Genes 2023, 14, 1089 14 of 18

yield-related components was analyzed, and the result showed that enough phenotypic
diversity was present in the current germplasm (Figure 1). This indicates that genotypes
are highly variable, especially those traits which showed significant differences. Thus, the
possible genetic improvement through selection is highly promising. In this study, geno-
type G13 showed the best performance in most of the yield and yield-related parameters
and genotype G68 had the lowest performance as compared to other studied accessions.
Similar results were obtained in earlier studies [34,35]. Similarly, phenotypic diversity was
also evaluated through principle component analysis (PCA) and the result showed that
the maximum variation is covered in four PCs. Along with the phenotypic diversity, the
genotypic diversity was elucidated using STRUCTURE analysis and it was found that
four types of subpopulations were found in the current germplasm (Figure 3). Based on
these results it is predicted that current germplasm is diverse enough to be used in any
breeding programs.

Agronomic traits are highly associated with rice production and serve as key factors
for grain yield and its consumption and market value [36]. The variation in agronomic traits
can be identified and traced back to the underlying causative loci via various mapping
approaches which include quantitative trait locus (QTL) mapping and GWAS. In this
perspective, a GWAS tool was applied to connect the phenotypic variation to genotype.
GWAS is a beneficial tool for recognizing the positions of genes, QTLs, and candidate genes
liable for the variations in the desired quantitative characters [37]. In the recent era, the
GWAS is being successfully utilized to dissect the complex traits in rice, which includes
both quantitative and qualitative traits [38,39]. For example, a study identified 80 MTAs for
GY, PH and DM on chromosomes 2, 5, 10, 11, and 12 [40]. Another study identified 43 SNPs
which are associated with yield and yield-related traits [41]. Moreover, 2255 MTAs signals
were detected for yield and its related traits, and the significant SNPs were distributed
in 903 genes [42]. Similarly, in the current study, 10k SNP data was utilized to find the
diversity as well as to find the significant associations with phenotypes. In this study,
GWAS was performed using high-quality sequencing data from a 100-rice core collection
and phenotypic data, with determined the significance. It was confirmed that significant
SNPs were detected based on−log10 (p) > 3 in a Manhattan plot, according to the yield and
yield-related traits. In addition, the expected p-value of the x-axis and observed p-value
from significant SNPs showed a diagonal linear shape in the QQ plot, which means that
the discovered SNPs expressed their characteristics well, with normality and significance.

The results showed that 201 MTA were significantly associated with yield parameters.
The MTAs detected herein will be helpful in cloning the genes and this information will
be applied for marker-assisted selection (MAS) for yield improvement and dissecting the
genetic mechanism of important cultivars in rice. Therefore, MTAs identified in the current
study are vital because these could be associated with minor genes related to the targeted
trait. The SNP markers, associated with targeted loci can be used for pyramiding favorable
alleles in newly developing varieties with improved traits. Moreover, these varieties
could be potentially used as parents in breeding programs for the genetic improvement of
grain yield.

The phenomenon of pleiotropy will occur when a gene is controlling more than
one phenotypic trait [43–45]. There are two distinct but overlapping mechanisms of
pleiotropy, one is gene pleiotropy and the second is region pleiotropy [46]. Like gene
pleiotropy, region pleiotropy occurs when a certain region is linked with two or more
traits. The region pleiotropy is divided into two categories based on their functions;
one is known as unfavorable linkage or linkage drag, and the other is known as favorable
linkage [46]. In the GWAS studies, identification of the favorable pleiotropic loci for grain
yield is desired. With the development of sequencing technologies, SNP-based GWAS has
become an effective method to detect the favorable pleiotropic regions across the whole
genome [47]. Using the GWAS studies, several pleiotropic loci were identified such as
six pleiotropic regions on chromosomes 1, 2, 3, 5, and six were identified in rice controlling
two or more determinants of rice grain [48]. Similarly, another study identified several
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pleiotropic regions associated with grain width and grain length-to-width ratio in rice [49].
Parallel studies were conducted in other experiments and multi-trait loci were identified
for yield and yield-related traits in crop plants [50–53]. Similarly in the current study,
several pleiotropic loci were identified such as pleiotropic locus OsGRb30591 were sig-
nificantly linked with SS, UG/P and Y/H. Another pleiotropic locus OsGRb14503 was
associated with PH, SS, and UG/P. the pleiotropic locus OsGRb23906 controls PL and TGW
(Supplementary Table S5). The major-effect of these significant markers is useful in marker-
assisted selection and QTL pyramiding to improve rice yield. These above advances confirm
that GWAS could be an effective means to identify significantly associated SNPs and candi-
date genes associated with the studied traits in rice. This comprehensive study provides a
timely and important genomic resource for breeding high yielding rice genotypes.

5. Conclusions

Phenotypic and genotypic diversity is crucial for any breeding program. In the
current study, the diverse set of 100 rice germplasm was assessed with respect to its
phenotypic diversity with PCA. The results divided the whole germplasm into four groups.
Similarly, genetic STRUCTURE results divided the germplasm into four groups based
on the genotypic similarities and dissimilarities. The GWAS identified 201 significantly
associated MTAs with 11 important agronomic traits. In contrast, gene annotation results
identified 190 candidate genes having close and significant associations with yield and
yield-related traits. For DF, 49 candidate genes were predicted, three candidate genes
for DM were predicted, eight candidate genes for GP were predicted. A total of 16 and
four candidate genes were found near SNPs associated with PH and TGW respectively.
For SS, 81 candidate genes were identified. For TP and UG/P, four and 20 candidate genes
were predicted, respectively. For YP and YH, five candidate genes were predicted for each
trait in the current study. The identified candidate genes and associated markers in this
study enable efficient testing of cross populations and provide materials that can be applied
in rice breeding programs. These results could be very useful for the selection/screening
of potential parents and further developments of new high-yielding recombinants in the
rice field.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/genes14051089/s1. Table S1: Rice germplasm used in
the study. Table S2: Phenotypic trait measurement procedure. Table S3: (a) Mean squares values of
studied traits during season 1. (b) Mean squares values of studied traits during season 2. Table S4:
Principal components (PCs) for 11 agronomic traits of hundred genotypes of rice. Table S5: List of 201
significant (SNPs) Marker-trait associations with studied traits. Table S6: Identification of Candidate
Genes corresponding to the significantlt associated SNPs.
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