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Abstract: Plant-specific TCP transcription factors regulate several plant growth and development
processes. Nevertheless, little information is available about the TCP family in orchardgrass (Dactylis
glomerata L.). This study identified 22 DgTCP transcription factors in orchardgrass and determined
their structure, phylogeny, and expression in different tissues and developmental stages. The phy-
logenetic tree classified the DgTCP gene family into two main subfamilies, including class I and
II supported by the exon–intron structure and conserved motifs. The DgTCP promoter regions
contained various cis-elements associated with hormones, growth and development, and stress
responses, including MBS (drought inducibility), circadian (circadian rhythms), and TCA-element
(salicylic acid responsiveness). Moreover, DgTCP9 possibly regulates tillering and flowering time. Ad-
ditionally, several stress treatments upregulated DgTCP1, DgTCP2, DgTCP6, DgTCP12, and DgTCP17,
indicting their potential effects regarding regulating responses to the respective stress. This research
offers a valuable basis for further studies of the TCP gene family in other Gramineae and reveals new
ideas for increasing gene utilization.

Keywords: Dactylis glomerata; TCP gene family; floral development; tillering; expression analysis

1. Introduction

The plant-specific TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL
FACTOR (TCP) gene family was first discovered in 1999 [1]. The acronym TCP comes from
four genes in three species: T (TB1 from maize [Zea mays]) [2], C (CYC from snapdragon
[Antirrhinum majus]) [3], and P (PCFs from rice [Oryza sativa]) [4]. Members of the TCP
family have 59 amino acids and an atypical basic helix–loop–helix (bHLH) motif at the
N-terminus called the TCP domain which is responsible for protein–protein interactions,
nuclear protein localization, and DNA binding [1,4]. Moreover, the TCP domain classifies
these proteins into two groups: class I and II [5]. The clearest distinction between class
I and II is the basic region of the TCP domain where class I members lost four amino
acids. Class II is divided into CYC/TB1 and CIN subclades [5,6]. Arginine-rich motifs with
18–20 residues (R domain) are usually found in class II [1].

Many TCP proteins are critical in several plant biological processes [5,7], including
hormone biosynthesis, signaling transduction, flower development, leaf development and
senescence, lateral branching, circadian rhythm, seed germination, defence response, and
cell proliferation and differentiation [7–18]. For instance, AtTCP14 and AtTCP15 class I
proteins regulate leaf morphology and embryonic development during seed germination
through the gibberellin (GA) signaling pathway [19,20]. AtTCP20 acts upstream of AtTCP9
to regulate leaf senescence via the jasmonic acid (JA) signal pathway [21]. AtTCP16 is
necessary for pollen development in developing microspores [22]. In Arabidopsis thaliana,
five miR319a targets in CIN class II gene subgroups (AtTCP2, AtTCP3, AtTCP4, AtTCP10,
and AtTCP24) were confirmed important in leaf growth and morphogenesis [9,12]. AtTCP4
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is essential for the natural life activity of petals, the multifaceted regulation of JA and auxin
(IAA) synthesis, the senescence of ripe leaves, and the age-dependent decomposition of
leaf photosynthetic complexes [21,23–26]. In the CYC/TB1 subclade of class II, LjCYC1 and
LjCYC3 (in Lotus japonicus) and AmCYC (in snapdragon) produce a marked effect in floral
development [3,27]. Moreover, the A thaliana AtTCP1 and GhCYC2 from Gerbera hybrida
control symmetrical petal growth in flowers [28,29]. ZmTB1 in maize, AtBRC1 and AtBRC2
in A thaliana, and OsTB1 in rice modulate branching by negatively regulating axillary bud
growth [11,30,31]. Besides, TCPs regulate the circadian clock and plant morphogenetics.
TCP2, 3, 11, and 15 combine with the TGGGC (C/T) element to interact with various
compositions of the core circadian rhythm, thus mediating the Arabidopsis circadian clock.
Additionally, TCP20 and 22 improve the circadian clock [10,32].

Environmental stresses can affect plant growth and development [33], and some TCP
family members have been shown to respond to environmental changes. For instance,
overexpressing OsTCP19 induces the typical genes from abscisic acid (ABA), methyl jas-
monate (Me-JA), ethylene (ET), IAA, cytokinins (CK), and other signaling pathways in
rice. These genes reduce reactive oxygen species, the accumulation of fat droplets, and
water loss in transgenic plants, thus improving their tolerance to high salt and mannitol
treatments [34]. In rice, downregulating OsTCP21 and OsPCF6 enhances tolerance to cold
stress by altering the scavenging of reactive oxygen species. Similarly, OsPCF5 and Os-
PCF8 improve tolerance to cold stress [35,36]. Binding OsPCF2 to the OsNHX1 promoter
improves salt and drought tolerance [37]. In A thaliana, TCP20 associates with NLP6/7 to
modulate signal transduction and nitrate assimilation [38]. Several TCP genes have also
been reported in other species. For example, four miR319 target genes, including AsPCF5,
AsPCF6, AsPCF8, and AsTCP14, were downregulated in drought and salt tolerance creeping
bentgrass (Agrostis stolonifera) [39,40]. Some TCP genes in common bean (Phaseolus vulgaris)
and PeTCP10 in moso bamboo (Phyllostachys edulis) enhance tolerance to salt stress [41,42].
Besides, several GhTCP genes in cotton (Gossypium hirsutum) were upregulated under
drought salt and heat stress [17]. Although the TCP gene family plays a major role in
regulating plant life processes, there are no reports of their functioning in orchardgrass
(D glomerata).

Orchardgrass is a widely cultivated perennial forage grass that is native to central and
western Europe, the temperate regions of Asia, and North Africa [43]. D glomerata has a
high nutrient content and is among the four major global economic perennial grasses. It
establishes fast, recovers quickly after mowing, and has high shade, drought, and barren
tolerance [44]. Many valuable genes control orchardgrass development and abiotic stress
response. Therefore, this study identified TCPs in orchardgrass through synthetic analysis
of the D. glomerata genome (gene structure, conserved motif composition, chromosomal
location, and phylogenetic characteristics). Preliminary predictions of DgTCP gene evo-
lution involved the analysis of phylogenetic and gene duplication events and collinearity
with other plants. Additionally, TCP expression was assessed in different tissues, develop-
mental stages, and abiotic stresses. The results of this study will be helpful in elucidating
orchardgrass adaptation to different environments and may reveal the functions of DgTCPs.

2. Material and Methods
2.1. Identification of Dactylis glomerata TCP Genes

Firstly, the TCP domain (PF03634) HMM profile, which was obtained from the Pfam
database (http://pfam.xfam.org/, accessed on 1 March 2022) [45], was the reference for
identifying TCP genes from the Dactylis glomerata genome (http://orchardgrassgenome.
sicau.edu.cn/, accessed on 20 January 2022) using HMMER 3.0 software (E-value cutoff of
0.01) [46]. Secondly, PFAM was used to further analyze all candidate genes. The confirmed
TCPs were aligned with Clustal X2.0 [47], and redundant sequences were discarded. Finally,
the physicochemical properties of the DgTCP protein, including protein length, CDS
length, isoelectric point, and molecular weight, were determined using ProtParam (http:
//web.expasy.org/protparam/, accessed on 3 March 2022) [48].

http://pfam.xfam.org/
http://orchardgrassgenome.sicau.edu.cn/
http://orchardgrassgenome.sicau.edu.cn/
http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
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2.2. Phylogenetic Analysis and Classification of DgTCP Genes

The sequences of A thaliana TCP genes were obtained from TAIR (https://www.
arabidopsis.org/, accessed on 12 February 2022) [49]. Next, 22 rice and 21 Brachypodium
distachyon TCP protein sequences were obtained from Plant TFDB (http://planttfdb.cbi.pku.
edu.cn/, accessed on 6 March 2022) [50]. Multiple alignments of the selected TCP sequences
were performed using Clustal X2.0 [47]. Based on the neighbor-joining (NJ) method and
1000.0 replicates for bootstrap node support, the phylogenetic tree of orchardgrass, rice,
B distachyonwere, and A thaliana were constructed using MEGA7.0 [51] and then beautified
via the iTOL website (https://itol.embl.de/itol.cgi/, accessed on 14 April 2022).

2.3. Gene Structure and Motif Analysis

The exon–intron structures of DgTCPs were generated based on available genomic
information and coding sequences from the Gene Structure Display Server (GSDS 2.0,
http://gsds.cbi.pku.edu.cn/, accessed on 6 May 2022) [52]. The online Multiple Expectation
Maximization for Motif Elicitation (MEME) software (http://meme-suite.org/, accessed
on 11 May 2022) was used to identify the conserved DgTCP proteins motifs (considering
ten maximum motifs and default settings) [53].

2.4. Putative Promoter Cis-Acting Element Analysis

The nucleotide sequences of DgTCPs were acquired from the orchardgrass genome
database (http://orchardgrassgenome.sicau.edu.cn/, accessed on 20 January 2022). The
2000 bp region upstream of all DgTCPs was considered the promoter sequence, and the cis-
acting promoter elements were appraised via PlantCARE (http://bioinformatics.psb.ugent.
be/webtools/plantcare/html/, accessed on 19 June 2022) [54]. The putative cis-acting
elements are classified into plant hormone responses, growth and development, and biotic
and abiotic stress responses.

2.5. Chromosomal Mapping and Synteny Analysis

The chromosomal position information of each TCP gene was retrieved from orchard-
grass genome annotations. MapGene2Chrome (MG2C, http://mg2c.iask.in/mg2c_v2.0/,
accessed on 26 June 2022) was used to describe the location of the TCPs on the chro-
mosomes. Next, DgTCP gene duplication was analyzed using MCScanX and default
parameters [55]. Using the Dual Synteny Plotter of TBtools, we mapped the TCP gene
collinearity between D glomerata, A thaliana, O sativa, Sorghum bicolor, Hordeum vulgare, and
B distachyon (https://github.com/CJ-Chen/TBtools, accessed on 21 April 2022) [56]. The
genome data of O sativa, S bicolor, B distachyon, and H vulgare were downloaded from the
JGI Genome Portal (https://genome.jgi.doe.gov/portal/, accessed on 12 March 2022), and
A thaliana was downloaded from TAIR (https://www.arabidopsis.org/, accessed on 12
February 2022).

2.6. Plant Material and Treatments

Seeds of “Baoxing” orchardgrass were grown in a growth chamber at a 22 ◦C/14 h
(day) and 20 ◦C/10 h (night) cycle. One week after germination, the seedings were irrigated
with 1/2 Hogland solution. When the seedlings reached the third to fourth leaf, they
were treated with 1/2 Hoagland solution containing 20% polyethylene glycol (PEG6000),
250 mM sodium chloride (NaCl), 100 µM methyl jasmonate (Me-JA), 200 mM sodium
bicarbonate (NaHCO3), 100µM abscisic acid (ABA), and 100 µM salicylic acid (SA). The
leaves for each treatment were collected separately at 0, 1, 3, 6, 12, and 24 h after treatment,
immediately frozen in liquid nitrogen, and then stored at −80 ◦C for qRT-PCR.

2.7. Expression Profiles of DgTCP Family Members

The expression patterns of TCPs in the root, stem, leaf, spike, and flower were obtained
from the orchardgrass genome database (Table S1) [46]. Furthermore, the expression
patterns of the floral bud developmental stages before vernalization (BV), vernalization

https://www.arabidopsis.org/
https://www.arabidopsis.org/
http://planttfdb.cbi.pku.edu.cn/
http://planttfdb.cbi.pku.edu.cn/
https://itol.embl.de/itol.cgi/
http://gsds.cbi.pku.edu.cn/
http://meme-suite.org/
http://orchardgrassgenome.sicau.edu.cn/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://mg2c.iask.in/mg2c_v2.0/
https://github.com/CJ-Chen/TBtools
https://genome.jgi.doe.gov/portal/
https://www.arabidopsis.org/
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(V), after vernalization (AV), before heading (BH), and heading (H) of the late-flowering
variety “Baoxing” and early-flowering variety “Donata” were obtained from the RNA-seq
data (Table S2) [57]. The RNA-seq data of the TCP genes in four tissues from varieties
D20170203 (low-tillering) and AKZ-NRGR66 7 (high-tillering) were obtained from Xu et al.
(Table S3) [58]. The heat maps of the expression patterns were produced using TBtools [56].

2.8. Expression of 14 Selected DgTCP Genes in qRT-PCR

The total RNA of the samples under different treatments was extracted using the
Hipure HP plant RNA mini kit (Magen, Guangdong, China). First-strand cDNA was
synthesized using the MonScriptTM RTIII ALL-in-One Mix with dsDNase kit (Monad,
Suzhou, China) following the manufacturer’s instructions. Primers for the 14 DgTCPs were
designed using Primer 5.0 software (Table S4), and qRT-PCR was performed using the
MonAmpTM SYBR® green qPCR Mix (Monad) on the Bio-Rad CFX96 instrument. GAPDH
was the internal reference gene for normalization [43], and the relative gene expression
levels were evaluated by the 2−∆∆Ct method [59]. All qRT-PCR assays were performed
with three biological and technical replicates.

3. Results
3.1. Identifying TCP Genes in Orchardgrass

Twenty-two genes were retrieved from the orchardgrass genome and designated as
DgTCP1–DgTCP22 based on their chromosomal positioning. The protein sequence length,
CDS length, molecular weight, isoelectric point (pI), and gene location of the 22 DgTCPs
are captured in Table 1 and Table S5. The smallest protein was 17,433.51(DgTCP1), and the
biggest was 47,382.56 kDa (DgTCP16). The pI ranged from 5.09 (DgTCP7) to 9.92 (DgTCP11),
and the protein lengths were 165 (DgTCP17) to 454 (DgTCP6) aa.

Table 1. The 22 TCP genes in orchardgrass.

Gene
Name Gene ID Chr Protein

Length (aa)
Length

(bp)
Molecular

Weight (kDa)
Isoelectric
Point (pI) Start End

DgTCP1 DG1C00255.1 Chr1 165 495 17,433.51 5.18 6,629,906 6,630,695
DgTCP2 DG1C03379.1 Chr1 418 1254 44,766.77 9.34 146,031,371 146,037,761
DgTCP3 DG1C04745.1 Chr1 200 600 21,319.20 9.92 194,567,533 194,568,868
DgTCP4 DG2C01041.1 Chr2 392 1176 39,526.73 9.42 35,226,595 35,228,755
DgTCP5 DG3C00669.1 Chr3 190 570 20,377.03 9.41 20,872,684 20,873,306
DgTCP6 DG3C02184.1 Chr3 404 1212 41,896.68 5.71 98,406,794 98,409,146
DgTCP7 DG3C03958.1 Chr3 283 849 30,759.21 6.21 165,195,655 165,196,687
DgTCP8 DG3C05144.1 Chr3 328 984 33,731.69 5.09 204,201,074 204,202,229
DgTCP9 DG3C06789.1 Chr3 384 1152 40,053.43 8.49 251,633,645 251,634,796
DgTCP10 DG4C00330.1 Chr4 297 891 31,333.77 6.55 13,226,786 13,230,494
DgTCP11 DG4C01109.1 Chr4 268 804 29,570.36 9.15 45,855,850 45,859,255
DgTCP12 DG4C03206.1 Chr4 377 1131 39,248.24 7.99 150,217,992 150,219,441
DgTCP13 DG4C04368.1 Chr4 335 1005 36,236.47 9.01 187,896,786 187,897,790
DgTCP14 DG4C05327.1 Chr4 387 1161 39,895.82 9.07 217,216,581 217,221,767
DgTCP15 DG4C06102.1 Chr4 345 1035 35,534.55 5.80 238,269,030 238,270,515
DgTCP16 DG5C01593.1 Chr5 454 1362 47,382.56 6.46 55,126,146 55,128,837
DgTCP17 DG5C02296.1 Chr5 238 714 24,165.04 7.15 80,396,971 80,398,250
DgTCP18 DG5C04172.1 Chr5 265 795 28,827.16 6.90 174,582,071 174,584,669
DgTCP19 DG5C04259.1 Chr5 426 1278 45,754.54 6.09 176,990,965 176,993,974
DgTCP20 DG5C05852.1 Chr5 320 960 33,538.98 6.05 225,545,972 225,547,688
DgTCP21 DG6C01132.1 Chr6 302 906 32,382.92 6.50 31,588,652 31,591,023
DgTCP22 DG7C01355.1 Chr7 255 765 27,479.72 6.14 48,396,599 48,397,363

3.2. Phylogeny and Classification of the DgTCP Proteins

Based on the phylogenetic tree of 22 orchardgrass, 22 rice, 21 B distachyon, and
24 A thaliana, TCP proteins were constructed using the neighbor-joining (NJ) method
to clarify the phylogenetic relationships and evolutionary history of the TCP gene family
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(Figure 1). Two classical subfamilies, class I and class II, were identified from the topology
of the NJ tree and A thaliana classification. Eleven DgTCPs belong to class I (PCF or TCP-P),
and the other 11 belong to class II (TCP-C) (Figure 1). The class II group is further divided
into CYC/TB1 (4 DgTCPs) and CIN subclasses (7 DgTCPs) (Figure 1). Thus, we performed
multiple sequence alignments on the TCP domains of all DgTCP members to comprehend
the phylogenetic relationships of the DgTCPs. The TCP domain comparison and phyloge-
netic analysis indicated that orchardgrass TCP proteins have class I (PCF) and class II (CIN
and CYC/TB1) groups (Figures 1 and 2). Class I proteins lack four amino acids at their
basic domain compared with class II proteins.
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Figure 1. An unrooted phylogenetic tree containing TCP proteins from orchardgrass, rice, A thaliana,
and B distachyon. Green shading, CIN subclass; yellow shading, CYC/TB1 subclass; purple shading,
PCF subclass. The grey circle, red pentagram, black square, and blue triangle represent the rice,
orchardgrass, A thaliana, and B distachyon TCPs, respectively.

3.3. The DgTCP Gene Structure and Protein Motif

The structural characteristics of all DgTCPs were analyzed to comprehend the evolu-
tion of the TCP gene family in orchardgrasss (Figure 3b). All class I DgTCP genes, except
DgTCP5 and DgTCP22, lack introns. In class II, all CIN genes possess one or two introns,
while CYC/TB1 genes lack introns.
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Figure 3. The phylogenetic tree of the orchardgrass TCP gene family, the gene structures, and the
motifs. (a) The phylogenetic tree of D glomerata TCP proteins (DgTCP). (b) Exon–intron structures of
DgTCP proteins. Blue squares indicate UTR, black lines indicate introns, and green squares indicate
CDS. (c) The colored squares represent the conserved motifs of the DgTCP proteins.

Figure 3c shows 10 conserved motifs of the 22 DgTCP proteins which were identified
using MEME to reveal the structural characteristics of orchardgrass TCP. The amino acid
sequence for each motif (Table S6) shows that the conserved motifs have 6–42 amino acids.
All DgTCP protein contain motifs 1 and 2. Moreover, DgTCP proteins from the same
subfamilies contain similar motifs. For instance, members of clade PCF contain motif 3,
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while the clades CIN and CYC/TB1 lack motif 3. All clade CIN members contain motifs 7
and 9, while PCF members contain motifs 5, 6, and 8.

Additionally, some motifs, such as motifs 4 and 10, are shared by two classes. These
results indicate that the motifs present only in some subgroups may be associated with
unique functions. Nevertheless, the unique functions of these motifs in the plant life cycle
have not been identified and need to be explored further.

3.4. Chromosomal Localization, Gene Duplication, and Synteny Analysis

The 22 orchardgrass TCP genes are randomly distributed on 7 chromosomes (Figure 4).
Chromosome 4 contained six TCP genes, and chromosomes 3 and 5 had five TCP genes
each. Three TCP genes mapped to chromosome 1, but only one mapped to chromosomes 2,
6, and 7.

The duplication event is important for analyzing the evolution and expansion of the
gene families. The orchardgrass genome has five pairs of segmental duplicates (Table S7),
including DgTCP2/DgTCP14, DgTCP3/DgTCP5, DgTCP4/DgTCP9, DgTCP6/DgTCP12, and
DgTCP7/DgTCP22 (Figure 5, linked with red lines).
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The five comparative syntenic maps show the evolutionary relationships among
TCPs in different species, including A thaliana (dicotyledonous plant), O sativa, S bicolor,
B distachyon, and H vulgare (Figure 6). The homologous pairs between D glomerata and
the 5 species were 33 (O), 31 (S bicolor), 30 (B distachyon), 23 (H vulgare), and 5 (A thaliana)
(Table S8). These results indicate that the TCPs in the monocotyledons are highly conserved
and homologous.
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3.5. Putative Cis-Acting Elements of Orchardgrass DgTCPs

The cis-elements in promoters are essential for transcriptional regulation and gene
function analysis. Therefore, to provide further insight into the gene functions and regu-
lation mechanisms of DgTCP genes, 93 cis-elements possibly involved in phytohormone
response, plant growth and development, and stress response were identified to unravel
the functions and regulatory mechanisms of DgTCP genes (Table S9). The TATA- and
CAAT-box had the most cis-elements among the 22 DgTCPs (Table S9). Interestingly, the
AACA-motif, MBSI, HD-Zip 1, circadian, and AuxRR-core only existed in 1 of 22 DgTCPs
(Figure 7), indicating their likely unique roles in those genes and, by extension, the regula-
tory pathways and processes involving those genes.
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The promoter regions of one and three DgTCPs are two cis-elements (AACA-motif and
GCN4-motif) that participate in endosperm expression. Besides, NON-box and CAT-box
were associated with meristem expression plant growth and development. The seed-specific
regulatory element (RY element) and zein metabolism regulatory element (O2 site) were
identified in six and nine DgTCPs, respectively. In addition, a circadian control element
(circadian), a flavonoid biosynthetic regulation element (MBSI), a cell cycle regulation
element (MSA-like), and a palisade mesophyll cells regulatory element (HD-Zip 1) were
also discovered in the promoter regions of DgTCPs (Figure 7). In several hormone-related
cis-elements, the salicylic acid (TCA element), the auxin-responsive element (AuxRR core
and TGA element), the gibberellin-responsive element (GARE motif, TATC-box, and P-box),
the Me-JA-responsive element (CGTCA motif and TGACG motif), and the ABA-responsive
element (ABRE) were found in the promoter region of 9, 9, 15, 19, and 19 DgTCP genes,
respectively (Figure 7). In addition, the DgTCP promoters contained several cis-elements
that were related to several stresses (drought, anaerobic induction, and low temperature)
(Figure 7).

3.6. Expression Profiles of DgTCPs in Different Tissues and Developmental Stages

The expression profiles of 2, 5, and 14 DgTCP genes were the highest in the leaf,
spike, and stem, respectively (Figure 8a). Moreover, DgTCP1 and DgTCP9 had higher
transcription levels in the flowers, revealing that these genes might be important for the
growth of different orchardgrass tissues.

The expression patterns of the early- (Baoxing) and late-flowering (Donata) cultivars
were analyzed at five flower bud development stages to identify their potential physio-
logical functions in flowering. In most developmental stages, the expression of DgTCP9
and DgTCP6 was higher in “Baoxing” than “Donata” (Figure 8b). TCP15 expression was
similar in “Baoxing” and “Donata” before, during (downregulated), and after vernalization
(upregulated). TCP18 was significantly upregulated during vernalization in “Baoxing” but
showed no change in “Donata”. However, it was upregulated in “Baoxing” and “Donata”
during the late vernalization stage and similar in “Baoxing” and “Donata”. From after ver-
nalization to the heading stage, DgTCP2, DgTCP4, DgTCP16, DgTCP17, and DgTCP21 were
significantly upregulated during the before heading stage in “Baoxing” and the heading
stage in “Donata”.
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Gene expression data were retrieved from four tissues of low- (D20170203) and high-
tillering (AKZ-NRGR667) orchardgrass to determine the roles of DgTCPs in regulating
growth, and development. All DgTCPs were differentially expressed in the four tissues,
contrary to their expression under normal conditions (Figure 9). In tiller buds, over half
of the DgTCPs were highly expressed in the low- (D20170203) and high-tillering (AKZ-
NRGR667) varieties. The expression of TCP1 was significantly higher in D20170203 than
AKZ-NRGR667 in the four tissues. However, the expression of TCP20 was higher in the
leaves of AKZ-NRGR667 than in D20170203 but similar in other tissues. The expression of
TCP10 was higher in the tiller bud of D20170203 than in AKZ-NRGR667 but similar in other
tissues. Interestingly, the expression of TCP9 was higher in the tiller buds of D20170203
than those of AKZ-NRGR667 but lower in the leaves of D20170203. Thus, DgTCP1 and
DgTCP10 probably inhibit tiller bud development in the two varieties in a differential
pattern, ultimately resulting in different phenotypes.
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AKZ-NRGR667 (high-tillering). The tissues of D20170203 include the tiller bud, D_LB; the shoot base,
D_LS; the root, D_LR; and the leaf, D_LL. The tissues of AKZ-NRGR667 include the tiller bud, A_HB;
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3.7. The Expression of DgTCP Genes under Six Abiotic Stresses

Figure 10 shows the expressions of 14 DgCTPs in “Baoxing” under six abiotic stresses
(drought, salt, alkali, Me-JA, ABA, and SA). Salt stress suppressed the expression of
two genes (DgTCP8 and DgTCP18) throughout the salt time points and downregulated
eleven genes in the early stages (1–3 h) of salt stress. Drought stress upregulated 13 DgTCPs,
and the highest values ranged from 1.13-fold (DgTCP3) to 16.89-fold (DgTCP1). Addi-
tionally, six genes (DgTCP2, DgTCP12, DgTCP15, DgTCP16, DgTCP17, and DgTCP18)
showed significantly higher expression 1 h after treatment with an alkali solution. In
contrast, other DgTCPs were upregulated at 6 h of alkali treatment, while DgTCP8 was
suppressed at all time points. Nine DgTCPs were highly induced under ABA treatment,
and DgTCP12 displayed the highest expression. Nevertheless, ABA treatment inhibited
DgTCP3, DgTCP8, DgTCP9, DgTCP16, and DgTCP19 at all time points. Me-JA treatment
upregulated five (DgTCP1, DgTCP2, DgTCP6, DgTCP10, and DgTCP17), one (DgTCP8), and
two genes (DgTCP3, DgTCP12), which peaked at 3, 6, and 12 h, respectively. These genes
were upregulated ranging from 1.26-fold (DgTCP18) to 20.16-fold (DgTCP12). In contrast,
Me-JA showed no observable regulation in four genes (DgTCP4, DgTCP8, DgTCP15, and
DgTCP16) but downregulated DgTCP9 and DgTCP19. Furthermore, SA treatment sup-
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pressed the expression of DgTCP3, DgTCP9, and DgTCP19 across the time points, with six
(DgTCP1, DgTCP2 DgTCP12, DgTCP15, DgTCP16, and DgTCP17) and three genes (DgTCP4,
DgTCP6, and DgTCP18) peaking at 6 and 24 h, respectively. Six stress treatments upregu-
lated DgTCP1, DgTCP2, DgTCP6, DgTCP12, and DgTCP17, but DgTCP levels varied under
different stresses and time points when combined with the stress expression pattern data.
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4. Discussion

The plant-specific TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL
FACTOR (TCP) gene family are crucial plant-specific transcription factors with various
functions in many processes, including hormone biosynthesis, flower development, leaf
development, lateral branching, and defence response. To date, the TCP gene family has
been identified in many plants, such as switchgrass (Panicum virgatum) [60], maize [61],
Arabidopsis, and rice [62]. However, a comprehensive report of the TCP gene family in
high-quality forages, such orchardgrass, is lacking.

This research identified 22 TCP genes in the orchardgrass genome [46]. All the corre-
sponding DgTCP proteins have a highly conserved TCP domain (motifs 1 and 2). Thus,
DgTCPs possibly have similar DNA-binding and protein–protein interaction patterns [1,4].
Moreover, sequence alignment and phylogenetic analysis revealed that the 22 DgTCPs are
divided into two major subclasses (Figures 2 and 3), which is consistent with previous
results [5]. Each subclass contained TCP genes from B distachyon, rice, and Arabidopsis.
Furthermore, the orchardgrass TCP genes are closely related to the TCPs of rice and B dis-
tachyon, indicating that they evolved from a common ancestor as Gramineae. These results
show that many TCP genes from the same ancestor possibly experienced different differ-
entiation patterns at different lineages. Moreover, DgTCPs in the same class and subclass
had similar exon–intron structures (Figure 3b) and relatively conserved motifs (Figure 3c),
further supporting the close evolutionary relationships between DgTCPs.

The number of DgTCPs was higher than those in moso bamboo (16) [63], grapevine
(Vitis vinifera) (17) [64], strawberry (Fragaria vesca) (19) [65], and Sorghum (20) [66], In con-
trast, the number of DgTCPs was lower than the number in A thaliana (24) [62], maize
(46) [61], soybean (Glycine max) (54) [67], and tobacco (Nictiana tabacum) (61) [68]. Tandem,
segmental, and whole-genome duplication are important sources of the functional diversity
and evolution of gene families [69]. Previous research showed that D glomerata experi-
enced whole-genome replication events [46]. This study identified five segmental repeat
gene pairs in the DgTCP gene family and no tandem duplication (Figure 5). Segmental
duplication was more beneficial for expanding and evolving the D. glomerata TCP gene
family. These results are similar to those described in A thaliana and rice, indicating that
TCP duplication in plant genomes possibly has a common mechanism [62,70].

Abiotic stresses affect plant growth and development, quality, and yield [33], and
TCP genes are broadly involved in the regulatory processes of plant life [71]. Therefore,
exploring the potential functions of TCP genes in orchardgrass under different abiotic
stresses is necessary. In this study, salt and drought treatments upregulated more than
half of the identified DgTCPs, similar to the results from rapeseed (Brassica napus) [72],
cotton [17], and switchgrass [60]. Nonetheless, ABA treatment inhibited five DgTCPs at all
time points. The ABA signal transduction pathway is significant for stress response [73].

Moreover, TCPs interact with other genes in JA biosynthesis to influence growth, devel-
opment, and abiotic stress responses. For instance, TCP4 encodes the enzyme that catalyzes
a crucial step in JA synthesis by positively regulating the LOX2 gene [9]. Deactivating
TCP4 in plants downregulates LOX2, thus reducing JA synthesis and increasing plant
sensitivity to stress [9]. The expression patterns of orchardgrass TCP genes were diverse
after Me-JA treatment (Figure 10). For example, Me-JA treatment lowered the expression of
DgTCP16 of the AtTCP4-like gene, which may be because the promoter region of TCP16
lacks Me-JA-related cis-elements (Figure 7).

In A thaliana, TCP8 and TCP9 combine to the TCP-promoter binding site of the SA
biosynthesis gene ICS1, thus enhancing ICS1 expression [74]. Additionally, SA treatment
increased the expression of many cis-elements related to SA in the promoter regions of the
DgTCP genes (Figure 7), including DgTCP2, DgTCP4, DgTCP12, and DgTCP18 (Figure 10).
Therefore, DgTCP genes may play a role in SA transduction. These results suggest that
DgTCP genes are essential for plants to cope with abiotic stress.

Gene function can be inferred from the expression profile of that gene [75]. Thus,
this research inferred the functions of 22 DgTCPs using their expression patterns in five
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tissues (Figure 8a). The results showed different expression profiles of the 22 DgTCPs in five
tissues, indicating that orchardgrass TCPs might be related to the development of different
tissues. The highest expression of several DgTCPs, such as DgTCP3, DgTCP4, DgTCP15,
and DgTCP19, occurred in the stem. Several TCP genes are highly expressed in the stem,
including 60 in cotton [17], 11 in rapeseed [72], and 9 in soybean [67]. Some DgTCP genes,
such as DgTCP1 and DgTCP9, are highly expressed in flowers, indicating that DgTCP
genes possibly participate in flowering. As with this study, 16 and 12 highly expressed
TCP genes were reported in rapeseed and soybean [67,72]. Moreover, most duplicate gene
pairs had the same functions and similar expression patterns, except DgTCP4, DgTCP9,
DgTCP7, and DgTCP22, which showed different expression profiles. This diverse expression
may be related to differences in the evolution of duplicate genes or upstream regulatory
mechanisms, causing functionalization in one of the duplicate genes.

Next, we compared the potential role of TCP genes in regulating flowering time at
the five stages of late- and early-flowering orchardgrass (Figure 8b). Flowering is crucial
for the growth and development of Gramineae, and variations in flowering time directly
affect orchardgrass quality and yield. Moreover, vernalization is a critical way to control
flowering time and floral organ development [57]. Thus, the unique expression profiles of
DgTCP15 and DgTCP18 at different floral bud developmental stages suggests that these
genes may regulate flowering time through the vernalization pathway. For example,
A thaliana plants that overexpress AtTCP23 have the late-flowering phenotype [76]. In
this study, DgTCP6 was expressed at higher levels in “Donata” than in “Baoxing” from
the before vernalization stage to the heading stage of late-flowering “Donata” and early-
flowering “Baoxing”. DgTCP6 and AtTCP23 belong to the same branch on the evolutionary
tree, indicating that they are homologous genes. This alignment implies that DgTCP6
and AtTCP23 have similar functions. Thus, a high expression of DgTCP6 promotes the
late-flowering phenotype in “Donata”. Furthermore, the DgTCP9 gene, which has a similar
expression pattern as DgTCP6 (Figure 8b), may also have a similar flowering regulatory
function. Moreover, AtTCP4 and AtTCP13, AtTCP7 induce early flowering by directly
acting on the AP1 promoter to improve its transcript activation ability and activating the
transcription expression of the flowering integration gene SOC1, respectively [77,78]. The
three TCPs were grouped with DgTCP16 and DgTCP21, DgTCP17, respectively (Figure 1).
Additionally, from the before heading stage to the heading stage, the earlier upregulation
of DgTCP16, DgTCP17, and DgTCP21 in “Baoxing” relative to “Donata” indicates that they
influence early flowering in “Baoxing” and reflect the functions of AtTCP4 and AtTCP13,
AtTCP7 in A thaliana. Altogether, the diverse expression of DgTCPs at the five floral bud
stages in the different cultivars indicates their regulatory role in orchardgrass flowering.

Finally, the roles of DgTCP1 in tillering were analyzed in the respective cultivars.
Tillering is an important agronomic trait in forage crops as it determines the seed yield and
aboveground biomass of forage grasses [79,80]. In this study (Figure 9), the tissue-specific
expression patterns of DgTCP1 in the two forage varieties revealed that a high expression
of DgTCP1 may suppress tillering. Moreover, OsTCP19, a DgTCP9 homologous gene
(Figure 1), negatively regulates rice tillering by inhibiting DLT, which promotes tillering [81].
The unique expression of DgTCP9 in high- and low-tillering materials indicates that DgTCP9
possibly confers low-tillering in “D20170203”. In summary, DgTCPs might be important
for tiller development; thus, they require further experimental verification.

5. Conclusions

This study identified 22 DgTCPs from the whole genome of D glomerata. Phylogenetic
characteristics divided the 22 DgTCPs into class I and II subfamilies. The study also revealed
the protein sequence length, CDS length, pI, and molecular weight of the proteins predicted
from the 22 DgTCP genes. Furthermore, we identified many cis-elements in the DgTCP-
promoter sequences, revealing a complex regulatory network that possibly controls DgTCP
genes. The 22 DgTCP genes contained five pairs of segmental repeat genes distributed on
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seven chromosomes, indicating that segmental duplication was the primary mechanism
for DgTCP gene expansion.

Furthermore, the expression of the DgTCPs under various abiotic stresses at different
stages (tiller bud and floral bud) and tissues suggested that many DgTCP genes regulate
stress tolerance and development in orchardgrass. Specifically, TCP9 probably regulates
flowering time, tiller number, and drought stress in D glomerata. This genome-wide analysis
of orchardgrass is significant for identifying new DgTCP genes with novel functions and
provides a foundation for breeding high-quality orchardgrass varieties and the functional
validation of DgTCP genes in the future.
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of high- and low-tillering orchardgrass. Table S4: The name and sequence information of primers
involved in this study. Table S5: List of the 22 DgTCP genes identified in this study. Table S6: Analysis
of conserved motifs of TCP protein in orchardgrass. Table S7: Segmental duplication analysis of TCP
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