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Abstract: miRNAs are some of the most well-characterized regulators of gene expression. Integral
to several physiological processes, their aberrant expression often drives the pathogenesis of both
benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification
influencing transcription and playing a critical role in silencing numerous genes. The silencing of
tumor suppressor genes through DNA methylation has been reported in many types of cancer and is
associated with tumor development and progression. A growing body of literature has described the
crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene
expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can
target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such
relationships between miRNA and DNA methylation serve an important regulatory role in several
tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss
the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and
describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the
expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as
biomarkers in cancer.
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1. Introduction

The term “epigenetics” was first coined by Conrad Hal Waddington and refers to
the mechanisms of inheritance in addition to standard genetics [1]. To date, epigenetics
indicates all mechanisms that can regulate gene activity without directly affecting the DNA
sequence [2]. Epigenetic mechanisms include histone modifications, DNA methylation,
and microRNAs (miRNAs/miRs). Histone modifications affect the chromatin structure
and function, facilitating or inhibiting the accessibility of the transcription machinery [3].
DNA methylation and miRNAs, similarly, silence specific gene expression. While DNA
methylation provides stable gene silencing at the transcriptional level, miRNAs inhibit gene
expression at the post-transcriptional level. Both DNA methylation and miRNA expression
have been found to be dysregulated in several human diseases including cancers [4,5].
Intriguingly, in the past several years, the mutual regulation between these two epigenetic
mechanisms has been increasingly recognized [6], uncovering a new level of complexity in
the regulation of gene expression in cancer. These two mechanisms for epigenetic regulation
can impact distinct biological processes, including metastasis, apoptosis, cell proliferation,
and induction of senescence. Here we review the crosstalk and mutual regulation between
DNA methylation and miRNAs and how their dysregulation is involved in human cancers.

2. Mechanisms of DNA Methylation

DNA methylation is a modification that results in the transcriptional silencing of
gene expression, transposon silencing, and X chromosome inactivation while maintaining
genomic stability. DNA methylation occurs either as maintenance during DNA replication
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or de novo at CpG regions of the chromatin. In mammals, the three main methyltransferases
involved in DNA methylation are DNMT1, DNMT3A, and DNMT3B [7]. DNMT1 maintains
DNA methylation of the daughter strand during DNA replication [8,9]. DNMT1 is normally
present at an auto-inhibitory state where the replication foci targeting sequence (RFTS)
domain is buried into its methyltransferase domain. During DNA replication, Ubiquitin-
like containing PHD and RING finger domains 1 (UHRF1) binds to hemi-methylated CpG
dinucleotides at the replication fork [10] and to the histone H3 modification H3K9me2 and
H3K9me3 [11]. UHRF1 ubiquitinates the H3 tail and then recruits DNMT1, releasing the
RFTS domain from the active site of DNMT1 [12]. DNMT1 methylates the daughter strand
of the replicating DNA [12].

DNMT3A and DNMT3B catalyze de novo DNA methylation at various CpG locations
throughout the genome [13,14]. The site of de novo DNA methylation is dictated by
the histone H3 methylation status. The ATRX-DNMT3A-DNMT3L (ADD) domain of
DNMT3BA and DNMT3B acts as an auto-inhibitory domain of methylation activity; the
ADD domain binding abolishes the inhibition to unmethylated H3K4 [15,16]. The Pro-
Trp-Trp-Pro (PWWP) domain of DNMT3BA and DNMT3B binds to histones H3K36me2
and H3K36me3 [17]. CpG-rich promoters of actively transcribed genes are modified with
H3K4me3, which repels ADD domain binding and prevents DNA methylation at these
promoters [15].

Additionally, DNA methylation can be removed by Ten-eleven Translocation (TET)
enzymes, TET1, TET2, and TET3 [18]. The TET enzymes oxidize 5mC down to
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) [19].
The oxidized forms of 5mC are not recognized by the methylation maintenance mechanism
and are subsequently removed after DNA replication [20].

Rearrangement of DNA methylation patterns occurs during embryonic develop-
ment [21] and stem cell differentiation [22], particularly in neuronal development [23].
Specific methylation patterns vary between cell types, and germline-specific genes are
silenced through DNA methylation in somatic cells [24]. Disruptions of DNA methylation
patterns are a hallmark of cancer, where demethylation of oncogenes and hypermethylation
of tumor suppressors promote the cancerous phenotype [4]. In particular, the methylation
patterns of miRNAs are dysregulated in various cancers. A representation of the DNA
methylation mechanism is schematized in Figure 1.
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recruits DMNT1 to methylate the daughter strand. (B) De novo methylation occurs at CpG locations
throughout the genome. The histone H3 modification H3K36me3 inhibits the methylation activity
of DNMT2/3. Unmethylated H3K36 recruits DNMT3A/B to the CpG sites, causing its hyperme-
thylation. (C) miRNA biogenesis starts in the nucleus where the pri-miRNA is synthesized and
then cropped by Drosha/DGCR8, converting into pre-miRNA. Exportin 5 mediates the pre-miRNA
transport from the nucleus to the cytoplasm where it is processed by Dicer, producing a mature
miRNA duplex of 22 nucleotides. Mature miRNA is loaded in the RISC complex that unwinds the
duplex. The passenger strand is expulsed, while the guide strand is retained in the RISC complex
that coordinates the interaction between the miRNA and its mRNA target. Created with BioRender,
https://www.biorender.com/ (accessed on 8 May 2023).

3. miRNA: Biogenesis and Function

Over the last three decades, miRNAs have been the most studied non-coding RNAs,
given their integral role in fundamental biological processes [25]. They are 18–24 nu-
cleotides (nt) in length and regulate gene expression silencing of mRNA(s) at the post-
transcriptional level. miRNAs have a biogenesis pathway distinct from those of long
non-coding (lncRNA) and use common cellular RNA transcription and maturation mech-
anisms [26,27]. The transcriptional units that generate miRNAs are isolated or clustered
and localized to coding gene, non-coding gene, and intergenic regions [26]. RNA poly-
merase II transcribes all canonical miRNAs in Metazoa, creating a primary transcript called
“pri-miRNA” that is >1000 nts long. Structurally, this transcript has at least one loop to
form a hairpin essential for the Microprocessor complex. This is a multiprotein complex
formed by the endonuclease Drosha and two molecules of DiGeorge syndrome critical
region 8 protein (DGCR8), a double-stranded RNA binding protein [28–30] that cuts the
pri-miRNA into a pre-miRNA (~70 nts). Note that all of the canonical pri-miRNAs have a
5′ cap but not a Poly(A) tail because processing by Microprocessor can be activated in a
“non-canonical” manner [31]. At this point, the pre-miRNA, after binding the Exportin5
(EXP5) and RAN-GTP complex, migrates into the cytosol through a nuclear pore complex.
After GTP hydrolysis, the EXP5/RAN complex is disassembled, and the pre-miRNA is
released [32]. The pre-miRNA is further processed in the cytosol by DICER, another RNAse
III endonuclease in the miRNA duplex, which contains the mature miRNA paired to its
passenger strand [33]. Dicer’s partner protein, called TRBP in mammals, is important
but not essential for miRNA maturation. This duplex is loaded with Argonaute proteins
(AGOs) and chaperone proteins to form the silencing complex called RNA-Induced Si-
lencing Complex (RISC). The duplex unwinds, and the passenger strand is expulsed; at
this point, RISC is ready to carry out its function [34]. The loaded miRNA strand func-
tions as a “guide” by base pairing with its target mRNAs, thereby inducing translational
repression, mRNA deadenylation, and mRNA decay [35]. Usually, the miRNA-binding site
is located in the 3′ untranslated region (3′UTR) of the mRNA, but there is evidence that
miRNAs can also bind to the coding sequence (CDS) of target mRNA and 5′UTR [36,37].
The “seed region” of miRNAs spans between 2 and 7 nts and is crucial for recognizing
target mRNAs [38]. It has been demonstrated that a single mismatch in the seed region can
compromise the binding and targeting of the miRNA to mRNA [39]. The mRNA target
sequences are termed miRNA response elements (MREs). There is usually a lack of a
fully complementary miRNA:MRE interaction in animals, given the presence of at least
central mismatches [40,41]. The miRISC complex summons GW182 family proteins that
are essential as a scaffold for other effector proteins, including the poly(A)-deadenylase
complexes PAN2-PAN3, CCR4-NOT, and decapping protein 2 (DCP2) [40,42]. The deadeny-
lated and decapped mRNA target is then 5′-3′ degraded by exoribonuclease 1 (XRN1) [43].
Dysregulation of miRNA expression is correlated with many human diseases, including
cancer [44,45]. miRNAs may act as either oncogenes or tumor suppressors under certain
conditions, and their dysregulation has been shown to affect all the hallmarks of cancer
(e.g., activation of proliferative signaling, invasion, and metastasis or inducing angiogenesis
and drug resistance) [46]. A representation of miRNA biogenesis is reported in Figure 1.

https://www.biorender.com/
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4. Crosstalk between miRNA and DNA Methylation in Human Cancer

It is increasingly recognized that miRNA and DNA methylation can synergistically
regulate transcription [47]. Increased interest in the crosstalk between miRNA expression
and DNA methylation has fueled further investigations into how these regulatory mech-
anisms interact and impact each other. Such studies have uncovered how miRNAs can
regulate DNA methylation by altering the expression of DNA methylases or their accessory
proteins. Conversely, the methylation of the miRNAs’ promoter regions affects miRNAs’
expression [6,48] (Figure 2).

Genes 2023, 14, x FOR PEER REVIEW 4 of 34 
 

 

metastasis or inducing angiogenesis and drug resistance) [46]. A representation of miRNA 
biogenesis is reported in Figure 1. 

4. Crosstalk between miRNA and DNA Methylation in Human Cancer 
It is increasingly recognized that miRNA and DNA methylation can synergistically 

regulate transcription [47]. Increased interest in the crosstalk between miRNA expression 
and DNA methylation has fueled further investigations into how these regulatory mech-
anisms interact and impact each other. Such studies have uncovered how miRNAs can 
regulate DNA methylation by altering the expression of DNA methylases or their acces-
sory proteins. Conversely, the methylation of the miRNAs’ promoter regions affects miR-
NAs’ expression [6,48] (Figure 2). 

 
Figure 2. Mechanism of mutual regulation between miRNA and DNA methylation. Created with 
BioRender, h ps://www.biorender.com/ (accessed on 8 May 2023). 

 Epigenetic control of miRNA expression (Figure 2, left) 
Methylation of the miRNA promoter region regulates its expression. Several studies 

have shown that miRNA expression is reduced in response to promoter hypermethylation 
and has been observed in several human diseases [49]. Additionally, DNA methylation 
can indirectly impact miRNA expression through inhibition of the transcription of 
miRNA processing-related enzymes such as Dicer and Drosha [50]. 
 miRNA as regulators of DNA methylation (Figure 2, right) 

MiRNAs modulate DNA methylation and interfere with the epigenetic machinery by 
altering the expression of DNA methylases or their accessory proteins. For example, the 
miR-29 family is known to target DNA methylases. Fabbri et al. determined that miR-29s 
have complementarity with the 3′UTRs of DNMT3A and DNMT3B and that their expres-
sion is inversely correlated with the expression of these enzymes in lung cancer [51]. 

The interaction between miRNA and DNA methylation has been extensively re-
viewed in the past years and has been observed in cancer and other pathologies [6,52–54]. 
Tao et al. recently reviewed how the interaction between miRNA and DNA methylation 
is determinant in atherosclerosis processes such as endothelial dysfunction, foam cell for-
mation, and vascular smooth muscle cell proliferation [55]. In addition, in Alzheimer’s 

Figure 2. Mechanism of mutual regulation between miRNA and DNA methylation. Created with
BioRender, https://www.biorender.com/ (accessed on 8 May 2023).

• Epigenetic control of miRNA expression (Figure 2, left)

Methylation of the miRNA promoter region regulates its expression. Several studies
have shown that miRNA expression is reduced in response to promoter hypermethylation
and has been observed in several human diseases [49]. Additionally, DNA methylation
can indirectly impact miRNA expression through inhibition of the transcription of miRNA
processing-related enzymes such as Dicer and Drosha [50].

• miRNA as regulators of DNA methylation (Figure 2, right)

MiRNAs modulate DNA methylation and interfere with the epigenetic machinery
by altering the expression of DNA methylases or their accessory proteins. For example,
the miR-29 family is known to target DNA methylases. Fabbri et al. determined that
miR-29s have complementarity with the 3′UTRs of DNMT3A and DNMT3B and that their
expression is inversely correlated with the expression of these enzymes in lung cancer [51].

The interaction between miRNA and DNA methylation has been extensively reviewed
in the past years and has been observed in cancer and other pathologies [6,52–54]. Tao et al.
recently reviewed how the interaction between miRNA and DNA methylation is determi-
nant in atherosclerosis processes such as endothelial dysfunction, foam cell formation, and
vascular smooth muscle cell proliferation [55]. In addition, in Alzheimer’s disease, miR-
34a/b/c, miR-107, miR-124, miR125b, and miR-137, linked to the pathology progression,
are epigenetically regulated [56]. In diabetic nephropathy, the mutual regulation between
miRNA and the methylation machinery has been extensively reviewed by Sankrityayan

https://www.biorender.com/
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et al. [57]. MiRNAs are also important regulators of DNA methylation in cardiovascular
disease [58,59] and autoimmune diseases [60]. In systemic lupus erythematosus (SLE), the
overexpression of miR-21 and miR-148a in CD4+ T cells contributes to DNA hypomethyla-
tion by repressing DNMT1 [61]. In rheumatoid arthritis, DNA methylation downregulates
miR-34a* expression, promoting apoptosis resistance [62].

In the past years, many studies have focused on the mutual regulation between DNA
methylation and miRNAs in cancer. In this section, we will explore this interaction in
various human cancers (Figure 3), focusing on miRNAs that regulate DNA methylation
(Table 1) and the effects of DNA methylation on miRNA expression (Table 2).
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Table 1. microRNAs that regulate DNA methylation in cancer.

Cancer miRNA Effect on DNA
Methylation Functional Consequence Ref

Brain

miR-152 DNMT1
Negatively affects cell invasiveness. miR-152 is upregulated

when treating neuroblastoma with ATRA and can be a possible
marker for treatment effectiveness.

[63]

miR-148a DNMT1 miR-148a directly targets DNMT1 in IDHMT gliomas, thereby
altering the DNA methylation status of other miRNAs. [47]

miR-152-3p DNMT1
miR-152-3p is proposed to target DNMT1, which targets NF2.

DNMT1 methylates and downregulates miR-152-3p.
Overexpression of both NF2 and miR-152-3p induces apoptosis.

[64]

Breast

miR-646 Targets TET1

It affects DNA demethylation and leads to a downregulation of
IRX1, which normally suppresses HIST2H2BE. This promotes

malignancy and tumorigenesis in breast cancer’s invasive ductal
carcinoma subtype.

[65]

miR-200b Targets DNMT3A
A potential feedback loop exists where miR-200b targets

DNMT3A yet is hypermethylated through
MYC-recruited DNMT3A.

[66]

Lung

miR-708-5p Regulates DNMT3a
Upregulation of miR-708-5p is associated with decreased

DNMT3a protein levels, leading to elevated levels of CDH1, a
metastasis suppressor.

[67]

miR-29b Regulates DNMT1,
3a, and 3b

High miR-29b levels lead to reduced levels of DNMTs 1, 3a, and
3b. Subsequently, PTEN’s promoter is hypomethylated and

re-expressed, resulting in tumor growth delay.
[68]

miR-101 Regulates DNMT3a
Overexpression of miR-101 is associated with reduced DNMT3a

levels and global DNA methylation and, ultimately, the
re-expression of CDH1, a tumor suppressor.

[69]

miR-185-3p Regulates MeCP2

Reduced MeCP2-WT luciferase activity was reported after
ectopic miR-185-3p expression, suggesting that miR-185-3p

negatively regulates MeCP2, a methylation-related protein, in
lung cancer.

[70]

miR-200 family Regulates MBD2

A positive correlation between MBD2 and the miR-200 family in
lung adenocarcinoma clinical samples has been reported and

suggests miR-200 as a potential target for modulating MBD2, a
protein involved in the methylation process.

[71]

Ovarian
miR-30a/c-5p DNMT1 Directly targets DNMT1 and negatively regulates cisplatin

resistance and EMT. [72]

miR-145 DNMT3A Indirectly inhibits DNMT3A by targeting c-myc. [73]

Prostate

miR-34b DNMT1 and
DNMT3b

Reduces DNMT1 and DNMT3b, decreases cell proliferation,
inhibits EMT, and induces apoptosis in PC3 and LNCaP cells. [74]

miR-145 DNMT3b Targets DNMT3b. Its overexpression sensitizes PC3 cells
to irradiation. [75]

Leukemia miR-29b DNMT1, DNMT3A,
DNMT3B

Directly targets DNMT3A and DNMT3B and indirectly
downregulates DNMT1 by targeting its transactivator SP1. [76]

Hepatocellular miR-29c-3p DNMT-3B Leads to the methylation of LATS1, which inactivates the Hippo
signaling pathway. [77]
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Table 2. DNA methylation regulating miRNAs in cancer.

Cancer miRNA Mechanism Functional Consequence Ref

Brain

miR-340 Demethylated with ATRA
treatment

Targets SOX2 transcription factor, which is responsible
for maintaining stem cells undifferentiated. [78]

miR-29b Hypermethylation
Overexpression of DCST1-AS1 induces the methylation

and subsequent downregulation of miR-29b, which
normally inhibits cell proliferation.

[79]

miR-155 Hypermethylation Targets FAM133A, a negative regulator of cell
invasion/migration, by regulating MMP14. [80]

miR-204-5p Hypermethylation Targets Ezrin and inhibits invasion/migration. [81]

miR-148a Hypermethylated
DNMT1 hypermethylates miR-148a, which itself

directly targets DNMT1. The suppression of miR-148a
is linked to DNA methylation changes.

[47]

miR-296-5p Hypermethylation
Inhibits stem cell self-renewal by targeting HMGA1, a
chromatin remodeling protein that regulates the stem

cell transcription factor SOX2.
[82]

miR-338-5p Hypermethylation Targets the protooncogene EST-1, which is associated
with proliferation and invasion of cancer cells. [83]

miR-204 Hypermethylation
Targets SOX4 and EphB2 and reduces cell invasion and

tumorigenesis. It is downregulated in glioblastoma
by hypermethylation.

[84]

miR-20a Demethylated DNMT1 methylates and downregulates miR-20a, which
normally targets LRIG1; this leads to chemosensitivity. [85]

Leukemia

miR-124a Hypermethylation
miR-124a is hypermethylated and downregulated in
ALL, leading to cell growth through the CDK6-Rb

oncogenic pathway.
[86]

miR-708 Hypermethylation miR-708 targets IKKβ and regulates the
NF-κB pathway. [87]

miR-181a/b, miR-107,
miR-424 Hypermethylation Target 3′UTR of the oncogene PLAG1. [88]

miR-146a Hypermethylation Represses NF-KB signaling. [89]

Myeloma
miR-1258 Hypermethylation Targets PDL1. [90]

miR-375 Hypermethylation Represses the expression of PDPK1, IGF1R, and JAK2
in HMCLs. [91]

Breast

miR-9 family

Increased H3K27me3 and
H3K9me2 along with

hypermethylation of the
miR-9-3 promoter CpG island

Results in a downregulation of miR-9-3, which is
involved in p53-related apoptotic pathways. [92]

Hypermethylation
Function was not assessed, but there is a statistical
significance in miR-9-1 methylation status in breast

carcinoma vs benign tumors.
[93]

Mechanical compression
induces DNMT3A-mediated

hypermethylation of promoter

Results in a downregulation of miR-9 and an
upregulation of its targets (LAMC2, ITGA6, EIF4E),

leading to the production of vascular endothelial
growth factors.

[94]

miR-10b* (Note:
* refers to an old

miRNA
nomenclature)

Hypermethylation of two CpG
islands upstream of
miR-10b/10b* locus

Results in a downregulation of miR-10b*, which was
demonstrated to inhibit cell proliferation in vitro and

tumor growth in vivo. The targets of miR-10b * include
BUB1, PLK1, and CCNA2.

[95]

miR-34c Hypermethylation

Reduces miR-34c in breast tumor-initiating cells, which
normally targets Notch4, reducing migratory ability

and EMT. The hypermethylation of the miR-34c
promoter prevents the transcription factor Sp1 from

binding to its regulatory element.

[96]

miR-124-2 Hypomethylation
Overexpresses miR-124-2, particularly in young women
with breast cancer, and is associated with poor survival

in patients.
[97]
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Table 2. Cont.

Cancer miRNA Mechanism Functional Consequence Ref

miR-125b Hypermethylation
Reduces miR-125b, which normally targets ETS1,

promoting cell cycle arrest and suppression of
proliferation and tumorigenesis.

[98]

miR-133a-3p Hypermethylation

Reduces tumor suppressor miR-133a-3p, leading to an
increase in its target MAML1, thereby promoting

metastasis, proliferation, invasion, and stemness. A
feedback loop exists where MAML1 upregulates

DNMT3A, leading to hypermethylation of the promoter
of miR-133a-3p.

[99]

miR-195
Hypermethylation of select

upstream CpG islands
to promoter

Leads to a downregulation of miR-195 and upregulation
of its targets Raf-1 and Ccnd1. miR-195 normally

functions to inhibit colony formation and invasion.
[100]

miR-196a-2
Hypermethylation of CpG

island upstream of the
miR-196a-2 precursor

The effect of CpG island hypermethylation on mature
miR-196a-2 levels was not confirmed, but the increased

methylation of this site is correlated with increased
breast cancer risk.

[101]

miR-200 family
members

Hypermethylation Reduces miR-200c and miR-141 levels, thereby leading
to stem-like/mesenchymal phenotype. [102]

Hypermethylation of two CpG
cites denoted “P1” and “P2”

Reduces miR-200b. P1 hypermethylation is associated
with metastatic lymph node samples, while P2

hypermethylation is associated with estrogen or
progesterone receptor loss, and its hypomethylation is

associated with HER2 and androgen
receptor expression.

[103]

MYC recruits DNMT3A and
induces hypermethylation of

CpG island to promoter

Reduces miR-200b in triple negative breast cancer,
leading to EMT. miR-200b was demonstrated to target

DNMT3A, suggesting a regulatory feedback loop.
[66]

miR-205

Hypermethylation of CpG
sites in the promoter region

since DMNT recruitment is no
longer inhibited by Mel-18

Leads to a downregulation of miR-205 and increased
level of its targets ZEB1 and ZEB2, which promote

epithelial-to-mesenchymal transition.
[104]

miR-216a
Limonin mediates

hypomethylation of CpG
island in its promoter

Increases levels of miR-216a, which targets WNT3A,
inactivating the Wnt/β-catenin signaling cascade and

attenuating stemness and adriamycin resistance.
[105]

miR-335

Genetic copy loss at the
miR-335 locus along with
hypermethylation of CpG
island in the promoter of

miR-335/Mest

Reduces levels of the tumor suppressor miR-335, which
has a role in suppressing tumor reinitiation, invasion,

and metastasis.
[106]

miR-362-3p Hypermethylation of CLCN5
promoter

Leads to a reduction in tumor suppressive miR-362-3p,
which targets p130Cas, a regulator of receptor tyrosine
kinase signaling, and normally suppresses cell viability,

migration, invasiveness, and tumor growth.

[107]

miR-375 Hypomethylation
Contributes to an upregulation of miR-375, which

targets RASD1 and leads to enhanced ERα signaling
and cell proliferation.

[108]

miR-497 DNMT-mediated methylation
of CpG islands to promoter

Leads to a downregulation of miR-497 and
upregulation of its targets Raf-1, Ccnd1, GPRC5A, and

MUC1. miR-497 normally inhibits colony formation,
invasion, and malignancy and promotes apoptosis. The

repression of miR-497 is linked to chemotherapy
resistance and metastases.

[100,109,
110]

miR-663 Hypomethylation of CpG sites
Leads to an upregulation of miR-663, which targets

HSPG2 in multidrug-resistant breast cancer cell lines
and leads to chemoresistance.

[111]

miR-892b Hypermethylation

Leads to a reduction in miR-892b, which normally
suppresses several components of the NFκB cascade,

including TRAF, TAB3, and TAK1, and decreases tumor
growth, metastasis, and angiogenesis in breast

cancer cells.

[112]
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Table 2. Cont.

Cancer miRNA Mechanism Functional Consequence Ref

Colorectal

miR-342 Methylation of the
EVL/miR-342 locus

Resulted in a downregulation of miR-342, potentially
inducing anti-apoptotic pathways. [113]

miR-34b/c Hypermethylation of
neighboring CpG island

Resulted in the epigenetic silencing of the tumor
suppressors miR-34b/c, whose functions include

suppressing colony formation.
[114,115]

miR-34a
Increased methylation of CpG

islands in the promoter and
transcribed region

Is elevated in primary tumors with liver metastases.
When combined with elevated c-Met and β-catenin

expression, it has potential prognostic value for
distant metastasis.

[116]

miR-1247 Hypermethylation of
promoter regions

Leads to decreased levels of miR-1247 in
hypermethylated CRC cell lines and tissue specimens,

leading to an upregulation of its target MYCBP2.
Introduction of miR-1247 impairs cell viability, induces

apoptosis, and inhibits cell motility in vitro while
reducing tumor mass and size in vivo.

[117]

miR-484 Hypermethylation of CpG on
the island promoter

Is observed in CRC with microsatellite instability,
leading to lower levels of miR-484, which functions as a

tumor suppressor and targets CD137L, arresting
IL-8 production.

[118]

miR-126 Methylation of its host
gene EGFL7

Leads to the silencing of miR-126, which targets VEGF
and acts as a tumor suppressor by inhibiting cell
growth, invasion, migration, and angiogenesis.

[119]

Esophageal

miR-652-5p Hypermethylation
Reduces the expression of exosomal miR-652-5p, which
targets PARG and VEGF, suppressing cell growth and

metastasis in vitro and in vivo.
[120]

miR-10b-3p
Hypomethylation of CpG

islands upstream to the
miR-10-3p gene

Increases the expression of miR-10b-3p, which targets
FOXO3, inducing cell growth and metastasis in vitro

and in vivo.
[121]

miR-128 Hypermethylation

In response to zinc deficiency, there are increased levels
of DNMT1 and DNMT3B. The methylation of miR-128

leads to an upregulation of its target: the
pro-inflammatory COX-2.

[122]

miR-126-3p Hypermethylation of its host
gene EGFL7

Resulted in a downregulation of miR-126-3p, which
suppresses proliferation and migration. It targets

ADAM9 and subsequently reduces the downstream
signaling of the EGFR-AKT pathway.

[123]

miR-216a Hypermethylation
Resulted in a downregulation of miR-216a, which

targets HMGB3 and decreases cell survival through the
Wnt/β-catenin pathway.

[124]

miR-124-3p Hypermethylation of miR-124
loci

Reduces levels of miR-124, which inhibits proliferation,
migration, and invasion by targeting EZH2. [125]

miR-149 Hypermethylation
Leads to low expression of miR-149, which targets
RNF2, impacting the Wnt/β-catenin pathway and

suppressing growth and metastases.
[126]

miR-217

Cigarette smoke condensate
induces DNMT2b-dependent

hypermethylation of the
miR-217 genomic locus.

Leads to reduced levels of miR-217, which targets KLK7
and decreases proliferation and invasion. [127]

Pancreatic

miR-192 Hypermethylation

Low levels of miR-192 promote EMT, while its
overexpression inhibits cell migration and invasion.

Specifically, miR-192 affects the expression
of SERPINE1.

[128]

miR-615-5p Hypermethylation

miR-615-5p reduces cell proliferation, migration,
invasion, and tumor growth in vivo. It directly targets
IGF2, which is responsible for the cancerous phenotype.

Rescue of IGF2 expression impairs the tumor
suppressive activity of miR-615-5p.

[129]
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Table 2. Cont.

Cancer miRNA Mechanism Functional Consequence Ref

miR-142-3p Hypermethylation

DNMT1 is upregulated with p53 mutant pancreatic
ductal adenocarcinoma and methylates miR-142-3p in a
p53 mutation-dependent manner. The overexpression

of miR-142-3p inhibits cell invasion in vitro.

[130]

miR-148a Hypermethylation

miR-148a is methylated in pancreatic cancer.
Restoration of miR-148 downregulates the

Wnt/β-catenin pathway and inhibits
mesenchymal-to-epithelial transition.

[131]

miR-200a/b Hypomethylation miR-200 is primarily hypomethylated in pancreatic
cancers, which contributes to its upregulation. [132]

miR-34a Hypermethylation
miR-34a is methylated by DNMT1, leading to the

activation of the Notch pathway, which promotes drug
resistance.

[133]

miR-124 family
(124-1/2/3) Hypermethylation

miR-124 inhibits cell proliferation and metastasis by
targeting Rac1, a pro-tumor enhancer that activates the

MKK4-JNK-c-Jun pathway.
[134]

Gastric

miR-1271 Hypermethylation

Leads to lowered levels of miR-1271, which targets
TEAD4, potentially leading to an enrichment of the YAP

signature and represses MAP2K1 (MEK1), thereby
downregulating the ERK/MAPK pathway.

[135]

miR-9 Hypermethylation of
promoter-proximal CpG island

Results in a downregulation of miR-9, which is
associated with the clinicopathological features of

tumor size and lymph node metastasis.
[136]

miR-196-5p Hypomethylation of HOXA10
promoter

Is associated with increased levels of HOXA10 and
miR-196-5p, thereby enhancing proliferation and

invasion. TFF1 reconstitution represses HOXA10 and
miR-196-5p by inducing methylation of HOXA10.

[137]

miR-7-5p Hypermethylation

Partially mediates the lower expression of miR-7-5p in
stem cells. When cultured with methionine-depleted

medium, there is less methylation of the promoter and
greater expression of miR-7-5p, which regulates colony
formation and cell invasion by targeting Smo and Hes1.

[138]

miR-33b Hypermethylation
Downregulates miR-33b, which suppresses

proliferation, migration, and invasion, possibly by
regulating c-Myc.

[139]

miR-27b-3p Hypermethylation Leads to decreased miR-27b-3p, which targets GSTP1
and inhibits proliferation, migration, and invasion. [140]

miR-335 Hypermethylation

Leads to decreased miR-335, which targets CRKL and
represses proliferation and migration while inducing

apoptosis and cell cycle arrest at G0/G1 phase. Another
potential target of miR-335 is RASA1, which has

reported roles in cell invasion and metastasis.

[141,142]

miR-495-3p Hypermethylation

Downregulates miR-495-3p, which regulates ten
oncogenic epigenetic modifiers of HDAC2, KDM1A,
KDM2B, KDM5B, CREBBP, EP300, MYST3, SMYD3,

DNMT1, and MTA1.

[143]

Lung

miR-886-3p Hypermethylation
Loss of miR-886-3p and consequently reduced levels of

PLK1 and TGF-β1, thereby inhibiting cell invasion,
migration, and proliferation.

[144]

miR-34b/c Hypermethylation

Results in lower levels of miR-34b/c. Functional
analysis of miR-34b/c revealed that ectopic expression

of the miR-34 family suppressed cell proliferation,
invasion, and migration in SCLC cell lines.

[145]

miR-224 Hypomethylation

miR-224 promoter hypomethylation status was linked
to high levels of miR-224, promoting cell proliferation

and migration by targeting TNFAIP1 and SMAD4,
genes known for their respective proapoptotic and

anti-migratory functions in lung cancer.

[146]
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Table 2. Cont.

Cancer miRNA Mechanism Functional Consequence Ref

Let-7a-3 Hypomethylation

Re-expression of Let-7a-3 following DAC treatment
revealed the involvement of DNA hypomethylation in

the regulation of let-7a-3 in lung cancer. Ectopic
expression of let-7a-3 was associated with

anchorage-independent cell growth.

[147]

miR-135b Hypomethylation

Upregulation of miR-135b was observed in highly
invasive CLI-5 lung cancer cells. miR-135b promotes

cell invasion, tumor growth, and metastasis by
targeting LZTS1 and some players of the Hippo

signaling pathway.

[148]

miR-486-5p Hypermethylation of
ANK1 promoter

No functional studies were performed, but an inverse
correlation between the hypermethylated ANK1

promoter and intronic miR-486-5p expression levels in
NSCLC cell lines was reported.

[149]

miR-126 Hypermethylation of
EGFL7 promoter

Reduces miR-126 levels, which impedes cell invasion in
NSCLC by targeting Crk, a key regulator of cell growth,

motility, differentiation, and adhesion.
[150,151]

Cervical

miR-124 Hypermethylation Reduces levels of mature miR-124, which has tumor
suppressor activity in cervical cancer. [152]

miR-375 and
miR-196a-1 Hypermethylation Downregulation of miR-375 and miR-196a-1 inhibits the

proliferation of SiHa cells. [153]

miR-181a2/181b2 Hypermethylation
Targets the PIK3R3/Akt/FoxO signaling, and its
reduction is associated with poor prognosis and

advanced-stage cervical cancer.
[154]

Ovarian
miR-30a/c-5p Hypermethylation Inhibits cisplatin resistance and EMT by targeting Snail. [72]

miR-133b Hypermethylation Targets PKM2, inhibiting the Warburg effect. [73]

Endometrial

miR-152 Hypermethylation Targets E2F3, MET, and Rictor. [155]

miR-137 Hypermethylation Targets EZH2 and LSD1 and inhibits tumor growth. [156]

miR-129-2 Hypermethylation Targets the oncogene SOX4. [157]

Prostate

miR-152-3p Hypermethylation Suppresses cell viability and invasion potential. [158]

miR-130a Hypermethylation Inhibits cell viability, increased apoptosis, and reduced
invasive potential of prostate cancer cell lines. [159]

miR-34b Hypermethylation Decreases cell proliferation, inhibits EMT, and induces
apoptosis in PC3 and LNCaP cells. [74]

miR-145 Hypermethylation Sensitizes PC3 cells to irradiation. [75]

Hepatocellular

miR-148a Hypermethylation Reduces cell proliferation and cell cycle progression. [160]

miR-142 Hypermethylation Targets TGF-β, reducing cell viability, proliferation,
and angiogenesis. [161]

C19MC Hypomethylation Observed in high T-stage HCC tumors with high
invasive ability. [162]

4.1. Lung Cancer

MiRNAs play an important role in lung cancer initiation and progression as they can
act as oncogenes or tumor-suppressive genes [163]. As aforementioned, miRNA dysregula-
tion in various human cancers, including lung cancer, has been linked to aberrant DNA
methylation, a hallmark of human malignancies [164–166]. Thus, there is a need to explore
the relationship between these epigenetic mechanisms to improve our understanding of
lung tumorigenesis.

Recent publications have established that miRNAs can regulate DNA methylation di-
rectly or indirectly by modulating methylation regulators such as DNA methyltransferases
(DNMTs) in lung cancer [76].

Liu et al. linked the ectopic expression of miR-708-5p with lowered luciferase activity
in non-small-cell lung cancer (NSCLC) cells transduced with the DNMT3a wild-type
coding DNA sequence (CDS) pGL3 vectors compared with cells transduced with mutated
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DNMT3a CDS, highlighting miR-708-5p’s direct influence on DNMT3a [67]. Investigators
also found that enforced miR-708-5p expression decreased DNMT3a protein levels and
consequently promoted CDH1 expression, a metastasis suppressor [67]. Interestingly, Li
and colleagues demonstrated that radiation-mediated stimulation of miR-29b leads to
reduced levels of DNMTs 1, 3a, and 3b and, subsequently, promoter hypomethylation
and re-expression of PTEN [68]. MiR-101 is another miRNA that targets DNMT3a in
lung cancer; its overexpression is associated with reduced DNMT3a levels, global DNA
methylation, and ultimately, the re-expression of CDH1 [69]. DNMT3a has been identified
as a target of the three miRNAs mentioned above, indicating that the DNMT3a-dependent
DNA methylation is not regulated by a single miRNA but cooperatively by these three
miRNAs and other unidentified miRNAs.

MiRNAs are also known to regulate DNA methylation by targeting important
methylation-related proteins (MBPs), such as methyl CpG binding protein 2 (MeCP2),
in various cancers, but knowledge of this epigenetic modulation of DNA methylation
in lung cancer remains elusive [6]. Han and colleagues reported reduced MeCP2-WT
luciferase activity after miR-185-3p transfection, suggesting that miR-185-3p negatively
regulates MeCP2 in lung cancer [70]. Mechanistic studies investigating the epithelial-to-
mesenchymal transition (EMT) suppressive function of MBD2, another crucial protein
involved in the methylation process, demonstrated a positive correlation between MBD2
and the miR-200 family in lung adenocarcinoma [71]. This study shows that miR-200 can be
targeted to regulate MBD2 in lung cancer [71]. These two studies show that miRNAs play
an important role in regulating DNA methylation by targeting crucial proteins involved in
the methylation process, but they also highlight the need for more studies to understand
this epigenetic mechanism.

Hypermethylation of CpG islands of miRNA promoters is one of the most common
epigenetic silencing mechanisms of tumor-suppressive miRNAs in lung cancer [167]. MiR-
34b/c expression was restored after 5′-aza-DCR treatment in methylated small-cell lung
cancer (SCLC) cell lines, potentially linking hypermethylation to the loss of miR-34b/c
expression in SCLC [145]. Further functional analysis of miR-34b/c revealed that ectopic
expression of the miR-34 family suppressed cell proliferation, invasion, and migration
in SCLC cell lines [145]. Hypermethylation of miR-886-3p’s promoter suppresses its ex-
pression, leading to the downregulation of PLK1 and TGF-β1, inhibiting cell invasion,
migration, and proliferation [144].

Over the past decade, researchers have also shown that miRNAs located in intronic
regions of coding transcription units are often coordinately transcribed with their genes
resulting in their co-regulation by DNA methylation [168]. Tessema and colleagues, uti-
lizing combined bisulfite restriction analysis (COBRA), reported an inverse correlation
between the hypermethylated ANK1 promoter and intronic miR-486-5p expression levels
in NSCLC cell lines [149]. Qualitative analysis using methylation-specific PCR revealed
that ANK1B promoter hypermethylation could discriminate lung tumors by histology
and smoking history. They found that lung adenocarcinomas (51%) had a higher ANK1B
hypermethylation prevalence compared with squamous cell carcinoma (21%), and a similar
trend was seen in cancer patients who were smokers (57%) compared with non-smokers
(37%) [149]. This suggests the potential for ANK1B methylation as a diagnostic biomarker
in lung cancer. DNA methylation of miR-126’s host gene, EGFL7, is linked to the repression
of miR-126, which impedes cell invasion in NSCLC by targeting Crk, a key regulator of cell
growth, motility, differentiation, and adhesion [150,151].

Oncogenic miRs, or “Onco-miRs,” are often upregulated in lung cancer, and hy-
pomethylation is one of the processes implicated in their regulation [147,169]. Croce et al.
demonstrated that miR-224 was significantly hypomethylated in NSCLC cell lines, and a
positive correlation existed between high miR-224 levels and its promoter’s hypomethy-
lation [146]. They also found that miR-224 promoted cell proliferation and migration
by targeting TNFAIP1 and SMAD4 that are known for their respective proapoptotic and
anti-migratory functions in lung cancer [146]. Let-7a-3 was reported to be significantly
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hypomethylated in lung adenocarcinomas compared with matched normal lung tissue
samples [147]. Activation of let-7a-3 expression in vitro in NSCLC cell lines following 5-
aza-2’-deoxycytidine (DAC) treatment revealed the involvement of DNA hypomethylation
in the regulation of let-7a-3 in lung cancer [147]. Last, the investigators found that ectopic
expression of let-7a-3 promoted anchorage-independent cell growth, thereby confirming
this miR’s oncogenic function in lung cancer [147]. Upregulation of miR-135b in highly
invasive CLI-5 lung cancer cells is observed due to promoter hypomethylation [148]. MiR-
135b promotes cell invasion, tumor growth, and metastasis by targeting LZTS1 and some
players of the Hippo signaling pathway [148].

4.2. Breast Cancer

Breast cancer (BC) is the leading cause of new cancer cases among American women [170].
The disease is histologically complex and can be characterized as hormone receptor-positive
if the estrogen receptor (ER) and/or the progesterone receptor (PR) are expressed; these
receptors and the human epidermal growth factor receptor 2 (HER2) are absent in triple-
negative BC [171,172]. Studying the interplay between DNA methylation and miRNAs can
provide insight into BC pathogenesis. In one of the earliest studies on DNA methylation
and miRNAs in BC, COBRA was utilized to assess 61 miRNA gene candidates. Only miR-
9-1 was significantly upregulated following treatment with 5-aza-2′-deoxycytidine [93].
Xenoestrogen repressed miR-9-3 in mammosphere-derived epithelial cells through an
ERα-dependent mechanism that increased both H3K27me3 and H3K9me2 as well as
hypermethylation of the miR-9-3 promoter [92]. The silencing of miR-9-3, which is involved
in p53-related apoptotic pathways, enhances proliferation [92]. Mechanical compression
caused by tumor growth in a restricted area can downregulate miR-9 through DNMT3A-
dependent methylation of its promoter [94].

Further evaluation of DNA methylation data and genome-wide miRNA expression
in the Oslo2 and The Cancer Genome Atlas Breast Invasive Carcinoma cohorts found
89,118 significant miRNA-CpG associations or miRNA-methylation quantitative trait loci
(mimQTLs) composed of three miRNA clusters (immune, fibroblast, and estrogen signaling)
and two CpG clusters [173]. In the invasive ductal carcinoma subtype of BC, upregulation
of miR-646 promotes tumorigenesis by targeting TET1, impairing the demethylation of
IRX1 and consequently elevating HIST2H2BE [65]. On the other end, miR-646 has been
shown to inhibit breast cancer cell growth and promoted cell death [174], showing a dual
function of this miRNA in breast cancer that needs to be further evaluated. Additionally,
the diminished expression of several regulatory miRNAs (miR-26a/b, miR-29a/b, and miR-
148a/b) of DNMT3b is associated with aberrant DNA hypermethylation in the disease [175].

Several miRNAs have a reduction in expression attributable to hypermethylation
of CpG islands within promoter regions, including miR-10b* [95], miR-892b [112], miR-
133a-3p [99], miR-195 [100], miR-497 [100,109,110], miR-125b [98], miR-196a-2 [101], and
miR-335 [106]. MiR-10b* targets BUB1, PLK1, and CCNA2, leading to a perturbation in cell
proliferation in vitro and a reduction in tumor size in vivo [95]. MiR-892b targets compo-
nents of the NFκB cascade (TRAB, TAK3, and TAB1) that promotes tumorigenesis [112].
MiR-133a-3p targets MAML1, thereby repressing migration and invasion [99]. MiR-195
targets Raf-1 and Ccnd1 and normally functions to inhibit colony formation and inva-
sion [100]. MiR-497, in addition to targeting Raf-1 and Ccnd1, also represses GPRC5A and
MUC1, contributing to chemotherapy resistance and malignancy, respectively [100,109,110].
MiR-125b targets ETS1, promoting cell cycle arrest and suppressing proliferation and tu-
morigenesis [98]. MiR-335 plays a role in inhibiting tumor reinitiation [106]. Methylation
of CLCN5 led to a reduction in miR-362-3p, which targets p130Cas, a regulator of receptor
tyrosine kinase signaling [107]. Hypermethylation of the miR-34c promoter decreases its
expression and further prevents the transcription factor Sp1 from binding to its regulatory
element [96]. Conversion to stem-like/mesenchymal phenotype is associated with a loss of
miR-200 family members [102]. One group found that miR-200a, miR-200b, and miR-429
are silenced by histone modifications, while miR-200c and miR-141 are repressed by DNA
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methylation [102]. Another study found that miR-200b is hypermethylated at two CpG
islands [103]. MYC recruits DNMT3A to the promoter region of miR-200b, which catalyzes
methylation of its CpG island, thereby reducing its expression and promoting EMT [66].
Although the tumor suppressor role of the miR-200 family is known, in some cases, miR-200
can have oncogene functions [176–178] and be upregulated in some breast cancer tissue
compared with normal tissue [179].

Select miRNAs, including miR-375 [108], miR-663 [111], miR-216a [105], miR-205 [104],
and miR-124-2 (B15), are upregulated by hypomethylation. Elevated levels of miR-375 in
ERα-positive BC cells is a consequence of a loss in several epigenetic marks, including
local DNA hypomethylation. MiR-375 enhances ERα signaling by targeting RASD1 [108].
There is a similar upregulation of hypomethylated miR-663 in chemoresistant BC cell lines
and tumor tissues [111]. Interestingly, limonin attenuates stemness in BC by inducing
hypomethylation of the miR-216a promoter, thereby increasing the levels of miR-216a,
which targets WNT3A and represses the Wnt/β-catenin pathway [105]. Mel-18 induces the
hypomethylation of CpG islands in the promoter region of miR-205 by impairing DNMT
recruitment [104]. This increases miR-205 expression, which normally targets ZEB1 and
ZEB2, leading to impaired EMT.

4.3. Brain Cancer

In brain cancers, several miRNAs are hypermethylated. In glioblastomas, miR-29b,
miR-296-5p, and miR-204 have been found to be hypermethylated [79,82,84]. Hu and
colleagues demonstrated that the long non-coding RNA DCST1-AS1 is upregulated in
glioblastoma cells and induces the methylation of miR-29b. MiR-29b was shown to inhibit
cell proliferation, and the effect is reversed when RNA DCST1-AS1 is overexpressed [79].
MiR-296-5p inhibits stem cell renewal by directly targeting HMGA1, which promotes the
stem cell phenotype by altering the chromatin architecture of the stem cell maintenance
transcription factor SOX2 [82]. This tumor suppressor role is in contrast with other findings
that report miR-296-5p as invasion promoter in glioblastoma [180]. MiR-204 inhibits
self-renewal, stem cell phenotype, and migration by the direct targeting of stemness-
governing transcriptional factor SOX4 [84]. MiR-20a targets LRIG1, an inhibitor of receptor
tyrosine kinases [85], and the demethylation of its promoter is positively correlated with
temozolomide resistance.

In IDHT-mutated gliomas, miR-155 and miR-148a are hypermethylated; the hyperme-
thylation of these two miRs was dependent on the IDHT-mutated status in gliomas [47,80].
MiR-148a directly targets DNMT1 [47], while miR-155 was shown to target FAM133A. The
downregulation of FAM133A promotes cell migration and invasion. MiR-155 has also been
recognized as an oncogene in glioma, contributing to tumor growth and progression [181],
but more studies are needed to evaluate the context-dependent function of this miRNA.

In astrocytoma, miR-204-5p and miR-338-5p are hypermethylated [81,83]. MiR-204-5p
inhibits cell migration and invasion by targeting Ezrin, whose expression is involved in
late-stage tumor progression and metastasis [81,182], while miR-338-5p targets the pro-
oncogene ETS-1 [83].

MiRNAs that target DNMT1 are dysregulated in brain cancers. MiR148a [47] and
miR152-3p [63,64] directly target DNMT1 mRNA. MiR-152-3p expression is downregulated
in glioblastoma cell lines; restoring the expression of miR-152-3p induced the demethylation
of NF2, a known tumor suppressor [64]. In IDH1 mutant glioblastomas, miR-148a is silenced
by hypermethylation [47]. This hypermethylation increases the expression of DNMT1 and
promotes the methylation of glioma-CpG island methylator phenotype (G-CIMP) genes
such as RBP1, CIDEB, and DLC1 [47].

A common treatment for neuroblastoma is all-trans-retinoic acid (ATRA), which in-
duces the differentiation of neuroblastoma and decreases cell proliferation [183]. ATRA
treatment results in the downregulation of DNMT1 and DNMT3B, resulting in the demethy-
lation of various genes and miRNAs [63,78]. For example, ATRA treatment diminishes
the expression of MYCN; MYCN is a repressor of miR-152 [63]. As mentioned above,
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miR-152 directly targets DNMT1 illustrating a regulatory network where ATRA treatment
diminishes MYCN, miR-152 is expressed, and miR-152 downregulates DNMT1 [63]. An-
other example is the demethylation of miR-340 after ATRA treatment [78], which leads to
overexpression of miR-340 and apoptosis or cell cycle arrest [78]. MiR-340 directly targets
SOX2 mRNA, a transcription factor that maintains the undifferentiated state of stem and
cancer cells [184].

4.4. Hematologic Cancers

Hematological malignancies are generally categorized into Hodgkin lymphoma, non-
Hodgkin lymphoma, multiple myeloma, and leukemia. DNA methylation regulates the
expression of miRNAs in leukemia and other hematological cancers.

With the intent of discovering aberrantly regulated miRNAs in chronic lymphocytic
leukemia (CLL), Baer et al. profiled the epigenetic regulation of miRNAs in CLL com-
pared with healthy B cells by the simultaneous detection of aberrant DNA methylation
and miRNA promoters [185]. They found several miRNAs inversely correlating with
DNA methylation and identified 12 miRNAs that were candidates for DNA methylation-
dependent regulation. They validated miR-124-2, miR-129-2, miR-9-2, miR-551b, and
miR-708, whose promoter showed consistent hypermethylation and reduced expression
in an independent cohort of patients [185]. MiR-708 targets IKKβ, a kinase that induces
NF-κB signaling, leading to the inhibition of the NF-κB pathway in chronic lymphocytic
leukemia [87]. MiR-708 is known to behave both as an oncogene and a tumor suppressor
in different cancers and several studies defines miR-708 as a contributor to leukemogene-
sis [186].

Garzon et al. demonstrated that miR-29b could reduce global DNA methylation
in acute myeloid leukemia, thus inducing the re-expression of p15INK4b and ESR1 via
promoter DNA hypomethylation. MiR-29b directly targets DNMT3A and DNMT3B, re-
pressing their translation. Moreover, miR-29b indirectly represses DNMT1 transcription by
targeting its transactivator Sp1 [76].

In acute lymphoblastic leukemia (ALL), the promoter of miR-124a is hypermethylated,
inducing its downregulation. As an effect, CDK6, a target of miR-124a, is overexpressed,
leading to ALL cell growth through the CDK6-Rb oncogenic pathway [86].

Pallasch et al. identified miR-181a, miR-181b, miR-107, and miR-424 as hyperme-
thylated and significantly downregulated in chronic lymphocytic leukemia (CLL). They
all target the 3′UTR of the oncogene PLAG1, whose protein is upregulated in CLL cells
compared with healthy donor B cells [88].

In myeloma, several tumor suppressor miRNAs, including miR-34b/c, miR-203, miR-
129-2, and miR-342-3p, have been reported to be hypermethylated [187–190]. The tumor
suppressor miR-1258, which targets PD-L1, is under transcriptional control of its host gene
ZNF385B. This miRNA is silenced and methylated in a tumor-specific manner in myeloma,
with an inverse correlation between methylation status and expression of ZNF385B/miR-
1258 [90]. MiR-375 is significantly downregulated in CD138-positive plasma cells from
multiple myeloma patients due to the hypermethylation of its promoter. Hence, the miR-
375 overexpression inhibits the PDPK1, IGF1R, and JAK2 expression in human myeloma
cell lines [91].

Several miRNAs have been epigenetically dysregulated in lymphomas, such as miR-
203, miR-29a, and miR-9-1 [191]. In primary NK/T-cell lymphoma, promoter methylation
and downregulation of miR-146a were observed [89]. MiR-146a is considered a tumor
suppressor by repressing NF-kB signaling and thus inhibiting lymphoma cell proliferation
and inducing apoptosis.

4.5. Gastrointestinal Cancers
4.5.1. Esophageal Cancers

In esophageal squamous cell carcinoma (ESCC), CpG island promoter hypermethy-
lation leads to reduced expression of exosomal miR-652-5p [120], miR-216a [124], miR-
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124-3p [125], and miR-149 [126]. Functionally, miR-652-5p targets PARG and VEGF to
suppress cell growth and metastasis [120]. MiR-216a directly targets HMGB3 and decreases
cell survival via the Wnt/β-catenin pathway [124]. MiR-124-3p targets EZH2, thereby
inhibiting proliferation, migration, and invasion [125]. MiR-149 targets RNF2/Wnt/β-
catenin axis and suppresses growth and metastases [126]. Zinc deficiency is associated
with a high risk of esophageal cancers and induces pro-inflammatory COX-2 by suppress-
ing its inhibitor, miR-128, through DNMT-mediated DNA methylation [122]. Exposure
of esophageal adenocarcinoma cells to cigarette smoke condensate leads to DNMT3b-
mediated hypermethylation of the miR-217 genomic locus, lowering levels of this miRNA
that targets KLK7 [127]. As was observed in CRC, hypermethylation of EGFL7 leads to a
downregulation of miR-126-3p, which targets ADAM9 and subsequently reduces down-
stream signaling of the EGFR-AKT pathway [123]. Increased levels of miR-10b-3p in ESCC
are attributed to the hypomethylation of promoter CpG sites [121]. This miRNA targets
FOXO3 to induce cancer growth and metastasis [121].

4.5.2. Gastric Cancer

In gastric cancer (GC), the hypermethylation of upstream CpG island(s) is linked
to lower levels of miR-1271 [135], miR-9 [136], miR-33b [139], miR-27b-3p [140], miR-
335 [141,142], and miR-495-3p [143]. MiR-1271 targets TEAD4, potentially leading to
an enrichment of the YAP signature, and MAP2K1 (MEK1), thereby downregulating
the MAPK/ERK pathway [135]. MiR-27b-3p targets GSTP1 and inhibits proliferation,
migration, and invasion [140]. MiR-335 targets CRKL and RASA1, leading to repression
in proliferation and migration while inducing apoptosis and cell cycle arrest [141,142].
MiR-495-3p regulates ten oncogenic epigenetic modifiers of HDAC2, KDM1A, KDM2B,
KDM5B, CREBBP, EP300, MYST3, SMYD3, DNMT1, and MTA1 [143].

Hypomethylation of HOXA10 is associated with higher levels of HOXA10 and miR-
196b-5p in GC; the reconstitution of the TFF1, which acts as gastric tumor suppressor,
induces methylation of HOXA10, thereby leading to decreased levels of HOXA10 and
miR-196b-5p [137]. Gastric cancer stem cells (GCSCs) exhibit reduced miR-7-5p, partly
mediated by DNA methylation of the miR-7-5p promoter [138]. When cultured with a
methionine-deprived medium, the GCSCs have less promoter methylation and a significant
increase in miR-7, which regulates sphere colony formation and invasion by targeting Smo
and Hes1 [138].

4.5.3. Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) accounts for approximately 90% of all primary liver
cancers and is the third leading cause of cancer-related deaths worldwide [192]. Due to the
lack of early-stage diagnostic markers, many HCC patients present clinically with late-stage
disease, leading to a 5-year survival rate of less than 40% [161]. Thus, understanding
genetic and epigenetic modifications in HCC is important to uncover potential diagnostic
markers and therapeutic targets for HCC patients.

MiRNAs with tumor suppressive roles in HCC, such as miR-148a, are repressed due
to CpG promoter hypermethylation [160]. Long and colleagues reported impaired HCC
cell proliferation and cell cycle progression following enforced miR-148a expression [160].
A recent functional study demonstrated that the loss of miR-142 due to hypermethylation
promoted cell viability, proliferation, and angiogenesis in HCC by upregulating TGF-β, a
direct target of miR-142 [161]. In contrast, high expression levels of the chromosome 19
miRNA cluster (C19MC) due to promoter hypomethylation were observed in high T-stage
HCC tumors with a high invasive ability [162]. Wu et al. demonstrated that miR-29c-3p
regulates DNA methylation by targeting DNMT-3B leading to the methylation of large
tumor suppressor gene 1 (LATS1), which inactivates the Hippo signaling pathway [77].
Hippo signaling pathway is known for its oncosuppressive role of inhibiting HCC cell
proliferation and promoting apoptosis [193].
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4.5.4. Pancreatic Cancer

Pancreatic cancer is a highly lethal cancer with high rates of metastases and poor
prognosis [194]. The most common subtype of pancreatic cancer, pancreatic ductal ade-
nocarcinoma (PDAC), accounts for 90% of pancreatic cancer cases [195]. Aberrant DNA
methylation of miRNAs has been reported in PDAC [196], with upregulation of DNMT1
commonly found in PDAC, particularly in TP53-mutant PDAC cells [130]. Several miRNAs,
such as miR-192, miR-615-5p, miR-142-3p, miR-148, miR-34a, the miR-200 family, and the
miR-124 family, are dysregulated in their DNA methylation in pancreatic cancer. Hyperme-
thylation of miR-192 upregulates Vimentin, an EMT marker, promoting metastasis [128].
MiR-192 directly targets SERPINE1 mRNA. Serpine1 is known to regulate cell prolifera-
tion and invasion. MiR-615-5p is hypermethylated in PDAC [129]. It targets IFG2, which
promotes cell proliferation, invasion, and migration. miR-142-3p was observed to be hyper-
methylated in TP53-mutant PDAC cells, and its hypermethylation is dependent on DMNT1
expression [130]. MiR-148 is hypermethylated in PDAC [197], and its restoration downregu-
lates the Wnt/β-catenin signaling pathway and suppresses cell proliferation [131]. MiR-34a
targets the Notch signaling pathway. When miR-34a is hypermethylated, Notch signaling
is activated and promotes drug resistance in PDAC cells [133]. The miR-124 family is
hypermethylated in PDAC. The miR-124 family inhibits cell proliferation and metastasis
by targeting Rac1 [134], a pro-tumor enhancer that activates the MKK4-JNK-c-Jun pathway.
The miR-200 family is often upregulated in pancreatic cell lines and primary tumor tissues,
which reflects an upregulation of miR-200a and 200b in serum of pancreatic cancer patients.
This upregulation is due to the hypomethylation of the miR-200 promoter region [132].
Nevertheless, the miR-200 family is known to act as a tumor suppressor and mediator of
EMT in pancreatic cancer [198]. The miR-200 upregulation in this cancer can be related to
the hypomethylation of its promoter; however, no defined effects on EMT were observed
after miR-200 treatments [132]. The controversy surrounding miR-200 upregulation in
tumors with its tumor suppressor function has yet to be fully understood.

4.5.5. Colorectal Cancers

Concurrent downregulation of miR-342 and EVL, its host gene, is attributable to
methylation of the EVL/miR-342 locus [113]. The epigenetic silencing of miR-342 can
induce anti-apoptotic pathways [113]. Similarly, the methylation of EGFL7 leads to reduced
miR-126, a tumor suppressor that targets VEGF and induces anti-angiogenic effects in
CRC [119]. Several groups [114–116] have reported hypermethylation of the CpG island in
the miR-34b/c promoter in CRC cell lines and primary tumor tissues and fecal specimens.
The re-expression of miR-34b/c, which targets MET, CDK4, and SFRS2, markedly reduces
colony formation in tested CRC cell lines [114]. Increased methylation of miR-34a was
observed in CRC tumors with liver metastasis and has potential prognostic value for
distant metastases when combined with elevated c-Met and β-catenin expression [116]. In
hypermethylated CRC tissues and cell lines, miR-1247 expression is reduced, and its target,
MYCPB2, is elevated [117]. Functionally, miR-1247 has tumor-suppressive capacities by
impairing cell viability and inducing apoptosis [117]. In CRC with microsatellite instability,
there are lower levels of miR-484 due to CpG island promoter methylation [118]. This
miRNA targets CD137, which was linked to halting IL-8 production [118].

4.6. Gynecological Cancers
4.6.1. Cervical cancer

DNA methylation of miR-124 was found in colon, breast, lung cancer, leukemia, and
lymphoma [199]. Wilting et al. evaluated the role of DNA methylation-based silencing
of miR-124 during cervical carcinogenesis. They showed that all three loci encoding the
mature miR-124 (miR-124-1/-2/-3) were methylated in cervical cancer cell lines. As a result,
the expression of mature miR-124, which has tumor suppressor activity in cervical cancer,
was reduced [152]. A recent study demonstrated that the promoters of miR-375 and miR-
196a-1 are hypermethylated in squamous cell carcinoma tissue compared with the normal
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cervical epithelium and cervical intra-epithelial neoplasia, leading to their downregulation
at transcript levels. In vitro studies showed that the downregulation of miR-375 and
miR-196a-1 inhibit the proliferation of SiHa cells, revealing a possible tumor suppressor
role of these miRNAs in cervical cancer [153]. By contrast, Shen et al. observed that the
overexpression of miR-375 in cervical cancer cells decreased sensitivity to paclitaxel in vitro
and in vivo [200], raising additional questions regarding the dual function of miRNAs that
need to be answered. In addition, the under expression of miR-181a2/181b2 is detected
in over 45% of cervical cancers and is partially induced by the hypermethylation of its
promoter region. MiR-181a2/181b2 exerts tumor suppressor effects in vitro and in vivo
through targeting of PIK3R3/Akt/FoxO signaling, and its reduction is associated with
poor prognosis and advanced stage cervical cancer [154].

4.6.2. Ovarian Cancer

In ovarian cancer, Han and colleagues have reported an interesting feedback loop
between miR-30a/c-5p and DNMT1 [72]. The researchers showed that levels of miR-30a/c-
5p were drastically reduced in cisplatin-resistant ovarian cancer cells (CP70) compared with
cisplatin-sensitive cells (A2780). This reduction was induced by the increased methylation
levels in the promoter regions of miR-30a/c-5p precursor genes and a higher level of
DNMT1 maintenance in CP70 cells compared with A2780 cells. Functional studies revealed
that miR-30a/c-5p could attenuate cisplatin resistance and EMT by targeting Snail. By
contrast, the overexpression of DNMT1 promotes cisplatin resistance and partial EMT
in ovarian cancer cells. Interestingly, this group found that miR30a/c-5p directly targets
DNMT1 3′UTR, inhibiting its expression and directing a feedback loop that uncovers
additional mechanisms in ovarian cancer drug resistance.

In addition, miR-145 and miR-133b were downregulated in ovarian cancer tissue
and serum from ovarian cancer patients, where miR-145 indirectly promotes miR-133b
expression. Mechanistically, miR-133b targets PKM2, inhibiting the Warburg effect in
ovarian cancer, and miR-145 can inhibit the recruitment of DNMT3A in the promoter of
miR-133b by targeting c-myc, thereby promoting miR-133b expression [73].

4.6.3. Endometrial Cancer

Several miRNAs are epigenetically downregulated in endometrial cancer. Tsuruta and
colleagues identified miR-152 as tumor suppressor miRNA silenced by DNA hypermethyla-
tion in endometrial cancer. miR-152 fulfills its tumor suppressor activity by targeting E2F3,
MET, and Rictor [155]. MiR-137, which targets EZH2 and LSD1 and inhibits tumor growth,
is frequently hypermethylated and repressed in endometrial cancer [156]. Hypermethyla-
tion of the miR-129-2 CpG island was observed in endometrial cancer and was associated
with the concomitant gain of SOX4 expression, an oncogene target of miR-129-2 [157]. The
overexpression of SOX4 can partially be caused by the epigenetic repression of miR-129-2.

4.7. Prostate Cancer

Prostate cancer accounts for 27% of cancer diagnoses in men [201]. With the intent
of discovering new epigenetically regulated miRNA loci in prostate cancer, Jerónimo’s
group identified miR-152-3p with decreased expression associated with promoter hyper-
methylation in prostate cancer tissues [158]. The same group previously found miRNAs
globally downregulated in prostate cancer cell lines, an effect reversed by treatment with
5-Aza-CdR, a demethylating agent. Among the deregulated miRNAs, they found miR-130a
downregulated and hypermethylated in prostate cancer tissue compared with morpho-
logical normal prostate tissue. MiR-130a overexpression inhibited cell viability, increased
apoptosis, and reduced the invasive potential of prostate cancer cell lines [159].

Majid et al. reported that the downregulation of miR-34b in prostate cancer tissues
and cell lines is driven by the hypermethylation of its promoter [74]. Remarkably, the
exogenous overexpression of miR-34b in PC3 and LNCaP cells induces the downregulation
of DNMT1 and DNMT3b, with DNMT1 as a direct target of miR-34b. A decrease in cell
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proliferation inhibited EMT, and induced apoptosis was observed in PC3 and LNCaP
cells overexpressing miR-34b. It has been reported that DNMT3b is upregulated and
miR-145 is downregulated in prostate cancer cells [202,203], and either the repression of
DNMT3b or the overexpression of miR-145 can suppress the proliferation and migration
of PC3 cells [204,205]. Xue et al. demonstrated that DNMT3b is a direct target of miR-145,
whose transcription is controlled by DNMT3b-induced methylation, proposing crosstalk
between these two epigenetic factors in prostate cancer [75]. Additionally, they showed
that the overexpression of miR-145 and the downregulation of DNMT3b sensitizes PC3
cells to irradiation.

5. The Use of Epigenetics as Biomarkers

The aberrant expression of miRNAs has been the subject of intense investigation for
years in cancer research. MiRNAs can be easily detected in tissues but also in circulation
by non-invasive liquid biopsy [206,207]. Their stability and easy detection render miRNA
a suitable biomarker for human cancer diagnosis, prognosis, and therapeutics [208,209].
Furthermore, many studies are ongoing to propose miRNA-based cancer therapies [210–212].
Liquid biopsy is increasingly being used for helping cancer diagnosis thanks to several
advantages compared with the conventional biopsy, such as minimal invasiveness, pain,
and risk of complication [213]. Circulating tumor-related miRNAs can be found in sev-
eral bodily fluids and be used for cancer screening, diagnostics, and prognostics [213].
These miRNAs are intensively studied in several cancer types and are easily detectable in
serum [214–216] and plasma [217–219].

Other biological fluids can be also informative. In urine samples, it is possible to detect
miRNAs with diagnostic and prognostic biomarker in esophageal [220], cervical [221],
bladder [222–224], colorectal [225], and prostate cancers [226].

The aberrant expression of miRNAs can be found in cerebrospinal fluid, pancre-
atic juice, sputum, and pleural effusion and could be used as potential biomarkers for
brain [227], pancreatic [228], and lung cancers [229,230], respectively.

DNA methylation profiles of miRNAs can be used as a signature to define tumor type,
clinical prognosis, and treatment response [74,231,232]. Indeed, dysregulation of DNA
methylation is likewise ubiquitous across various cancer types and is considered a hallmark
of cancer [233–235]. Disease- and exposure-related methylation changes are detectable
in blood, potentially allowing them to serve as biomarkers for cancer and the immune
response [236–238].

Over the last several years, the number of studies reporting the utility of DNA methy-
lation as biomarkers have vastly increased [239]. One or more methylation sites were
observed in promoters of miRNAs or their associated enzymes, and the presence of methyl
groups can be used as a biomarker for tumor incidence and prevalence [240]. For example,
frequent methylation of miR-124a, miR-34b/c, miR-9-1, miR-9-2 and miR-9-3, miR-10b,
miR-203, miR-196b, and miR-132/212 has been found in acute lymphoblastic leukemia
patients [241]. Importantly, patients with non-methylated miRNA promoters also had
lower mortality and higher overall survival rates compared with patients with methylated
miRNA promoters [241]. Su et al. analyzed the sputum of 117 early-stage NSCLC patients
compared with 174 cancer-free smokers. They integrated the expression levels of miR-31
and miR-210 and methylation levels of genes RASSF1A and 3OST2 and validated them in a
second cohort of patients. The panel of biomarkers yielded high sensitivity (87.3%) and
specificity (90.3%) for early detection of NSCLC [229]. Heller et al. investigated the methy-
lation status of miRNAs in primary tumor samples and corresponding non-malignant lung
tissue samples of NSCLC patients. Methylated DNA immunoprecipitation followed by
custom-designed tiling microarray analyses (MeDIP-chip) found that miR-10b, miR-1179,
miR-137, miR-572, miR-3150b, and miR-129-2 were significantly upregulated in tumor
tissue compared with non-malignant tissue. The loss of miR-889-3p due to its promoter hy-
permethylation in SCLC tumors was associated with significantly shorter overall survival,
progression-free survival, and distance metastasis-free survival, highlighting the potential
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use of miR-889-3p as a prognostic biomarker in SCLC [144]. In NSCLC, the miR-129-2 gene
is more frequently methylated in stage III than in stage I/II patients [242], and the same
miRNA is associated with shorter disease-free survival of prostate cancer patients [243],
as well as shorter overall survival and disease-free survival of hepatocellular carcinoma
patients [244]. Another study reported a biomarker of serum miR-24 and miR-30c ex-
pression combined with CRIP3 methylation in urine samples useful to monitor prostate
cancer patients on active surveillance [245]. In malignant prostatic tissues, the promoter
methylation levels of miR-34b/c, miR-129-2, miR-152, miR-193b, miR-663a, and miR-1258
were significantly higher than in morphologically normal prostate tissue. In addition,
promoter methylation levels of miR-34b/c, miR-663a, and miR-1258 were associated with
higher pathological stages [246]. Interestingly, the same group tested the methylation
level of miR-34b/c, miR-193b, and miR-1258 in urine samples and found that miR-193b
performed best as a biomarker for prostate cancer, with AUC = 0.96, sensitivity = 91.6%,
and specificity = 95.7%.

In astrocytoma, the methylation status of miR-338-5p was shown to increase with stage
and correlated with disease severity [83]. In cervical cancer, the promoter hypermethylation
of miR-124-2, SOX1, TERT, and LMX1A genes directly correlated with the presence of grade
2 cervical intraepithelial neoplasia, and the methylation of miR-124-2 represents a promising
biomarker for precursor lesions with sensitivity = 86.7% and specificity = 61.3% [247]. In
addition, a 14-year follow-up post hoc analysis on the POBASCAM trial has recently shown
that a negative FAM19A4/mir124-2 methylation test provides a low cervical cancer risk
in HPV-positive women of 30 years and older [248]. Additionally, in breast cancer, young
women are generally diagnosed at advanced stages of the disease and were found to have
a significant overexpression of hypomethylated miR-124-2, which is associated with poor
survival [97]. In primary hepatocellular carcinoma specimens, miR-1-1 was the first miRNA
reported to be targeted by aberrant DNA methylation and downregulation compared with
matching normal liver tissues [249].

A comprehensive study performed on patients with gastric cancer reported the upreg-
ulation of miR-106a in cancer tissue compared with the normal adjacent tissue, partially
due to the hypomethylation of its promoter. Additionally, miR-106a was upregulated in the
plasma of gastric cancer patients compared with healthy controls, and its expression was
downregulated after gastrectomy, highlighting the relevance of this miRNA as a diagnostic
marker [250].

6. Conclusions

The underlying mechanisms driving the aberrant expression of miRNAs remain
the focus of intense research. The epigenetic deregulation of miRNAs is a new area of
investigation that is drawing interest and is increasingly being studied in relation to cancer.

Aberrant expression of miRNAs is observed across a variety of human cancers, and it
is partially explained by epigenetic factors, adding a level of complexity to the regulation
of these small molecules. We focused on the interplay between DNA methylation and
miRNAs, specifically on how the methylation of miRNAs promoters contributes to their
deregulation. From a translational point of view, the expression of miRNAs can be evalu-
ated in tumor tissues to evaluate the tumor burden and potentially inform cancer diagnosis
clinically. Additionally, considering the stability and easy detection of miRNAs in bodily
fluids, their expression could be used for helping to screen and diagnose human cancers.

The methylation levels of the miRNA promoter can be a mechanism that leads to
the aberrant expression of miRNAs in cancer, and it should be considered to improve our
understanding of tumor pathogenesis and progression. Ultimately, to have a functional
consequence in cancer, the mechanisms behind this regulation could be used as targeted
therapy for cancer. The hypermethylation of tumor suppressor genes and miRNAs is
reported in several tumors and could potentially be targeted using inhibitors of DNA
methylation to restore tumor suppressor activities. Several inhibitors of DNA methylation
are currently used in clinical trials and have effects on solid tumors [251,252].
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Although relatively young, the interest in this new field is increasing. It is important
to consider the epigenetic regulation of miRNAs to expand our knowledge of cancer
pathogenesis and potential therapeutic strategies.
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