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Abstract: Economic losses due to copper intoxication or deficiency is a problem encountered by
sheep farmers. The aim of this study was to investigate the ovine genome for genomic regions
and candidate genes responsible for variability in liver copper concentration. Liver samples were
collected from slaughtered lambs of the Merinoland breed from two farms, and used for measurement
of copper concentration and genome-wide association study (GWAS). A total of 45,511 SNPs and
130 samples were finally used for analysis, in which single-locus and several multi-locus GWAS (SL-
GWAS; ML-GWAS) methods were employed. Gene enrichment analysis was performed for identified
candidate genes to detect gene ontology (GO) terms significantly associated with hepatic copper
levels. The SL-GWAS and a minimum of two ML-GWAS identified two and thirteen significant SNPs,
respectively. Within genomic regions surrounding identified SNPs, we observed nine promising
candidate genes such as DYNC1I2, VPS35, SLC38A9 and CHMP1A. GO terms such as lysosomal
membrane, mitochondrial inner membrane and sodium:proton antiporter activity were significantly
enriched. Genes involved in these identified GO terms mediate multivesicular body (MVB) fusion
with lysosome for degradation and control mitochondrial membrane permeability. This reveals the
polygenic status of this trait and candidate genes for further studies on breeding for copper tolerance
in sheep.

Keywords: liver copper concentration; SL-GWAS; ML-GWAS; candidate genes; Merinoland sheep

1. Introduction

Sheep farming is continuously challenged with the risks of copper intoxication and
deficiency. Copper is an essential trace element for many species. It serves as a cofactor
for the proper functioning of some copper-containing enzymes, so-called ”cuproenzymes”
such as copper—zinc superoxide dismutase, cytochrome c oxidase and hephaestin which
function in the anti-oxidation of free radicals, energy metabolism and iron metabolism,
respectively [1,2]. However, sheep are known to be impaired in their ability to excrete
excess copper from the liver, which leads to copper intoxication [3]. On the other hand,
copper deficiency is also a known problem in sheep husbandry [4].

Hepatic copper levels in sheep have been classified into diagnostic levels of deficient,
marginal, adequate, high, and toxic [5,6]. Deficient and high diagnostic levels of hepatic
copper have been associated with poor performance and health status of sheep [7,8]. Liver
copper levels have been reported to vary between as well as within sheep breeds [9,10]. A
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report on Suffolk and Texel sheep fed a similar diet showed that the coefficient of variation
for liver copper concentration within each breed was 40% and 34%, respectively [9]. Fur-
thermore, results of selection for low and high copper status in Scottish Blackface lambs
have been reported by Woolliams et al. [11]. According to these authors, plasma copper
concentration was higher in high copper lines than in low copper lines. In another report by
Knowles et al. [12], variation in copper status was observed for two flocks of the Romney
breed suggesting the availability of lines with distinct copper metabolism. These findings
suggest that copper status within sheep breeds may be influenced by genetic factors.

Association of genes such as copper transporter 1 (CTR1), chaperone for superoxide
dismutase 1 (CCS), antioxidant 1 (ATOX1), metallothionein (MT), copper-transporting
ATPase 1 (ATP7A) and copper-transporting ATPase 2 (ATP7B) with copper metabolism
are well documented for humans [13–17]. CTR1, CCS and ATOX1 are proteins involved
in copper transport from circulation, distribution to superoxide dismutase (SOD1) and
transport to the secretory pathway and nucleus, respectively [14]. In addition, ATP7A/B
supports the transfer of copper to the secretory pathways and mediates copper excre-
tion by sequestration in vesicles/vacuoles, while MT functions as a copper scavenger in
hepatocytes [14,15,17]. Variations in liver copper levels have been reported for humans
with mutations in the ATP7A and/or ATP7B genes that result in Menkes and Wilson
disease, respectively [18,19]. Likewise, mutation in the copper metabolism MURR1 domain-
containing 1 (COMMD1) gene has been implicated in copper toxicity in dogs [2]. However,
information on candidate genes and genetic markers associated with within-breed variation
in liver copper concentration of sheep is unknown.

The Illumina Ovine 50K SNP chip is a powerful tool to analyze the sheep genome with
respect to an association with diverse traits as confirmed in various single-locus genome-
wide association studies (SL-GWAS) [20–23] and multi-locus GWAS (ML-GWAS) [24,25]
in animals. SL-GWAS aim to identify associations of single nucleotide polymorphisms
(SNPs) with varying phenotypes of individuals by assessing the differences in allelic
frequencies of their genetic variants [26,27]. This is currently implemented in various
mixed linear model methods such as MLMA [28], EMMAX [29] and GEMMA [30]. These
methods are usually subjected to Bonferroni correction due to multiple testing, which
may result in the exclusion of some important loci with small effects. In this context,
ML-GWAS is a better alternative because it does not require the conservative Bonferroni
correction, therefore leading to the identification of more trait-associated markers especially
for polygenic traits [25,31]. Moreover, an earlier report indicated that a multi-locus GWAS
approach is better suited for the analysis of complex traits [32]. As a solution, several
ML-GWAS models have been developed, such as multi-locus random-SNP-effect mixed
linear model (mrMLM) [33], the fast multi-locus random-SNP-effect mixed linear model
(FASTmrMLM) [34], the fast multi-locus random-SNP-effect efficient mixed-model associa-
tion (FASTmrEMMA) [35], polygenic-background-control-based least angle regression plus
empirical Bayes (pLARmEB) [36], polygenic-background-control-based Kruskal–Wallis
test plus empirical Bayes (pKWmEB) [37], and Iterative sure independence screening ex-
pectation maximization Bayesian least absolute shrinkage and selection operator (ISIS
EM-BLASSO) [38]. These methods are implemented in two phases. The first phase involves
the selection of potentially associated markers after analyses using various algorithms. For
the second phase, all the effects in a model harbouring the selected markers are estimated
by empirical Bayes, after which further identification by a likelihood ratio test for true
quantitative trait nucleotides (QTNs) of all the non-zero effects is performed.

To the best of our knowledge, a genome-wide analysis regarding liver copper con-
centration in sheep has not been conducted until now. Therefore, the aim of this study
was to identify candidate genes associated with variability in hepatic copper concentration
in sheep using both SL-GWAS and ML-GWAS methods. This analysis was performed
using liver samples from slaughtered lambs of the Merinoland sheep breed, a breed of high
economic importance in Germany.
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2. Materials and Methods
2.1. Sample and Data Collection

The animals were kept under standard farming regulations on two private sheep
farms in Bavaria. For this study, only male lambs were sampled after slaughter for human
consumption. Documented information on the date of birth and date of slaughter was
obtained from the farmers. Regarding farm 1, 89 lambs from the flock with ages between
4 and 5.5 months were sampled after slaughter in batches over a period of 46 days. They
were kept indoors with unlimited access to their dams and fed ad libitum with grass silage
and compound feed consisting of lucerne pellets (5.53%), concentrate pellets (58.84%),
barley (22.93%) and beet pulp (12.70%). Concentrate feeding of lambs started 14 days
after birth. All dams had unhindered access to grass silage with occasional input of the
above-mentioned compound feed. A total of 45 lambs were sampled from the flock located
at farm 2. These lambs were kept on pasture and under uniform feeding conditions until
slaughter. In addition, fresh water was made available ad libitum for all animals by
the farmers. The nutrient composition of the feed, and the mineral content of the grass
silage, components of compound feed, and pasture grass were determined by a nutrient
analysis laboratory (Intertek Food Services GmbH, Linden, Germany) (Table S1a,b). Liver
samples from all lambs were collected directly after slaughter by cutting approximately
20 g of sheep liver from the tip of the Lobus caudatus, packed separately in plastic tubes,
labelled and stored at −20 ◦C prior to the determination of liver copper concentration and
DNA extraction.

2.2. Determination of Liver Copper Concentration

Liver samples were freeze-dried, pulverized and stored in airtight tubes. Duplicate
samples of approximately 0.5 g were digested in 5 mL deionized H2O, 5 mL HNO3 and 3 mL
H2O2 with a StarT-1500 microwave oven (MLS GmbH Cooperation, Leutkirch, Germany).
Conditions for the microwave digestion system are shown in Table S2. Digested samples
were filtered into a 50 mL flask and filled up to a volume of 50 mL with deionized water.
The copper concentration was determined with an inductively coupled plasma-optical
emission spectrometer (ICP-OES; Agilent 720ES, Darmstadt, Germany) at a wavelength of
327.4 nm. Used operating parameters for the ICP-OES were published elsewhere [39]. For
quality assurance reagent blanks were measured and a detection limit corresponding to
0.039 mg/kg was calculated (limit of detection = mean blank + 3 standard deviations of the
mean blank value). Furthermore, certified reference materials (Bovine Liver ERM-BB185,
European Commission, Joint Research Centre, Geel, Belgium) were used for testing the
precision of measurement. The mean recovery percentage was 91.4% ± 2.6.

2.3. Genotyping and Quality Control

DNA was extracted from liver samples using the Macherey-Nagel NucleoSpin Tissue
Kit (Düren, Germany) according to the manufacturer’s instructions. All 134 liver samples
were genotyped with the Illumina Ovine 50k SNP BeadChip. Quality control (QC) was
performed to exclude loci with minor allele frequency (<5%), SNPs with a low call rate
(<95%), samples with more than 5% of missing genotypes, and SNPs for which Hardy–
Weinberg equilibrium test p-values were lower than 1.0 × 10−6. After QC a total of
45,511 SNPs and 130 samples were left for analysis.

2.4. Single-Locus and Multi-Locus Genome-Wide Association Analyses

SL-GWAS and ML-GWAS were performed for all samples and data obtained after QC.
All 130 samples were used to estimate the genome-wide association of markers with liver
copper concentration. To perform a single-locus GWAS, genetic relatedness was estimated
using “pcrelate” and “pcrelateToMatrix” functions in the GENESIS R package [40]. Next, a
linear mixed model analysis for quantitative phenotypes was implemented using the same
software. A genetic relationship matrix was included in the analysis as a random effect to
account for cryptic relatedness. The model includes: y = Xβ+ Z1a + Z2c + e where y is
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the vector of observed liver copper concentration (mg/kg dry matter, DM) at slaughter, ß is
a vector of fixed effects including the intercept term, farm, age at slaughter, a is the vector
of the additive effect (fixed) of the candidate SNP to be tested for association, c is the vector
of polygenic effect (random) of all markers (as captured by the genetic relationship matrix
calculated using all SNPs), and e is a vector of residuals. X, Z1 and Z2 are the incidence
matrices relating observations to β, a and c, respectively. Due to the conservative nature
of Bonferroni threshold [41] and possibility that associated SNP effects can be missed [42],
a false discovery rate (FDR) p-value threshold was used [43]. FDR was set at 0.01, with
the p-value level of significance defined as p = N/M × 0.01, where N is the number of
SNP markers with p-values below the FDR threshold and M represents the total number of
SNPs [44]. A Manhattan plot of -log10(p-value) was constructed with the package “ggplot”
in R [45]. SNPs above the given p-value threshold were considered significant and selected
for further analysis. The proportion of total variability explained by SNPs (VG) and error
variance (VE) were computed using “varCompCI” function in GENESIS R package [40].
Estimation of heritability was performed from the variance components with the formula:
h2 = VG / (VG + VE) according to Yang et al. [46].

Regarding ML-GWAS analysis, the mrMLM v4.0.2 [47] software implemented in R was
used to determine SNPs associated with liver copper concentration in Merinoland sheep.
Five ML-GWAS methods including mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB,
and ISIS EM-BLASSO were performed according to methods described by Wang et al. [33],
Tamba and Zhang [34], Wen et al. [35], Zhang et al. [36], and Tamba et al. [38], respectively.
In the first stage and for the selection of potential SNPs, all SNPs were treated as random
effects in the five methods. In the second stage, all selected SNPs in the first stage of
each method were placed into one multi-locus model and the markers with effects above
the logarithm of odds (LOD) threshold value were regarded as possible candidate SNPs
associated with liver copper concentration. For all methods except pLARmEB, the critical
p-values for the selection of SNP in the first stage were set at default. These values were
employed in order to maximize power for SNP detection as suggested by the respective au-
thors [33–35,38]. The default values were 0.01 for mrMLM, 0.01 for FASTmrMLM, 0.005 for
FASTmrEMMA, and 0.01 for ISIS EM-BLASSO. With regards to pLARmEB analysis, a
value of 50 was set as the number of potentially associated markers selected by least angle
regression (LARS) according to Zhang et al. [36]. The critical LOD score was set to 3 in the
second stage according to previous reports using ML-GWAS methods [24,25]. Covariates
of farm and age at slaughter were included in the analysis, which was corrected for cryptic
relatedness using K (genomic relatedness) matrix calculated using the R package mrMLM
v4.0.2. To increase the accuracy of this result, SNPs identified by at least two ML-GWAS
methods were selected for further analysis.

2.5. Gene Annotation and Enrichment

Genes located within 0.5 megabase (Mb) regions upstream and 0.5 Mb downstream
of putative SNPs after SL-GWAS and ML-GWAS were identified according to the UCSC
genome browser [48] with the selection of the Oar_v4.0 assembly in the National Center
for Biotechnology Information (NCBI). Functional enrichment analysis was performed on
all genes identified by both GWAS methods using the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) software (https://david.ncifcrf.gov; accessed on
23 February 2023) [49–51]. The human gene annotation was selected for analysis due to a
higher number of recognized genes in comparison to sheep gene annotations. The gene
ontology (GO) annotation category including biological process (BP), cellular component
(CC) and molecular function (MF) terms, with the parameter set to a minimum of two genes,
was investigated in this study. Using the Fishers exact test, GO TERMS of enriched genes
with a p-value threshold of ≤0.05 were considered significant [52]. A subset of genes with
functional relationship to cellular transport and excretion using available gene annotations
from GeneCards (http://www.genecards.org (accessed on 23 February 2023)) and Uniprot
(http://www.uniprot.org (accessed on 23 February 2023)) databases were considered as
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functional candidate genes. Additionally, a second subset of all genes was considered as
positional candidate genes when harbouring a significant SNP or located near such an SNP.

3. Results
3.1. Liver Copper Levels and Estimated Heritability

Descriptive statistics of hepatic copper concentration and age of slaughtered lambs
whose samples were included in the SL-GWAS and ML-GWAS analyses are shown in
Table 1. A heritability of 0.67 ± 0.29 was estimated for this trait.

Table 1. Descriptive statistics and estimated heritability of liver copper concentration for Merinoland
sheep lambs used in SL-GWAs and ML-GWAS analyses.

Farm N 1 Mean (SE) Cu (mg/kg DM) Min Max Mean (SE) Age at Slaughter (Days) Min Max h2(SE) 2

1 89 159.54 ± 5.22 67.67 273.42 150.76 ± 1.30 119 165
0.67(0.29)2 41 79.05 ± 6.80 20.57 188.28 136.78 ± 3.04 89 172

1 N refers to number of samples; 2 h2 refers to heritability of liver copper concentration.

3.2. Identification of Genomic Regions and Candidate Genes

Relating to the SL-GWAS analysis of markers associated with liver copper concentra-
tion in this study, two significant SNPs (OAR2_145591151.1 and s62875.1) located on chro-
mosome 2 and below the given threshold (p-value = 8.77 × 10−5; −log10(p-value) = 4.06;
λ = 0.98) were observed (Table 2; Figure 1). Likewise, 35 significant SNPs above the
LOD score cutoff value of 3 were observed after the performance of ML-GWAS meth-
ods (Table S3). Among these, 13 significant SNPs distributed on chromosomes 1, 2, 3, 4,
6, 7, 14, 16 and 23 (Table 3; Figure 2a–e) were detected by a minimum of two ML-GWAS
methods. The two SNPs observed using the SL-GWAS were also identified by ML-GWAS.
Of these, only one SNP (OAR2_145591151.1) was observed by more than one ML-GWAS
method. Concerning candidate genes identified with SL-GWAS, 4 positional candidate
genes (Table 2) within putative SNP regions were detected. Furthermore, two of these
candidate genes were identified as both positional and functional. As regards ML-GWAS
and within possible SNP regions associated with liver copper concentration, we observed
21 potential candidate genes (Table 3). Among them were 9 functional candidate genes,
with 4 genes identified as both positional and functional candidate genes.

Finally, our results revealed a total of 16 GO terms, for example integral component
of membrane, lysosomal membrane, hydrogen ion transmembrane transport, mitochon-
drial inner membrane and sodium:proton antiporter activity were significantly enriched
(p ≤ 0.05; Table 4).

Table 2. Significant SNPs and genes associated with liver Cu concentration for Merinoland sheep
using SL-GWAS.

CHR SNP 1 Position p-Value Genes 2 (1 Mb)

2 OAR2_145591151.1 136897136 5.11 × 10−5 SLC25A12, DYNC1I2
2 s62875.1 150905130 6.59 × 10−5 ACVR1C, ACVR1

1 SNP positions are based on Oar_v4.0 assembly in NCBI. 2 Candidate genes: underlined = positional candidate
genes; bold = functional candidate genes within of SNP within a 1 Mb region.
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Table 3. Significant SNPs and genes associated with liver Cu concentration for Merinoland sheep
using ML-GWAS.

CHR SNP Position (BP) 1 Genes (1 Mb) 2 ML-GWAS Methods 3

1 s66850.1 77025732 GPR88, ATP5MF 2, 3, 4, 5
1 OAR1_285395930.1 263664109 COL6A1, COL6A2 2, 4, 5
2 s05644.1 14172465 FRRS1L 1, 2, 4
2 OAR2_145591151.1 * 136897136 SLC25A12, DYNC1I2 3, 4
3 OAR3_132833292.1 124516955 KITLG 1, 2, 4
4 OAR4_77358490.1 73042599 ZNF804B 2, 3, 5
6 s42668.1 21789865 CENPE, SLC9B2, SLC9B2 2, 4
6 OAR6_47263223.1 42315913 GBA3 2, 3, 4, 5
7 s25674.1 87187746 NRXN3 2, 3, 4
7 OAR7_101357352.1 93147667 - 1, 3, 5

14 OAR14_14650208.1 14404415 SPG7, CHMP1A, SHCBP1,
VPS35 3, 5

16 OAR16_25377664_X.1 23278766 IL6ST, SLC38A9 2, 4
23 OAR23_37101686.1 35080540 GREB1L 2, 4

1 SNP positions are based on Oar_v4.0 assembly in NCBI. 2 Candidate genes: underlined = positional candidate
genes; bold = functional candidate genes of SNP within a 1 Mb region. 3 ML-GWAS Methods: 1 = mrMLM,
2 = FASTmrMLM, 3 = FASTmrEMMA, 4 = pLARmEB, 5 = ISIS EM-BLASSO; * SNP identified by both SL-GWAS
and ML-GWAS.
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Table 4. Enriched GO terms determined by DAVID from genes identified in regions (1 Mb) of SNPs
for liver copper variation in Merinoland sheep using SL-GWAS and ML-GWAS.

Category Term Genes p-Value 1

GOTERM_MF_DIRECT GO:0016361~activin receptor activity, type I ACVR1, ACVR1C 0.006
GOTERM_CC_DIRECT GO:0005765~lysosomal membrane COL6A1, CHMP1A, VPS35, SLC38A9 0.007
GOTERM_CC_DIRECT GO:0048179~activin receptor complex ACVR1, ACVR1C 0.008

GOTERM_BP_DIRECT GO:1902600~hydrogen ion
transmembrane transport SLC9B1, ATP5MF, SLC9B2 0.010

GOTERM_CC_DIRECT GO:0005743~mitochondrial inner membrane SPG7, SLC25A12, ATP5MF, SLC9B2 0.014

GOTERM_CC_DIRECT GO:0016021~integral component
of membrane

ACVR1, KITLG, FRRS1L, GREB1L,
NRXN3, SLC38A9, SPG7, IL6ST,

SLC25A12, SLC9B1, ATP5MF, SLC9B2
0.014

GOTERM_MF_DIRECT GO:0015385~sodium:proton
antiporter activity SLC9B1, SLC9B2 0.015

GOTERM_CC_DIRECT GO:0030496~midbody CENPE, CHMP1A, SHCBP1 0.016
GOTERM_CC_DIRECT GO:0005828~kinetochore microtubule CENPE, CHMP1A 0.021

GOTERM_BP_DIRECT GO:0032924~activin receptor
signalling pathway ACVR1, ACVR1C 0.023

GOTERM_CC_DIRECT GO:0043235~receptor complex ACVR1, ACVR1C, IL6ST 0.023
GOTERM_CC_DIRECT GO:0097228~sperm principal piece SLC9B1, SLC9B2 0.035
GOTERM_MF_DIRECT GO:0019838~growth factor binding ACVR1C, IL6ST 0.040

GOTERM_MF_DIRECT GO:0030020~extracellular matrix structural
constituent conferring tensile strength COL6A2, COL6A1 0.045

GOTERM_BP_DIRECT GO:0007080~mitotic metaphase
plate congression CENPE, CHMP1A 0.047

GOTERM_BP_DIRECT GO:0001755~neural crest cell migration ACVR1, KITLG 0.049
1 p = p-value significant at 0.05; Please note that GOTERM_MF, GOTERM_CC and GOTERM_BP refer to molecular
function, cellular component and biological process, respectively.

4. Discussion

Copper homoeostasis is less efficient in sheep compared to other farm animals such
as cattle and goats [3]. This impairment can more easily lead to copper intoxication or
deficiency and is reported to vary within and between breeds [1,9,10]. The study of copper-
related genes is well documented [14–17]. However, there is a scarcity of information
on the gene or genes responsible for the control of hepatic copper levels in sheep. This
study aimed at identifying possible SNP markers and candidate genes associated with
liver copper variation in Merinoland sheep. Measured hepatic copper concentrations
were within the marginal and normal levels expected for sheep [6]. The estimated, high
heritability (h2 ± SE = 0.67 ± 0.29) confirmed that this trait is largely influenced by genetic
factors. This value is in the same range as estimated in Merino sheep by Judson et al. [53]
(h2 ± SE = 0.60 ± 0.32; n = 208). However, the high SE for h2 observed in our study
indicates that the heritability value may be inflated due to cryptic relatedness since SNP-
based heritability is reported to increase with a higher number of related samples [46].
Therefore, further work with a larger sample size of unrelated animals is needed to validate
this finding.

Among the candidate genes identified in this study, three genes including dynein
cytoplasmic 1 intermediate chain 2 (DYNC1I2), retromer complex component (VPS35)
and solute carrier family 38 member 9 (SLC38A9) located on chromosomes 2, 14 and
16 have been reported to indirectly influence cellular transport and excretion [54–56].
The DYNC1I2 gene expresses a subunit of the cytoplasmic dynein motor protein which is
important for microtubule-based transport towards the minus end [57]. Cytoplasmic dynein
transports cargoes such as cytoskeleton filaments, endosomes and lysosomes and has been
reported to bind dynactin, an important protein complex associated with dynein activity
through its p150Glued subunit [58,59]. Likewise, dynactin is reported to interact with the
copper P-type ATPase (ATP7B) via its subunit p62 [60]. Interestingly, lysosomal copper
exocytosis has been directly associated with dynactin in a report by Polishchuk et al. [61].
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Findings in this report suggest that the targeting of ATP7B to the canalicular surface
in hepatocyte cells, which precedes lysosomal exocytosis, requires copper-dependent
interaction with the p62 dynactin subunit. This suggests that changes in the activity of
cytoplasmic dynein motor protein may determine hepatic copper levels by impacting
lysosomal exocytosis. Besides VPS29 and VPS26, VPS35 is one of three core proteins
of the retromer complex, involved in cargo sorting and endosomal trafficking including
the homeostasis of transmembrane proteins located at the plasma membrane and within
endosomes/ lysosomes [62]. The retromer complex is reported to bind sorting nexin
3 (SNX3) resulting in the cargo recognition and binding of divalent metal transporter
1 (also known as solute carrier family 11 member 2) [62,63]. DMT1 has been implicated in
copper ion transport in the intestine with a reduced expression resulting in lower copper
absorption [64]. In addition, the VPS35 associates with FAM21 (a subunit of the WASH
complex) and aids the recruitment of the WASH complex to endosomes [65–67]. Earlier
findings suggest that copper metabolism MURR1 domain–containing 1 (COMMD1) protein,
which functions as a copper chaperone and binds to the copper-transporting P-type ATPases
ATP7A/ATP7B [68,69], interacts with the WASH complex and modulates copper-dependent
trafficking of ATP7A [68]. For perspective, ATP7A is an important copper transporter that
regulates the absorption of copper in the intestinal tract [70]. Yeast cells are considered an
ideal model for the genetic analysis of mammalian genomes [71,72]. Interestingly, a report
by Sowada et al. [73] showed increased copper sensitivity of yeast cells lacking VPS35.
Therefore, the interaction of VPS35 with the DMT1 and WASH complex may have an
influence on liver copper concentration in Merinoland sheep. The SLC38A9 gene encodes a
lysosomal amino acid transporter protein reported in the mechanistic target of rapamycin
complex 1 (mTORC1) signalling [56,74,75]. The mTORC1 controls transcription factor EB
(TFEB) which regulates the expression of genes involved in lysosomal degradation and
biogenesis such as vacuolar H+-ATPase (V-ATPase) and metallothionein 1 (MT1) [76,77].
The MT1 protein has been identified as a chaperon involved in copper homoeostasis [78].
This indicates that the involvement of SLC38A9 in mTORC1 signalling and TFEB expression
may impact liver copper levels in Merinoland sheep. Notably, TFEB expression has been
associated with lysosomal copper exocytosis [61]. In this report, increased TFEB expression
in hepatocyte cells resulted in increased lysosomal copper exocytosis suggesting a possible
influence of TFEB expression on liver copper exocytosis.

Regarding GO analysis, our findings revealed that lysosomal membrane and midbody
were enriched GO terms in this study. Genes observed in these GO terms including VPS35,
SLC38A9 and charged multivesicular body protein 1 A (CHMP1A) are reportedly involved
in cellular transport and excretion [62,75,79]. Generally, the endosomal sorting complex
required for transport (ESCRT) is important for the sorting and delivery of ubiquitinated
cargo such as membrane transporters to the lysosome for degradation [80]. The CHMP1A
is the member of the ESCRT-III family required for the formation of multivesicular bodies
(MVBs), which fuse with lysosomes for the degradation of its content [79,81]. Addition-
ally, the ESCRT-III is involved in the abscission of budding vesicles which mature into
MVBs [80]. These findings suggest a possible influence of ESCRT on the degradation of
copper transporters and consequently liver copper concentration. Furthermore, some genes
including matrix AAA peptidase subunit, paraplegin (SPG7) and ATP synthase membrane
subunit f (ATP5MF) were observed as functional genes involved in the mitochondrial inner
membrane, which is a significant GO term observed in this study. The SPG7 and ATP5MF
genes are implicated in the opening of the mitochondrial permeability transition pore
(PTP) [82–84]. The opening of the PTP results in loss of ATP production, mitochondrial
swelling and cell death due to cytosolic calcium overload and oxidative stress [83]. Inter-
estingly, another gene (solute carrier family 25 member 12 (SLC25A12)) identified in this
GO term is also required for the calcium-dependent maintenance of ATP homoeostasis in
the mitochondria [85,86]. The mitochondria are important cellular organelles implicated
in copper homeostasis [87]. Earlier reports suggest that copper toxicity in cells results in
swelling and rupture of the mitochondria, as well as induction of oxidation stress [3,88].



Genes 2023, 14, 1053 10 of 14

According to Bernardi et al. [89], mitochondrial swelling is associated with changes in
the inner mitochondrial membrane permeability and consequent expansion of the inner
membrane matrix. In the report by Haywood et al. [3], mitochondria swelling in hepato-
cytes from the North Ronaldsay sheep breed, which is considered highly susceptible to
copper intoxication, was observed at a lower liver copper concentration when compared
to a less susceptible sheep breed (Cambridge sheep). These observations suggest a pos-
sible association of hepatic copper levels with gene functions regulating mitochondrial
membrane permeability. Finally, the GO terms hydrogen ion transmembrane transport
and sodium:proton antiporter activity were also strongly enriched with involved genes
such as solute carrier family 9 member B1 (SLC9B1) and solute carrier family 9 member B2
(SLC9B2). These genes encode Na+/H+ exchangers (NHEs) important in cytoplasmic and
organelle pH [90]. The SLC9B1 gene is predominantly expressed in the testis while SLC9B2
is highly expressed in the liver and brain. In earlier studies on yeast NHE (Nhx1p), it was
observed that Nhx1p localized to the trans-Golgi network compartments, late endosomes,
and recycling endosomes, is critical for protein sorting and endocytic pathway [91,92]. In
another report, Nhx1 was found to aid MVB fusion with lysosomes [93]. These findings
suggest that NHEs may influence endosomal sorting and trafficking of important copper
transporters and consequently copper concentration in hepatocytes.

5. Conclusions

The results revealed a number of identified SNPs potentially contributing to vari-
ability in hepatic copper levels in Merinoland sheep. The identified regions surrounding
these SNPs harbour some promising functional candidate genes such as DYNC1I2, VPS35,
SLC38A9 and CHMP1A associated with endosomal cargo sorting and trafficking, as well
as lysosomal transport. Additionally, genes such as SPG7, ATP5MF and SLC25A12 were
identified as functional genes involved in mitochondrial membrane permeability which
has been associated with copper toxicity. Likewise, the genes SLC9B1 and SLC9B2 which
are involved in luminal and intraluminal pH and MVB fusion to lysosome, were observed
as potential candidate genes influencing hepatic copper levels in Merinoland sheep. In
total, nine promising candidate genes were observed in this study. These genes need to be
further investigated to ascertain their involvement in liver copper variation in Merinoland
sheep in particular, and other sheep breeds in general. This study provides evidence for a
polygenic trait with high heritability and delivers promising clues for further studies to
identify potential causal variants that may be associated with variation in copper tolerance
in sheep and used for practical breeding.
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concentration in Merinoland sheep detected by ML-GWAS analysis methods (LOD score > 3).
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