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Abstract: The tissue-specific expression and epigenetic dysregulation of many genes in cells derived
from the postmortem brains of patients have been reported to provide a fundamental biological
framework for major mental diseases such as autism, schizophrenia, bipolar disorder, and major
depression. However, until recently, the impact of non-neuronal brain cells, which arises due to
cell-type-specific alterations, has not been adequately scrutinized; this is because of the absence of
techniques that directly evaluate their functionality. With the emergence of single-cell technologies,
such as RNA sequencing (RNA-seq) and other novel techniques, various studies have now started
to uncover the cell-type-specific expression and DNA methylation regulation of many genes (e.g.,
TREM2, MECP2, SLC1A2, TGFB2, NTRK2, S100B, KCNJ10, and HMGB1, and several complement
genes such as C1q, C3, C3R, and C4) in the non-neuronal brain cells involved in the pathogenesis
of mental diseases. Additionally, several lines of experimental evidence indicate that inflammation
and inflammation-induced oxidative stress, as well as many insidious/latent infectious elements
including the gut microbiome, alter the expression status and the epigenetic landscapes of brain non-
neuronal cells. Here, we present supporting evidence highlighting the importance of the contribution
of the brain’s non-neuronal cells (in particular, microglia and different types of astrocytes) in the
pathogenesis of mental diseases. Furthermore, we also address the potential impacts of the gut
microbiome in the dysfunction of enteric and brain glia, as well as astrocytes, which, in turn, may
affect neuronal functions in mental disorders. Finally, we present evidence that supports that
microbiota transplantations from the affected individuals or mice provoke the corresponding disease-
like behavior in the recipient mice, while specific bacterial species may have beneficial effects.
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1. Introduction

The expression and epigenetic dysregulation of hundreds of genes have been shown
to be present in mental diseases. While most of the relevant studies have shown expression
and different types of epigenetic alterations in blood cells or DNA derived from saliva,
more than two dozen studies focus on postmortem brain samples. Since each tissue and
each cell type (depending on the age of the tissue) has its own specific gene expression
pattern or epigenetic landscape, scrutinizing cell-specific gene expression and epigenetic
alterations has remained a challenging undertaking when examining affected postmortem
brain samples. Whereas the cerebral cortex has six layers of neurons with different functions,
and thus different patterns of gene expression and a different epigenetic landscape, non-
neuronal cells comprise a large portion (~50%) of the brain mass and cell count [1,2].
Although for a long time the astroglia cells were thought to provide passive structural
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support, recent data indicate that they are key regulators of neuronal protection, synaptic
pruning and maintenance, and network formation, and hence influence memory and
learning as well as cognitive functions. As neuronal cells have different subtypes [3], as
shown in Figure 1, several studies have addressed the epigenetic dysregulation of brain
neuronal cells in major mental diseases [4–8]. Recently, it has become increasingly clear that
a significant degree of the gene expression patterns and associated epigenetic alterations
that define mental diseases originate from the brain’s non-neuronal cells, such as the
microglia and astrocytes. Glial cells are also present and active in the peripheral nervous
system. For example, enteric glia cells interact with the neighboring gut cells and are
responsive to enteric bacterial infections and inflammatory factors [9].
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Until recently, the isolation of astroglia from neurons and other brain cells for sep-
arate expression or epigenetic analysis was a methodological challenge; however, novel
techniques, such as single cell RNA-Seq and DNA methylation profiling, may enable
comprehensive single cell expression along with epigenetic analyses. Additionally, cell
sorting techniques (e.g., using CD11b magnetic beads, which comprise cell-lineage-specific
antibodies for microglia isolation) could improve the isolation of specific cells from mul-
ticellular tissues [10,11]. Using these techniques now, in the era of multi-omics, scientists
can employ correlational gene or protein expression and genetic or epigenetic analyses
of different brain regions to identify the main cells involved in disease pathogenesis in
order to design novel therapies or preventive remedies for mental diseases. However, it is
important to note that, despite the fact that single cell omics could allow for the detection
of rare cell populations and the characterization of a diversity of cell types based on gene
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expression patterns and epigenetic marks, it still lacks the ability to differentiate transient
and stable modifications.

In this narrative review, we discuss the gene expression and epigenetic data of glial
cells and astrocytes, the primary examples of brain non-neuronal cells, to illustrate their
contribution to the pathogenesis of mental diseases. While several epigenetic mechanisms
such as DNA methylation, histone modifications, microRNAs, and RNA editing are in-
volved in gene expression regulation in mental diseases, as discussed elsewhere [12,13],
our main focus is on DNA methylation alterations; these constitute the main feature of the
epigenetic dysregulation of non-neuronal cells, as addressed in the following sections.

2. Non-Neuronal Cells of the Brain

In the human brain (regardless of blood vessels and circulating blood cells), differ-
ent types of non-neuronal cells (Figure 1), including astrocytes, microglia, the progenitor
NG2-glia (collectively known as astroglia), and oligodendrocytes, make up almost 50%
of the brain’s cells and mass [1,2,14,15]. Oligodendrocytes are involved in the myeli-
nation of neuronal cells; meanwhile, astrocytes (derived from the neuroectoderm) are
tortuously connected to neuronal synapses and are involved in synapse pruning, among
other functions [16]. The progenitor NG2-glia exhibit stem-cell-like behavior (which can
generate oligodendrocytes, astrocytes, or neurons to repair brain injury), and, as the brain’s
macrophages (which originate from the mesoderm and enter the brain during early em-
bryogenesis), microglia mediate immune responses and clear debris, dead neurons, and
infectious elements by phagocytosis. Nevertheless, overactivation of the microglia leads to
brain damage in specific CNS diseases [17].

Astrocytes are the most abundant brain non-neuronal cells and have at least four
morphological subtypes in human brain [18], including: (i) interlaminar astrocytes, which
reside in layer 1 and whose millimeter-long processes extend to layers 2–4; (ii) protoplasmic
astrocytes, the most abundant astrocytes in the human brain, which are more complexly
arborized compared to rodents and can each cover 250,000–2000,000 synapses; (iii) varicose
projection astrocytes that are engaged with the blood vessels; and (iv) fibrous astrocytes,
which are larger in size, less branched, and reside in the brain’s white matter.

It appears that the complex development of astroglia is parallel with or secondary
to the evolution and expansion of neuronal cells in different species [19]. As reviewed
by Vasile and colleagues and illustrated in Figure 2, the glia-to-neuron ratio increases
according to the species’ evolutionary stage and cognitive capability. For example, in
C. elegans, this ratio is 0.18, in rats it is 0.4, in the whole human brain it is 1, and in
the human cerebral cortex it is 1.4 [20]. Whereas the structure of the astroglia is more
complex in humans, the glia-to-neuron ratio is approximately 25% more than in non-
human primates [21]. This implies that astroglia may have more significant roles in
functional and cognitive evolution, rather than being merely for structural support. In
fact, astrocytes with thousands of processes interact with all of the cell types of the central
nervous system (CNS) and are involved in a wide range of functions, supporting the
CNS structure, metabolism, blood–brain barrier formation, control of vascular blood flow,
axon guidance, synapse formation, and the modulation of synaptic transmission [22].
Although astrocytes are entangled with most synaptic structures, this entanglement is
dynamic and rapidly retracts during synaptic expansion but is reestablished after synapse
reorganization [23]. Therefore, a continuous and sophisticated neuron–glia interaction is
required to preserve the healthy architecture of the adult brain and its function. Hence,
any alteration in astroglia characteristics (e.g., de novo mutation or epigenetic alterations)
may affect the tailoring of the astroglia–neuron interplay and cause re-adjustments that
lead to a neurological or mental disease. Remarkably, while neuronal duplication is rare
in adulthood, glia and astrocytes duplicate in the adult brain [24,25]. More importantly,
astrocytes can be converted to neurons, which provides an opportunity for neurogenesis
derived from astrocytes in adulthood. This is mediated by the PAX6 gene, which is inhibited
by miR-365, and its expression is reduced by long-term risperidone treatment [26,27].
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Figure 2. Glia-to-neurons ratio, according to the species’ evolutionary stage. The glia-to-neuron
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Astrocytes also express nearly all neuronal receptors, though their expression depends
on the main neurotransmitters released by the neighboring neurons [28]. This indicates
that neuronal signaling may synchronize astrocytes for proper activities/functions, such
as neurotransmitter removal or ion homeostasis. As ~100 billion human neuronal cells
produce 15 trillion electrical and chemical synapses and each neuron uses ~4.7 billion ATP
molecules per second, astroglia are among the key providers of ATP and other metabolic
supports for neurons and their synapses [19]. Moreover, metabolites, such as lactate, which
are produced by astroglia, as well as exogenous L-lactate, induce axon regeneration by
acting on metabotropic GABAB receptors (GABBR) expressed by neurons [29]. On the other
hand, since the excitatory neurotransmitter glutamate is a strong endogenous neurotoxin
and generates plenty of reactive oxygen species (ROS) during neuronal activity, astroglia
cells are responsible for the clearance of these endogenous toxins. At the same time, like
inhibitory neurons, microglia, i.e., the brain’s immune cells, suppress neuronal activity by
catabolizing extracellular ATP (released by astrocytes and neurons upon neuronal activa-
tion) to adenosine, which acts on A1 receptors, mitigating excessive neuronal activation;
meanwhile, microglia ablation induces seizures [30].

Microglia have relatively long lifespans, though shorter than those of neurons. In
mice, the lifetime of microglia is around 15 months; thus, half of the microglia population
survive a mouse’s lifespan under normal conditions [11,31]. In humans, the median rate
of microglia turnover is almost 28% per year, but the lifespan of some microglia could be
more than two decades [32]. However, in the event of any brain damage, they have the
capacity to proliferate and repopulate in situ [11].

Microglia exert multiple functional roles and contribute to the building of the neuronal
circuit through synaptic pruning and stripping during development; they participate
in surveillance by secreting neurotrophic factors that react against infectious agents or
toxic elements and engage in phagocytic debris clearance, including the removal of dying
neurons [33]. In particular, as respiratory, oral, and gut microbiota and their byproducts
may pass through mucosal layers and affect different tissues [34], microglia are key players
in safeguarding the brain against intrusive infectious and inflammatory elements. However,
their overactivity may disturb other brain cells and alter their epigenetic landscapes [17,35].
Here, we provide data regarding glial dysfunction, focusing in particular on epigenetic
aberrations in major mental diseases; then, we present supporting evidence indicating that
glia dysfunction might be linked to gut microbiome alterations in these diseases.

3. Glia Dysfunction in Autism

The role of glia dysfunction, particularly Bergmann Glia in glutamate removal, is
well described in autism [36]. Single-cell RNA sequencing revealed that autism-associated
transcriptome alterations in specific cortical cell types are related to “synaptic signaling
of upper-layer excitatory neurons” and microglia [37]. A large whole-genome study of
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postmortem brain samples also indicated that DNA methylation alterations associated with
autism are involved in the immune system, synaptic signaling, and neuronal regulation and
are highly correlated with the affected genes in patients with chromosome 15q duplication
and H3K27 acetylation [38].

Some important microglia genes, such as TREM2 (as the microglia innate immune
receptor gene involved in synapse pruning) are also linked to autism pathogenesis. In mice,
the lack of expression of TREM2 is associated with autism-like behavior and, in humans,
a reduced TREM2 protein level correlates with the severity of autism symptoms [39].
Additionally, decreased expression of TREM2 is associated with increased expression
of TNFA, a pro-inflammatory cytokine, and NOS2 (nitric oxide synthase 2) in mice [40].
Interestingly, sodium valproate (an epigenetic drug that inhibits HDACs) decreases TNF-α
and NOS2 expression levels [41], hinting at an opportunity for autism epigenetic therapy
using HDAC inhibitors. Experimental evidence indicates that TREM2 is also regulated
by microRNAs. In this regard, as it is known that the up-regulation of miRNA-34a (an
NF-κB-sensitive miRNA) targets TREM2 and down-regulates its expression in microglia
cells [42], increased expression of miRNA34 a/b/c was also shown in cortical tubers of
patients with tuberous sclerosis, an autism spectrum disease [43]. There is also evidence that
TREM2 expression is regulated by DNA methylation. For example, DNA hypomethylation
of TREM2 intron 1, which is associated with its increased expression, was shown in the
blood cells of patients with SCZ and Alzheimer’s disease [44,45]. On the other hand,
increased DNA methylation of CpG sites located upstream of the TREM2 transcription start
site is reported in the superior temporal gyrus of patients with Alzheimer’s disease [46].
However, in the hippocampus of patients with Alzheimer’s disease, the higher levels of
DNA methylation were reported to be due to the enrichment of 5-hydroxymethycytosine
associated with upregulation of TREM2 expression [47]. Considering these data, further
study of the epigenetic dysregulation of TREM2 is warranted in autism.

Methyl-CpG binding protein 2 (MECP2) is another important gene in the pathogenesis
of autism spectrum syndrome, specifically in Rett syndrome. In general, Rett syndrome
is due to the mutation of MECP2 located in chromosome X. The disease appears mostly
in females, as males affected by this mutation usually die shortly after birth. In addition
to its mutation, promoter DNA hypermethylation of MECP2, associated with its reduced
protein expression, was shown in the frontal cortex of male autistic patients [48]. Based on
recent data, while neuronal MECP2 expression is more than that observed in astrocytes, in
males, a higher DNA methylation level of MECP2 regulatory regions is associated with
reduced expression of MECP2 in astrocytes [49]. This supports the idea that astrocytic
DNA hypermethylation of MECP2 may be a mechanism for disease pathogenesis in male
autistic patients. In this regard, previous animal studies have shown that the re-expression
of astrocytic MECP2 in globally MECP2-deficient mice improves their behavioral and
molecular aberrations [50]. Furthermore, as microglia pathology due to MECP2 dysfunction
was later proposed as the leading cause of Rett syndrome and autism pathogenesis [51], it
has been shown that MECP2 regulates the expression of “microglia genes in response to
inflammatory stimuli” [52].

With the involvement of microglia, it is not surprising that the immune system and
complement proteins, such as C1q, C3, and C4, as well as TGFB2, which contribute to
synapse pruning during brain maturation [53], are among the key players in autism
pathogenesis [54,55] and in other major mental diseases, such as SCZ [56,57]. Relatedly,
whole-genome DNA methylation analysis uncovered epigenetic dysregulation of several
complement genes such as C1Q, C3, and ITGB2 (C3R), as well as several other inflamma-
tory genes (e.g., TNF-α, IRF8, and SPI1) in postmortem brain samples of patients with
autism [58]. Therefore, these findings (as summarized in Table 1) call for more studies on
the astroglia-mediated epigenetic dysregulation of complement genes in autism.
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Table 1. Genes linked to non-neuronal brain cell function and supporting evidence indicating their
epigenetic dysregulation in mental diseases.

Gene Active in Functions Phenotypes Expression Status Epigenetic Alteration(s) References

TREM2 Microglia synapse pruning

Autism Decreased in brain Increased miRNA-34a [39,43]

Alzheimer’s
Disease Increased in blood cells DNA hypo-methylation [44]

SCZ
Increased in blood cells DNA hypo-methylation [45]

Superior temporal gyrus
(No expression study) DNA hyper-methylation [46]

Increased in
hippocampus

DNA hypermethylation (higher
5-hydroxymethylcytosine) [47]

MECP2 Astrocytes
Neurodevelopment

and regulation of
microglia genes

Autism Reduced in the
frontal cortex DNA hyper-methylation [48,49]

C1q, C3
and C4

Microglia and
astrocytes Synapse pruning Autism and

SCZ
Increased in several

brain areas (e.g., DLPFC)
Different DNA methylation

alterations [54–59]

C3 Microglia synapse pruning Alzheimer’s
Disease

Increased in brain and
middle temporal gyrus DNA hypo-methylation [60,61]

C4a Microglia synapse pruning SCZ Increased in blood cells Not defined in SCZ (regulated
by DNA methylation in ADHD) [62,63]

SLC1A2/GLT1 Astrocytes

Glutamate
transporter and

extracellular
synapse glutamate

removal

SCZ, BD Increased in brain
Regulated by miR-218, DNA

methylation and
histone acetylation

[64–67]

Depression Reduced in
lateral habenula ? [68,69]

S100B Mainly
astrocytes

Hippocampal
synaptogenesis SCZ Increased in blood cells

and serum DNA methylation alterations [70,71]

MHC class I Microglia Synaptic pruning SCZ Reduced in brain
(DLPFC) and blood DNA methylation alterations [58,72]

NDN Astrocytes Neurodevelopment,
spine formation SCZ and autism ? DNA Hypo-methylation

(Imprinted gene) [73]

KCNJ10 Astrocytes A potassium
channel

Depressive
symptoms

Increased in lateral
habenula Regulated by DNA methylation [69,74]

NTRK2 Astrocytes Astrocyte
maturation

Suicide Decreased in brain DNA hyper-methylation [75]

SCZ Increased in DLPFC ? [64]

GRIN2A Astrocytes Aβ cleanup Depression ? DNA hypermethylation [76]

HMGB1 Microglia Inflammation.
stimulates microglia Depression

Increased in
hippocampal microglia

and serum

Regulated by DNA
methylation,

HDAC4&5, and miR-129
[77–82]

4. Glia Dysfunction in Schizophrenia and Bipolar Disorder

Several lines of evidence indicate that inflammation and inflammation-induced oxida-
tive stress, as well as many insidious/dormant infectious elements, alter the expression
status and epigenetic landscapes of brain cells; this evidence is reviewed here and else-
where [34,83]. One of the best examples of this phenomenon concerns the impact of
maternal immune activation on brain cells’ (and, in particular, microglia) gene expres-
sion and epigenetic status in conjunction with the pathogenesis of mental diseases [84],
as discussed in more detail in the following sections. In addition, analyses of the brain
gene expression data in publicly available datasets reveal expression alterations of genes
related to cortical astrocytes both in SCZ and in bipolar disorder (BD) [85]. Other human
postmortem brain studies also revealed that the altered expression of genes that are im-
portant to glia or astrocyte functions (e.g., SLC1A2 and TGFB2) is linked to psychiatric
phenotypes [64]. Interestingly, as the expression of astrocytes’ glutamate transporter, GLT-1
(SLC1A2) exhibits >100% and 70% increases in the postmortem brains of patients with SCZ
and psychotic BD, respectively [64]. The use of ceftriaxone (an antibiotic that selectively
enhances GLT-1 expression) could reduce prepulse inhibition (which is also reduced in
SCZ patients) in rats, which could be reversed by dihydrokainate (DHK), an antagonist of
GLT-1 [86]. Other research findings indicate that GLT-1 expression is regulated by diverse
epigenetic mechanisms [65,66]. For instance, while miR-218 downregulates astrocytic GLT-1
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expression [67] and the hypo-expression of miR-218 increases susceptibility to stress, its
reduced expression has been observed in the medial prefrontal cortices of patients with
depression and suicide [87,88]. Regarding TGFB2, while its expression is increased in the
postmortem brains of patients with SCZ and psychotic BD, due to its promoter DNA hy-
pomethylation [64], other studies have shown that TGFB2 is over-expressed in the neurons
of patients with Alzheimer’s disease [89,90]. It is also the only cytokine that is increased in
the cerebrospinal fluid of these patients [91]. In vitro studies indicate that the expression
of TGFB2 is induced by toxic amyloid betas in both glial and neuronal cells. In turn, the
increased TGFB2 binds to the extracellular domain of amyloid beta precursor protein and
triggers a neuronal cell death pathway in Alzheimer’s disease. Interestingly, the degrees of
TGFB2-induced cell death are larger in cells expressing a familial AD-related mutant APP
than in those expressing wild-type APP [91,92]. Together, these data suggest the potential
roles of GLT-1 and TGFB2 epigenetic alterations in the pathogenesis of neuropsychiatric
diseases, indicating that they are legitimate targets for therapeutic interventions [93].

Other genes that are mainly expressed by astrocytes and glial cells (e.g., S100B, the
S100 calcium-binding protein B) are also linked to SCZ pathogenesis in GWAS analysis.
Moreover, just as a higher level of the S100B protein is reported in the blood cells of SCZ
patients [70], an increased serum level of S100B was also reported in BD patients [94]. While
S100B promotes hippocampal synaptogenesis after traumatic brain injury [95], there is
experimental evidence that its expression is regulated by DNA methylation [71].

Another line of evidence in support of the role of astroglia in SCZ is the existence
of D2-like receptors in astrocytes. While astroglia account for almost one-third of DRD2
binding sites in the brain cortex, and DRD3 is also expressed in astrocytes, mice deficient
for this D2-like receptor or that are treated with a DRD3 antagonist do not show astroglia
inflammatory activity in response to LPS (lipopolysaccharide) challenge. It should be noted
that, although microglia do not express DRD3, in DRD3 deficient mice, the expression of
Fizz1, an anti-inflammatory protein, is increased in glial cells (both in vitro and in vivo).
This also attenuates microglial activation in response to LPS challenge [96]. The fact that
commonly used antipsychotic drugs block DRD2-like receptors, and that the long-term use
of olanzapine alters DRD2 promoter DNA methylation levels [97], suggests that the effects
of DRD2-like antagonists in SCZ treatment could be due to the inhibition of astroglia’s
inflammatory activity, mediated in part by DRD2 epigenetic modifications.

Human major histocompatibility complex (MHC) genes are among other genes associated
with microglia functions that are involved in SCZ pathogenesis in GWAS analyses [98,99].
MHC class I is involved in complement-mediated synaptic pruning [38] and exhibits
reduced expression in the brains of SCZ patients [72]. Additionally, it has been shown
that glia overactivity mediated by complement C4A (one of the genes of MHC III) and
the increased expression of C4A may have deleterious effects in SCZ [62,100]. Notably,
in a study of humanized glial chimeric mice, it was shown that mice with glial cells
produced from the iPSC of patients with childhood-onset SCZ, exhibited premature glia
migration into the cortex and reduced expansion of white matter and its hypomyelination
compared to the mice with glia from the normal controls. This was associated with a delay
in astrocytic differentiation and abnormality in astrocytic morphology, as well as reduced
prepulse inhibition, increased anxiety, and sleep problems. Additionally, the cultured glial
progenitor cells from SCZ patients exhibited aberrant expression of genes linked to glial
differentiation as well as synapse-associated genes in the RNA-seq analysis, suggesting
that the observed glial pathology originates from these cells [101]. An exaggerated synapse
pruning was repeatedly reported in adolescents, particularly in SCZ patients [102], which
could be mitigated by minocycline [103,104]; meanwhile, it has been shown that the
inhibition of microglia activity by minocycline is effective in the treatment of negative
symptoms of SCZ in randomized double-blind studies [105,106].

In addition to the relation between genetic variations of the complement system and
SCZ [100], there is also evidence that non-genetic alterations of the activity of complement
system are associated with SCZ. For example, as summarized in Table 1, increased C4
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and C1q levels were reported in the prefrontal cortices of patients with SCZ [59] and the
blood cells of antipsychotic-naive first-episode SCZ patients [63], as well as those with
chronic SCZ and in individuals at high risk for psychosis; meanwhile, increased C3 levels
were also shown in the latter group [107]. There are also reports of increased levels of
C3a, C5a, and C5b-9 in drug-free patients with bipolar disorder [108], and of increased
expression of C1q, C4, and factor B in the peripheral blood mononuclear cells of chronic
BD patients [109]. Epigenetic analysis of different elements of the complement system
in other mental diseases revealed those genes of the complement system that are linked
to glial activity and are subjects of epigenetic dysregulation (Table 1). For instance, in
whole-genome DNA methylation analysis, the epigenetic dysregulation of C1q, C3, and
ITGB2 (C3R) was reported in autism [58]. The DNA hypomethylation of C3 associated
with its increased expression was also shown in the postmortem brains of patients with
Alzheimer’s disease [60,61]. Furthermore, DNA methylation alterations affecting C4A and
C4B expression were reported in a genome-wide DNA methylation analysis of patients
with Attention-Deficit/Hyperactivity Disorder [110].

As SCZ and autism are more common in males, it is important to note that, in females,
one of the X chromosomes is subject to random inactivation by DNA methylation. Hence,
if the activity of any gene in one of the X chromosomes is imbalanced due to inherited or
de novo mutations, in a female subject, half of the neighboring cells can work normally,
partially balancing the tissue functions. For example, SRPX2, which is in chromosome X
and is involved in language and cognitive development [111], exhibits expression reduced
by almost 20% in the postmortem brains of SCZ patients [64]. Although the SRPX2 gene
codes a neuronal protein, C1q binds to SRPX2, inhibiting synapse eliminations [112]. Thus,
a close cooperation between SRPX2 and this complement is required for the fine tuning of
synapse pruning in normal brain development. In cancer research, it has been shown that
DNA methylation regulates SRPX2 expression levels [113]. Therefore, DNA methylation
alteration of SRPX2 could be an interesting subject for further studies in SCZ, as well as in
autism and dyspraxia, which are both more prevalent in males than in females. There is
also a correlation between the expression of MECP2, a methyl CpG binding protein, and
SRPX2 expression [114], which warrants further research.

Other evidence related to astroglia epigenetic alterations in mental diseases comes
from imprinted genes in which one copy of the parental alleles (in autosomes) is inactivated
by DNA methylation. In this regard, whole-genome DNA methylation analysis for rare
epigenetic variations identified that the NDN gene, which is highly expressed in astrocytes,
was linked to SCZ as well as to autism pathogenesis [73]. This gene is exclusively expressed
from the paternal allele and is in the Prader-Willi syndrome deletion region implicated in
autism pathogenesis [115].

5. Astroglia Pathology and Dysfunction in Depression

In addition to SCZ and BD, there is evidence for astroglia dysfunctions in depression.
For example, whole-transcriptome analysis using RNA-seq of human postmortem brain
samples from drug-free individuals with MDD (major depressive disorder) and suicide
revealed deficits in genes related to microglial and astrocytic cell functions [116]. Aberrant
DNA methylation patterns specific to astrocytes were also shown in the prefrontal cortices
of postmortem brain samples of patients with depression [117]. Another study reported
the upregulation of astroglia’s potassium channel gene (Kir4.1 or KCNJ10) and reduced
GLT-1 (SLC1A2) activity (which removes ~90% of extracellular/synapse glutamate) and
increased neuronal bursting activity of the lateral habenula as key factors in the induc-
tion of depression-like behaviors [68,69]. A recent study revealed that DNA methylation
regulates KCNJ10 expression in astrocytes [74]. Aberrant DNA methylation of NMDAR
(more specifically, the hypermethylation of the GRIN2A subunit) was also reported in the
hippocampus and prefrontal cortex of MDD patients [76]. However, in SCZ patients, DNA
hypomethylation of GRIN2B was shown in blood cells [118]. Interestingly, ketamine, which
is used to treat MDD, decreases neuronal bursting activity [119] by blocking glial NMDAR
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in the lateral habenula, which is considered to be the brain’s “antireward” center [68,69].
Nevertheless, in rats, ketamine’s effects on depressive-like behavior was attributed to its
activity in the regulation of astrocytic GLT-1, and also through BDNF-TrkB signaling [120].
It has also been shown that ketamine alleviates DNA hypermethylation of BDNF in the
medial prefrontal cortex and hippocampus in a mouse model of PTSD [121]. Further-
more, while BDNF and its receptor NTRK2 play key roles in astrocytes’ maturation and
functions [122], DNA hypermethylation of NTRK2 and its reduced expression was reported
in the postmortem brains of patients who died by suicide [75].

HMGB1 is another microglia-associated gene involved in depression [77,123]. Animal
studies have shown that unpredictable chronic stress can lead to microglia activation in
the hippocampus and depressive-like symptoms [124]. This type of stress could increase
HMGB1 expression in the hippocampal microglia, and the infusion of HMGB1 into the
mice hippocampus could also induce depression [78]. Interestingly, the activation of
the microglia, along with depressive symptoms, could be prevented by minocycline or
imipramine [124]. While HMGB1 is a well-known marker of inflammation, increased
expression of HMGB1, associated with its promoter DNA’s methylation alteration, was
reported in cardiac progenitor cells following hypoxia and metabolic diseases [79,80],
suggesting that DNA methylation is a mechanism for HMGB1 regulation. However, in
brain cells, HMGB1 expression is also regulated by HDAC4&5 and miR-129 [81,82], the
latter of which was shown to regulate neuronal migration in mice brains [125].

As is the case for SCZ and BD, these studies link epigenetic dysregulations of astroglia
to depression (summarized in Table 1), which is attenuated by therapeutic interventions.
However, more studies are needed to identify which internal or external factors (other than
unpredictable chronic stress) may be responsible for astroglia dysfunction in depressive
and other mental disorders, a subject that we touch on in the following section.

6. Microglia and Astrocytes, the Ambassadors of Microbiome Communication with
the Brain

While glial cells reside in the enteric peripheral nervous system and respond to gut
infection/inflammation [9], and the dysfunction of glial cells has been shown in major
mental diseases (as described above), an altered gut microbiome has been reported in
several psychiatric diseases such as autism [126–128], SCZ [129], depression [130,131], and
Alzheimer’s disease [132,133]. In addition to the gut, a saliva microbiome analysis of
drug-naïve SCZ patients also revealed that the ratio of Firmicutes to Proteobacteria was
enriched stepwise from healthy controls to clinically high-risk individuals after the first
episode of SCZ [134].

Interestingly, as shown in Figure 3, the transplantation of gut microbiota from pa-
tients with autism, SCZ, or MDD to germ-free mice induces corresponding disease-like
behaviors [131,135,136]. Similarly, fecal transplantation from old to young mice results in
poor performance in spatial learning and memory tests; this is associated with the altered
expression of hippocampal proteins linked to synaptic plasticity and neurotransmission.
The microglia of the recipient mice also exhibit an ageing-like phenotype in the hippocam-
pus fimbria [137]. Moreover, these behavioral changes are associated with neurotransmitter
or metabolic alterations. For example, mice with SCZ symptoms exhibit decreased glu-
tamate and increased glutamine and GABA levels in the hippocampus, and mice with
depressive symptoms exhibit alterations in host metabolites linked to the amino-acid and
carbohydrate metabolisms when compared to control mice [131,136]. Furthermore, fecal
transplantation from mice with stress-induced depression to normal mice can also induce
depression in the recipient mice; this is associated with a decrease in endocannabinoid
(eCB) signaling as a result of the reduced production of peripheral fatty acids, which are
precursors of eCB ligands. However, the adverse effects of altered microbiota can be allevi-
ated by the selective enhancement of “central eCB or by complementation with a strain of
the Lactobacilli genus” [138]. Other bacteria, such as Mycoplasmataceae, were also shown to
affect blood S100B levels [134], which are altered in SCZ as described above.
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Microbiota manipulation in germ-free mice also impacts fear extinction learning, which
is associated with gene expression alterations of the glia, excitatory neurons, and other brain
cells in the medial prefrontal cortex in single-nucleus RNA sequencing analysis [139]. These
mice exhibit postsynaptic dendritic spine remodeling and hypoactivity of cue-encoding
neurons, according to transcranial two-photon imaging analysis. The down-regulation of
four metabolites linked to neuropsychiatric disorders was also shown in a metabolomic
analysis of these germ-free mice, while selective microbiota re-establishment could restore
normal extinction learning [139]. On the other hand, the lack of a natural microbiome also
affects brain functions. For instance, germ-free mice exhibit increases in plasma tryptophan
and hippocampal concentrations of serotonin and its metabolite (5-hydroxyindoleacetic
acid) compared to control mice. As the brain’s neurochemical changes remain stable
until adulthood, restoring microbial colonization after weaning could reverse behavioral
alterations in the affected mice [140].

The science of the microbial colonization of the human gut was limited before the
development of microbial 16S rRNA sequencing technology. Now, it has been revealed
that the human gut contains thousands of bacterial elements, the total number of which is
ten times more than the number of cells in the human body. It is also known that the gut
microbial population (the microbiome or microbiota) collectively contains 100 times more
genes than humans and makes numerous compounds, nutrients, and vitamins that are
required for the epigenetic fine tuning of brain genes’ functions, as reviewed elsewhere [34].
As an example, the gut microbiota produces short-chain fatty acids (SCFAs), which are
well-known epigenetic modifiers and protect neurons via free fatty acid receptor 2 (FFAR2)
signaling [141].

In contrast to the traditional view that the infant gut microbiota begins to develop
after birth following exposure to the mother’s gut microbiota and environmental microbes,
recent PCR-based microbiome studies provide strong evidence that the alimentary tracts
of newborns are not sterile before birth [142]. In fact, the fetus acquires the mother’s
microbiota while in the uterus, most likely from the blood circulation. This means that
the mother’s gut bacteria cross the intestinal wall (like viral elements) and, through blood
circulation, end up in the fetus’s gut. However, after birth, the microbial community of
the mother’s milk (which is affected by several factors such as the maternal diet, pre-
pregnancy BMI, and antibiotic use during or after pregnancy) further develops the infant’s
gut microbiome community [143,144]. This supports the idea that a significant aspect of
the familial transmission of mental disease might relate to the transmission of pathological
microbiota (rather than inherited genes) to other family members. In fact, while most of
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the major psychiatric disorders are believed to be inherited genetic diseases, large-scale
genome-wide association studies failed to identify specific genes (or a number of genes)
with an effect size of even 1% as being responsible for the pathogenesis of major mental
diseases [145,146]. Therefore, the transmission of a pathological gut microbiota to family
members, particularly from a mother to her offspring (even before birth), may imitate the
futures of genetic diseases.

There is also ample evidence that the respiratory or oral and gut microbiota may
pass through the respiratory or intestinal wall and reside in different tissues after birth.
Although it is generally presumed that the immune system can ultimately eliminate or
inactivate these intrusive elements from the blood or affected tissues, this process may not
be complete and could have functional consequences both in the immune system and in
the affected tissues. Indeed, there might be borderline states, during which sub-chronic
immune activity may be present, accompanied with tissue inflammation and subsequent
tissue damage. Examples of such scenarios are well known in settled lung tuberculosis and
in chronic salmonella infection of the bile tract, or in the many latent viral and parasitic
infections described in medical textbooks (e.g., chronic active hepatitis of the hepatitis B/C
viruses, HIV, herpes simplex type 1/2, and parasitic infections such as toxoplasmosis).
More recent studies also indicate that almost 50% of the population are carriers of the
herpes virus in the cell nucleus of their peripheral nervous systems [147]. In relation to
specific brain disease, a larger number of microbial 16S rRNAs was reported in the serum
of patients with Parkinson’s disease as compared to the control subjects [148].

Considering the continuous intrusion of infectious elements into the blood circulation,
and thus into different tissues, it is not surprising that the brain tissue has an additional
immune system, the microglia, which cooperates with astrocytes to secure its protection
against infectious elements. While astrocytes are also involved in other functions, such as
neuronal nurturing, nutritional support, and synapse pruning, their unbalanced activation,
as well as malfunctions that occur due to the impact of infectious (e.g., HIV) or toxic
elements and the resultant inflammation, could affect the brain’s neuronal network [149].
This could be limited to a critical developmental period or could be chronic, with specific
or non-specific presentations. In this regard, the potential contribution of maternal immune
activation involving several cytokines that affect microglia activity is well described in the
pathogenesis of autism and SCZ [150,151]. In an animal model of psychiatric disease, it
was shown that maternal immune activation in conjunction with stress in the prepubertal
maturation period can lead to more severe behavioral symptoms in adulthood, which can
be prevented by anti-inflammatory intervention (e.g., minocycline treatment) during stress
exposure [152]. Immune activation can be further induced by the synergistic action of
specific gut bacteria. For example, it has been shown that a strain of Lactobacillus reuteri
has a peptide resembling myelin oligodendrocyte glycoprotein. Meanwhile, a strain in
the Erysipelotrichaceae family could intensify the responses of T helper cells; together, these
activate autoreactive T cells in the small intestine, leading to the worsening of symptoms in
mice models of multiple sclerosis [153]. There is also evidence that, through T helper cells,
specific gut fungi produce IL-17, which affects social behavior in mice through neuronal
IL-17 receptor signaling [154].

Other studies have shown that microglia are key elements of the “gut–brain axis”
in transmitting the impacts of gut microbiota into the brain. For instance, a recent study
reports that “gut microbiota–driven brain Aβ amyloidosis in mice requires microglia”
to manifest [155]. On the other hand, treatment with specific bacterial species such as
Clostridium butyricum could prevent microglial activation and Aβ deposits, which are as-
sociated with reductions in inflammatory cytokines and the improvement of cognitive
functions in mice models of Alzheimer’s disease [156]. In addition, while maternal mi-
crobiome dysbiosis causes neurodevelopmental disorders, associated with the increased
expression of microglial senescence genes and synaptic alterations, lactobacillus could res-
cue microglial activation/dysfunction and postnatal neurobehavioral abnormalities [157].
Interestingly, other types of environmental distress, such as psychological stress, may also
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influence microglia inflammatory activity and impact synapse pruning mediated by the
activity of the peripheral immune system, including helper T cells [158]. However, inflam-
matory signals may also contribute to microglial maturation [11]. In fact, the movement of
helper T cells into the brain tissue (at least around birth) influences microglia maturation
and synapse pruning, whereas its inhibition results in an extra number of synapses [159].
Overall, the exact mechanism(s) involved in the epigenetic dysregulation of non-neuronal
cells that influence the pathogenesis of neurodegenerative disorders are yet to be delineated.
However, the most likely explanation is the crossing of the blood–brain barrier (BBB) by
cytokines and metabolites generated by the host’s gut microbiome to regulate the activity
of epigenetic modulation enzymes (Figure 4).
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brain functions are affected. As illustrated, microbiome alterations not only affect blood inflamma-
tory cytokines, which in turn affect brain cell epigenome and functions (see Table 1), but they also
affect gut and blood nutrients and metabolites. These then influence neuronal and non-neuronal cells’
epigenetic landscape and functions, leading to disease pathogenies.

Altogether, these lines of evidence clearly suggest that the external or internal borders
of the human body are subject to constant invasions and perturbations by infectious ele-
ments, and the immune system is responsible for an ongoing clean-up operation. Whenever
the quantity of intrusive elements is high or when the functionality of the immune system is
compromised or overactivated, the affected individuals may show disease manifestations.
Abnormal gut microbiota may induce astroglia inflammation as well as inflammation-
induced oxidative stress, which may alter the epigenetic landscapes of microglia or astro-
cytes, triggering brain pathologies. In these conditions, the impact of chronic inflammatory
reactions can be remarkable, especially in inducing epigenetic alterations of the immune
system and the affected tissues [34,160]. On the other hand, several lines of clinical ev-
idence support the potential application of microbiome restoration in the treatment of
mental diseases [34]. More recently, a functional MRI (fMRI) study demonstrated that four
weeks of probiotic administration could alter the brain’s “activation patterns in response
to emotional memory” tasks in humans [161]. Other emerging evidence also supports the
idea that probiotics are useful in the treatment of autism, depression, and SCZ [162–165].
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7. Conclusions and Future Prospects

It is becoming increasingly clear that changes in the microenvironment could introduce
functional diversity into non-neuronal cells, causing alterations in the neuronal circuits
that could lead to mental health diseases. Transcriptionally divergent non-neuronal cell
populations that are responsible for disease and which cause neuronal circuits could emerge
due to the effects of factors that are present in or introduced to the microenvironment or
due to unique cell–cell interactions. The current data strongly support the notion that
astroglia (astrocytes and microglia) dysfunctions due to epigenetic or other alterations
are linked to the pathogenesis of major mental diseases mediated by inflammatory mech-
anisms. While there is ample evidence that the gut microbiome might be an important
contributor in astroglia dysfunction and disease pathogenesis (Figure 4), it remains unclear
what other internal (e.g., metabolic dysfunction) or external (e.g., nutritional imbalance or
toxic components) factors may be responsible for astroglia epigenetic alterations in major
mental diseases.

From a therapeutic point of view, unlike neurons, which barely duplicate in the
adult brain, astrocytes and glia maintain their capability for duplication [24]. Fortunately,
novel techniques also allow for the in situ differentiation of astrocytes to neurons, which
repopulate endogenous neural circuits. In fact, astrocytes can be converted to neurons
mediated by the PAX6 gene, which is inhibited by miR-365. This provides an opportunity
for neurogenesis from astrocytes in adulthood [27] in specific brain diseases [166].
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